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Abstract: It was possible to synthesize colorless single crystals of La5Cl3[SbO3]4 (block-shaped) as
well as La2Sb12O19Br4 and La2Sb12O19I4 (both needle-shaped), representing three new compounds
from the system of lanthanum oxoantimonate(III) halides, which have not been described in the
literature before. La5Cl3[SbO3]4 crystallizes in the monoclinic space group P2/c with the lattice
parameters a = 895.82(5) pm, b = 564.28(3) pm, c = 1728.19(9) pm, and β = 90.007(2)◦ for Z = 2. This
layered compound contains isolatedψ1-tetrahedral [SbO3]3– units, square hemiprisms [LaO8]13–, and
antiprisms [LaO4Cl4]9−. La2Sb12O19Br4 and La2Sb12O19I4 crystallize isotypically in the orthorhombic
space group Pnma with a = 3184.69(19) pm, b = 417.78(3) pm, c = 1019.85(6) pm for the bromide and
a = 3215.08(19) pm, b = 419.94(3) pm, c = 1062.89(6) pm for the iodide. Instead of isolated [SbO3]3−
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Abstract: It was possible to synthesize colorless single crystals of La5Cl3[SbO3]4 (block-shaped) as 
well as La2Sb12O19Br4 and LaSb12O19I4 (both needle-shaped), representing three new compounds 
from the system of lanthanum oxoantimonate(III) halides, which have not been described in the 
literature before. La5Cl3[SbO3]4 crystallizes in the monoclinic space group P2/c with the lattice pa-
rameters a = 895.82(5) pm, b = 564.28(3) pm, c = 1728.19(9) pm, and β = 90.007(2)° for Z = 2. This 
layered compound contains isolated ψ1-tetrahedral [SbO3]3– units, square hemiprisms [LaO8]13–, and 
antiprisms [LaO4Cl4]9−. La2Sb12O19Br4 and LaSb12O19I4 crystallize isotypically in the orthorhombic 
space group Pnma with a = 3184.69(19) pm, b = 417.78(3) pm, c = 1019.85(6) pm for the bromide and 
a = 3215.08(19) pm, b = 419.94(3) pm, c = 1062.89(6) pm for the iodide. Instead of isolated [SbO3]3− 
anions, semi-tubular features 1∞ {[Sb12O19]2−} are present, which consist mainly of [SbO4]5− and few 
[SbO3]3− units with stereochemically active electronic lone pairs at their Sb3+ centers. Within these so-
called “double-halfpipes”, La3+ is surrounded by nine oxygen atoms as [LaO9]15– polyhedron with-
out any contact with X− anions. Single-crystal Raman measurements were performed for 
La5Cl3[SbO3]4 and LaSb12O19I4, and La5Cl3[SbO3]4 was structurally compared with the isostoichio-
metric, but not isotypic La5F3[SbO3]4. 
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1. Introduction 
Because different structures for compounds with the general composition 

RE5X3[AsO3]4 (RE = Y, La–Nd, Sm–Lu; X = F–Br) have already been described from several 
previous investigations into the quaternary systems RE–X–As–O, interest has now 
switched to exploring this composition type by moving from arsenic to antimony as the 
heavier homolog. The aim was to uncover possibly existing structural similarities or dif-
ferences between these halide derivatives of oxoarsenates(III) and -antimonates(III). 
While the fluoride derivatives with the composition RE5F3[AsO3]4 (RE = Y, Ho, Tm–Lu) [1–
3] exhibit a tetragonal crystal structure (space group: P4/ncc), the analogous chlorides 
(RE5Cl3[AsO3]4 with RE = La–Nd and Sm) [2,4,5] and bromides (RE5Br3[AsO3]4 with RE = 
Pr, Sm, Eu, and Tb) [2,3,6] occur with different monoclinic crystal structures in the space 
groups P2/c or C2/c. For the corresponding oxoantimonates(III) with the composition 
RE5X3[SbO3]4, only the lanthanum representative La5F3[SbO3] [7] has been known in liter-
ature since 1988 and shows the same crystal structure as the fluoride oxoarsenates(III) 
RE5F3[AsO3]4 [1–3]. Other antimonates(III) of this composition have not yet been described 
in the literature. The influence of both the lone-pair of electrons at the Pn3+ centers (Pn = 
As and Sb) of the involved [PnO3]3– anions and the differently hard X– anions (X = F–I) on 
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{[Sb12O19]2−} are present, which consist mainly of [SbO4]5− and few
[SbO3]3− units with stereochemically active electronic lone pairs at their Sb3+ centers. Within these so-
called “double-halfpipes”, La3+ is surrounded by nine oxygen atoms as [LaO9]15– polyhedron without
any contact with X− anions. Single-crystal Raman measurements were performed for La5Cl3[SbO3]4

and La2Sb12O19I4, and La5Cl3[SbO3]4 was structurally compared with the isostoichiometric, but not
isotypic La5F3[SbO3]4.
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1. Introduction

Because different structures for compounds with the general composition RE5X3[AsO3]4
(RE = Y, La–Nd, Sm–Lu; X = F–Br) have already been described from several previous investi-
gations into the quaternary systems RE–X–As–O, interest has now switched to exploring this
composition type by moving from arsenic to antimony as the heavier homolog. The aim was to
uncover possibly existing structural similarities or differences between these halide derivatives
of oxoarsenates(III) and -antimonates(III). While the fluoride derivatives with the composition
RE5F3[AsO3]4 (RE = Y, Ho, Tm–Lu) [1–3] exhibit a tetragonal crystal structure (space group:
P4/ncc), the analogous chlorides (RE5Cl3[AsO3]4 with RE = La–Nd and Sm) [2,4,5] and bro-
mides (RE5Br3[AsO3]4 with RE = Pr, Sm, Eu, and Tb) [2,3,6] occur with different monoclinic
crystal structures in the space groups P2/c or C2/c. For the corresponding oxoantimonates(III)
with the composition RE5X3[SbO3]4, only the lanthanum representative La5F3[SbO3] [7] has
been known in literature since 1988 and shows the same crystal structure as the fluoride
oxoarsenates(III) RE5F3[AsO3]4 [1–3]. Other antimonates(III) of this composition have not yet
been described in the literature. The influence of both the lone-pair of electrons at the Pn3+

centers (Pn = As and Sb) of the involved [PnO3]3– anions and the differently hard X– anions
(X = F–I) on potential luminescence properties of the RE3+ cations have triggered our activities
for further investigations. Moreover, the existence of completely different compositions and
crystal structures for the tetragonal oxobismuthate(III) halides REBi2O4X (RE = Y, La, Pr,
Nd, Sm–Lu, X = Cl–I) [6,8–11], crystallizing in space group P4/mmm, was encouragement
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enough for more systematic studies. First results on the oxoantimonate(III)-halide branch
have revealed that the tetragonal RESb2O4Cl representatives for RE = Sm and Eu [6,12]
crystallize in space group P4/ncc, but for RE = Y, Gd–Lu [3,6,13,14] in space group P4212,
whereas the RESb2O4Br representatives with RE = Y, Eu–Dy [3,6,13,15,16] prefer the mon-
oclinic space group P21/c. All before-mentioned investigations have so far shown that for
As3+ exclusively isolated [AsO3]3− anions are present as ψ1-tetrahedral trigonal pyramids,
while for the Sb3+ case the analogous units [SbO3]3– aspire to an extra oxygen contact for
their central Pn3+ cation, which becomes a general feature in the oxobismuthate(III) halides,
where vertex-sharing [BiO4]5− units dominate as ψ1

ax-square pyramids for the heaviest Pn3+

congener. The influence of the halide anions X– (X = F–I) on the actual crystal structures
seems to be intriguing as well, so we started our corresponding research with the system
La–X–Sb–O.

2. Materials and Methods
2.1. Product Synthesis

According to the literature, for the synthesis of La5F3[SbO3]4, the preparation of
La5Cl3[SbO3]4 was carried out according to Equation (1) with the reactants lanthanum
sesquioxide (La2O3 (656 mg, 0.336 mmol): ChemPur, 99.99%), lanthanum trichloride
(LaCl3 (246 mg, 0.336 mmol): ChemPur, 99.9%), antimony sesquioxide (Sb2O3 (583 mg,
0.168 mmol): ChemPur, 99.9%) and as flux cesium chloride (CsCl (800 mg): Aldrich,
99.9%) at a temperature of 780 ◦C for a period of four days, followed by slow cooling to
660 ◦C and further keeping this temperature for four more days, and subsequent cooling to
room temperature. Thereafter, the aqueous workup to remove the flux yielded a fibrous
microcrystalline powder containing a few octahedrally shaped single crystals (Figure 1),
which had the desired composition and could be further characterized by single-crystal
X-ray diffraction.

2 La2O3 + LaX3 + 2 Sb2O3 → La5X3[SbO3]4 (Flux: CsX, X = Cl) (1)
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In synthesis experiments of LaSb2O4Br and LaSb2O4I according to reaction Equation (2),
lanthanum sesquioxide (La2O3 (52 mg, 0.158 mmol or 47 mg, 0.145 mmol): ChemPur, 99.99%)
was reacted with the lanthanum trihalides (LaBr3 (60 mg, 0.158 mmol): ChemPur, 99.9%;
LaI3 (76 mg, 0.145 mmol): ChemPur, 99.9%, respectively) and antimony sesquioxide (Sb2O3
(138 mg, 0.053 mmol or 127 mg, 0.048 mmol): ChemPur, 99.9%) to yield the new lanthanum
oxoantimonate(III) halides La2Sb12O19X4 (X = Br or I). Cesium bromide (CsBr (800 mg):
Aldrich, 99.9%) or cesium iodide (CsI (800 mg): Merck, 99.99%) were chosen as fluxes, and the
reactions always took place in evacuated glassy silica ampoules. Their content reacted in a
muffle furnace (Nabertherm, L9/12) at a specific temperature program. This involved heating
to 750 ◦C at a rate of 150 ◦C/h and holding this temperature for two more days. Then, cooling
with a rate of 5 ◦C/h brought the vials to 666 ◦C, and again, keeping this temperature for two
days was useful. Renewed cooling at 5 ◦C/h took the ampoules down to 530 ◦C, whereafter
this temperature was maintained for two more days. In the final step, cooling at 10 ◦C/h to
480 ◦C and finally at 150 ◦C/h to room temperature took place. The reaction products were
then washed with demineralized water and dried at 120 ◦C in a drying oven. Needle-shaped
single crystals (Figure 2) were easily found under a stereomicroscope.

La2O3 + LaX3 + 3 Sb2O3 → 3 LaSb2O4X (Flux: CsX, X = Br and I) (2)
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Figure 2. Electron-microscopic backscattering image of some acicular crystals of composition
La2Sb12O19Br4.

2.2. Single-Crystal X-ray Diffraction

Suitable crystals of all three lanthanum oxoantimonate(III) halides were selected
from the samples and fixed in glass capillaries (Hilgenberg, Malsfeld; outer diameter:
0.1 mm, wall thickness: 0.001 mm) with grease. The measurements occurred with a
four-circle single-crystal diffractometer κ-CCD (Bruker-Nonius, Karlsruhe, Germany) for
La5Cl3[SbO3]4 and a single-crystal diffractometer STADI-VARI (Stoe, Darmstadt, Germany)
for La2Sb12O19Br4 and La2Sb12O19I4. The monoclinic crystal structure of La5Cl3[SbO3]4
was solved using direct methods in the centrosymmetric space group P2/c and refined
using the SHELX-97 program package [18,19]. The orthorhombic crystal structures of
La2Sb12O19Br4 and La2Sb12O19I4 were determined in the centrosymmetric space group
Pnma with the same methods.



Crystals 2023, 13, 731 4 of 20

2.3. Raman Spectroscopy

Raman spectra of the single crystals of La5Cl3[SbO3]4 and La2Sb12O19I4 were recorded
using a Raman microscope (XploRA, Horiba, Kyoto, Japan) with an excitation wavelength
of λ = 638 nm (La5Cl3[SbO3]4) and λ = 532 nm (La2Sb12O19I4) at a LASER power of 25 mW.

2.4. Electron-Beam Microprobe Analysis

Scanning electron microscope (SEM) images of La5Cl3[SbO3]4 and La2Sb12O19Br4
were acquired using an electron-beam microprobe system (SX-100, Cameca, Gennevil-
liers, France).

2.5. Powder X-ray Diffraction

The sample of La5Cl3[SbO3]4 was measured in transmission geometry on a Rigaku
SmartLab X-ray powder diffractometer (Rigaku, Tokyo, Japan) using Cu-Kα1 radiation.
Figure 3 shows the powder diffractogram. It contains traces of CsCl and an unknown
phase (marked with 2) in addition to La5Cl3[SbO3]4. Further reflections of elemental cubic
aluminum (marked with 1) result from the measurement on an aluminum sample carrier.
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Figure 3. Powder X-ray diffractogram of La5Cl3[SbO3]4 (the reflections marked with 1 belong to cubic
aluminum, and the ones marked with 2 originate from an unknown phase). In black the measurement
and in red the theoretical data.

The analogously recorded powder X-ray diffractograms of La2Sb12O19Br4 and La2Sb12O19I4
are not shown, despite the fact that they also show the presence of the title compounds. More-
over, they document that these products do not occur in phase pure, which is already assumable
by their formation reaction (Equation (2)), targeting the compositions LaSb2O4Br and LaSb2O4I.
In the first case, there is strong evidence for the presence of La5Br3[SbO3]4 as a by-product,
which most probably crystallizes isotypically with La5Cl3[SbO3]4. The formation of this com-
pound with a molar ratio of La:Sb = 5:4 would explain the dominance of the La2Sb12O19Br4
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phase (La:Sb ratio = 1:6) when a compound such as LaSb2O4Br (La:Sb ratio = 1:2) is planned to
be synthesized. For the La2Sb12O19I4 case, there are many extra reflections in the powder X-ray
diffractogram, which originate from a cesium-containing by-product with the composition
CsI4La2Sb8.333O14 (monoclinic, C2/m; a ≈ 2325 pm, b ≈ 420 pm, c ≈ 1300 pm, β ≈ 96.5◦ for
Z = 2) crystallizing isotypically with RbI4Nd2Sb8.333O14 [20,21] after the incorporation of some
CsI from the flux (Equation (2)). As the empirical formula Cs2I8La4Sb16.667O28 for Z = 1 already
suggests, there are strong structural similarities to La2Sb12O19I4, which will be shown in an
upcoming publication soon.

3. Results and Discussion
3.1. Crystal Structures of La5Cl3[SbO3]4 and La5F3[SbO3]4 in Comparison

La5Cl3[SbO3]4 crystallizes monoclinically in the space group P2/c with the lattice
parameters a = 895.82(5) pm, b = 564.28(3) pm, c = 1728.19(9) pm and β = 90.007(2)◦ for
two formula units per unit cell. Three distinct crystallographic positions result for the La3+

cations, each having a coordination number of C.N. = 8, but the coordinating particles
differ to some extent. (La1)3+ and (La2)3+ are surrounded eightfold by oxygen atoms in the
form of square antiprisms or hemiprisms [LaO8]13− with lanthanum-oxygen distances in
the range of d(La1–O) = 237–264 pm and d(La2–O) = 230–262 pm (Figure 4, left and mid).
These values are in good agreement with those in lanthanum sesquioxide (La2O3, A-type),
in which interatomic distances of 237–273 pm occur for C.N. = 7 [22]. The [(La1,2)O8]13−

polyhedra are linked by four common edges each in such a way that infinite layers parallel

to the bc plane are formed, satisfying the Niggli formula 2

∞
{[LaO e

8/2
]5−} (Figure 5). According

to the crystallographic multiplicities, each (La1)3+-centered polyhedron is surrounded by
four (La2)3+-centered ones, but each (La2)3+-centered polyhedron is surrounded by two
(La1)3+- and two (La2)3+-centered ones.
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In contrast, the third La3+ cation also has a coordination number of eight but is
coordinated by four oxygen atoms and four Cl– anions in the center of a square an-
tiprism [(La3)O4Cl4]9− (Figure 4, right). The values of the interatomic distances are
d(La3–O) = 232–245 pm and d(La3–Cl) = 323–326 pm, so the lengths of the lanthanum–
oxygen bonds are more similar to those in the lanthanum oxide chloride LaOCl (PbFCl-type,
4 × 239 pm) [20]. The comparison of the distances to the four Cl– anions also shows better
agreement with the five values of 313–321 pm for LaOCl [23] compared to those in the
lanthanum trichloride LaCl3 (UCl3-type), which exhibits considerably shorter interatomic
distances of 295–296 pm for C.N. = 9 [24].
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The coordination polyhedra around (La3)3+ show a different linkage pattern compared
to those centered with (La1)3+ and (La2)3+. Namely, the linkage occurs once via the (Cl2)−

anions, which edge-link the polyhedra along the b-axis, forming one-dimensional double
strands. A quite similar bonding situation is found in the rare-earth metal(III) halide
oxoarsenates(III) RE3X2[As2O5][AsO3] (RE = Y, Sm–Gd, Ho–Yb and X = Cl and Br) [3,25].
However, these chains are still corner-linked to each other via the (Cl1)– anions here, turning
the double strands into a two-dimensional bilayer (Figure 6, top), which can be described

with the Niggli formula 2
∞

{[(La3)O
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]6.5–}. The two different Cl– anions that

contribute significantly to the linkage of the [(La3)O4Cl4]9– antiprisms are shown again
in Figure 6 (bottom) in the centers of cationic coordination polyhedra, where the different
coordination numbers of C.N.(Cl1) = 2 and C.N.(Cl2) = 3 are particularly prominent.

The crystal structure of La5Cl3[SbO3]4 exhibits two crystallographically distinct Sb3+

cations, both of which actuate a coordination number of C.N. = 3 with respect to oxy-
gen atoms to form ψ1-tetrahedral [SbO3]3– anions with antimony–oxygen distances of
d(Sb1–O) = 196–202 pm and slightly shorter ones of d(Sb2–O) = 187–199 pm (Figure 7).
Literature comparison with typical Sb3+–O2− bond lengths reveals values of 198–202 pm
for valentinite and senarmontite, the two naturally occurring crystalline modifications of
antimony sesquioxide (Sb2O3), which are in good agreement [26,27]. With O–Sb–O angles
from 83 to 105◦, the deflection of the Sb3+ cations from the triangular oxygen plane of their
trigonal-pyramidal [SbO3]3− anions amounts to 110–111 pm.
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Figure 7. The two different Sb3+ cations in the crystal structure of La5Cl3[SbO3]4 with their first
coordination sphere of three oxygen atoms as discrete ψ1-tetrahedral [SbO3]3− anions, decorated
with La3+ cations.

Figure 8 shows a section of the crystal structure of La5Cl3[SbO3]4, emphasizing
the cell edges and the different coordination polyhedra. The crystal already showed
difficulties in revealing the correct metric during the measurement since an orthorhombic
cell was initially suggested due to the measured monoclinic angle of β = 90.007(2)◦.
However, only the solution and refinement in the monoclinic space group P2/c provided
a reasonable structure model. This refinement was investigated using the software
PLATON [28] and the subroutine Addsym, which searches for overlooked symmetry
operations in the case of higher symmetry structures described in a lower symmetry
space group and proposes a higher symmetry space group. However, this algorithm did
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not find a more suitable space group, even for a nonfit proportion of about 20%. However,
the nearly orthogonal monoclinic angle and the refined twin proportions of about 60%
for the major specimen and 40% for the minor one suggest that a higher-symmetric
orthorhombic high-temperature modification might exist and that a symmetry break to
the monoclinic structure occurs during the course of synthesis upon cooling.
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of the La3+ cations.

In contrast to La5Cl3[SbO3]4, which finds its analogy in the rare-earth metal(III)
oxoarsenates(III) Ln5Br3[AsO3]4 (Ln = Pr, Sm, Eu, and Tb) [2,3,6], La5F3[SbO3]4 [7] crys-
tallizes isotypically to the rare-earth metal(III) fluoride oxoarsenates(III) RE5F3[AsO3]4
(RE = Y, Ho, Tm–Lu) [2,3] in the tetragonal space group P4/ncc with a = 1208 pm and
c = 1144 pm (c/a = 0.947) for Z = 4. Although La5F3[SbO3]4 and La5Cl3[SbO3]4 share the
same structured molecular formula, they thus have little in common, except for their dis-
crete ψ1-tetrahedral [SbO3]3– and two differently coordinated X– anions (C.N.(F1) = 5 + 1,
C.N.(F2) = 2), starting with the coordination spheres of the La3+ cations. While three La3+-
cation positions are present in La5Cl3[SbO3]4, of which only (La3)3+ has direct contact
with four Cl− anions according to [(La3)Cl4O4]9−, two lanthanum sites can be found in
La5F3[SbO3]4, which both have contact to F– anions. The (La1)3+ cation is coordinated by
eight oxygen atoms in the shape of a square hemiprism with one square face capped by
the (F1)– anion at a distance of 257 pm. Another (F1)– anion is located above the opposite
square face, but it has a distance of 314 pm, which no longer corresponds to a significant
chemical bond (Figure 9, left). The (La2)3+ cations are surrounded by six O2– and two
F− anions each, arranged as a bicapped trigonal prism (Figure 9, right). At the same
time, the prism is spanned by one (F2)−, one (O1)2−, two (O2)2− and two (O3)2− anions,
while another (O1)2− and one (F1)– anion recruit the caps. Therefore, in La5F3[SbO3]4, a
three-dimensionally cross-linked network is present, whereas for La5Cl3[SbO3]4, a layered
structure occurs.



Crystals 2023, 13, 731 9 of 20

Crystals 2023, 13, x FOR PEER REVIEW 9 of 22 
 

 

pm (c/a = 0.947) for Z = 4. Although La5F3[SbO3]4 and La5Cl3[SbO3]4 share the same struc-
tured molecular formula, they thus have little in common, except for their discrete ψ1-
tetrahedral [SbO3]3– and two differently coordinated X– anions (C.N.(F1) = 5 + 1, C.N.(F2) 
= 2), starting with the coordination spheres of the La3+ cations. While three La3+-cation po-
sitions are present in La5Cl3[SbO3]4, of which only (La3)3+ has direct contact with four Cl− 
anions according to [(La3)Cl4O4]9−, two lanthanum sites can be found in La5F3[SbO3]4, 
which both have contact to F– anions. The (La1)3+ cation is coordinated by eight oxygen 
atoms in the shape of a square hemiprism with one square face capped by the (F1)– anion 
at a distance of 257 pm. Another (F1)– anion is located above the opposite square face, but 
it has a distance of 314 pm, which no longer corresponds to a significant chemical bond 
(Figure 9, left). The (La2)3+ cations are surrounded by six O2– and two F− anions each, ar-
ranged as a bicapped trigonal prism (Figure 9, right). At the same time, the prism is 
spanned by one (F2)−, one (O1)2−, two (O2)2− and two (O3)2− anions, while another (O1)2− 
and one (F1)– anion recruit the caps. Therefore, in La5F3[SbO3]4, a three-dimensionally 
cross-linked network is present, whereas for La5Cl3[SbO3]4, a layered structure occurs. 

 
Figure 9. Bicapped square hemiprism [(La1)O8F(1+1)]15− (left) and bicapped trigonal prism 
[(La2)O6F2]11− (right) in the tetragonal crystal structure of La5F3[SbO3]4. 

The crystallographic data of La5Cl3[SbO3]4 and other parameters, such as fractional 
atomic coordinates and selected bond lengths, are summarized in Tables 1–3. 
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The crystallographic data of La5Cl3[SbO3]4 and other parameters, such as fractional
atomic coordinates and selected bond lengths, are summarized in Tables 1–3.

3.2. Raman Spectroscopy on La5Cl3[SbO3]4

A single-crystal Raman measurement was performed for further characterization to
prove the relationship to the rare-earth metal(III) bromide oxoarsenates(III) RE5Br3[AsO3]4
(RE = Pr, Sm, Eu, Tb) [2,3,6]. The spectrum recorded at an excitation wavelength of
λ = 638 nm is shown in Figure 10.

Table 1. Crystallographic data of La5Cl3[SbO3]4 and their determination.

Compound La5Cl3[SbO3]4

Crystal system monoclinic
Space group P2/c (no. 13)

Lattice parameters, a/pm 895.82(5)
b/pm 564.28(3)
c/pm 1728.19(9)
β/◦ 90.007(2)

Number of formula units, Z 2
Calculated density, Dx/g·cm−3 5.626
Molar volume, Vm/cm3·mol−1 263.05

Diffractometer κ-CCD (Bruker-Nonius)
Wavelength λ = 71.07 pm (Mo-Kα)

Electron sum, F(000)/e– 1272
Measurement limit, Θmax/◦ 27.49

Measurement range (±hmax, ±kmax, ±lmax) 11, 7, 22
Number of measured reflections 14795

Number of symmetry-independent ones 2015
Absorption coefficient, µ/mm−1 18.52

Absorption correction Program X-SHAPE 2.21 [18]
Rint/ Rσ 0.058/0.031

R1/R1 with |Fo| ≥ 4σ(Fo) 0.049/0.037
wR2/Goodness of Fit (GooF) 0.085/1.093

Structure determination and refinement Program SHELX-97 [19]
Extinction coefficient, ε/10−6 pm−3 0.00075(6)

Residual electron density, ρmax/min/e− 10−6 pm−3 4.03/−3.89
Batch scale factor (BASF) 1 0.396(2)

CSD number 2214525
1 This value represents the percentage of the twin individuum.
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Table 2. Fractional atomic coordinates, Wyckoff sites, and equivalent isotropic displacement parame-
ters for La5Cl3[SbO3]4.

Atom Site x/a y/b z/c Ueq/pm2

La1 2e 0 0.2301(3) 1/4 248(3)
La2 4g 0.00064(9) 0.74327(17) 0.41548(5) 129(2)
La3 4g 0.31942(9) 0.24959(17) 0.41245(5) 149(2)
Cl1 2f 1/2 0.2476(9) 1/4 306(14)
Cl2 4g 0.4983(4) 0.7512(7) 0.4259(2) 247(8)
Sb1 4g 0.26331(11) 0.25317(18) 0.06713(5) 141(2)
Sb2 4g 0.28708(11) 0.75412(18) 0.26472(5) 148(3)
O1 4g 0.0940(16) 0.313(3) 0.1250(7) 713(51)
O2 4g 0.1748(12) 0.004(2) 0.0007(7) 217(22)
O3 4g 0.1797(12) 0.499(2) 0.4960(7) 203(22)
O4 4g 0.1406(15) 0.865(2) 0.1890(7) 481(38)
O5 4g 0.1805(13) 0.506(2) 0.3250(7) 215(27)
O6 4g 0.1858(14) 0.993(2) 0.3339(7) 270(33)

Table 3. Selected interatomic distances (d/pm) in La5Cl3[SbO3]4 and bond angles (
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La2–O2’ 1× 259.5(12) O1–Sb1–O2 1× 96.6(8)
La2–O3’ 1× 261.0(12) O2–Sb1–O3 1× 89.5(5)
La2–O5 1× 261.5(11) O3–Sb1–O1 1× 84.2(7)
La2–O1 1× 266.6(14)

O4–Sb2–O5 1× 104.7(6)
La3–O6 1× 231.8(11) O5–Sb2–O6 1× 86.8(5)
La3–O3 1× 237.2(12) O6–Sb2–O4 1× 83.1(5)

La3–O5 1× 243.4(12)
La3–O2 1× 246.0(13)
La3–Cl2 1× 323.6(4)
La3–Cl1 1× 324.0(3)
La3–Cl2’ 1× 324.5(4)
La3–Cl2” 1× 326.0(4)

The symmetric Sb3+–O2− valence vibration can be identified as the second strongest
band, which is located at a wavenumber of about 721 cm–1 for La5Cl3[SbO3]4. The band
found at 621 cm−1 has a much lower intensity and can be assigned to asymmetric valence
vibration. The other bands at 523 and 462 cm−1 belong to the symmetric and at 388, 327,
and 296 cm−1 to the asymmetric deformation vibrations. Finally, at 212 and 145 cm−1, the
lattice vibrations occur. Compared to the rare-earth metal(III) bromide oxoarsenates(III)
RE5Br3[AsO3]4, the spectrum is almost the same, but the peaks are much better defined
and only shifted by a few wavenumbers [29,30]. As with the rare-earth metal(III) oxoanti-
monate(III) chlorides of composition RESb2O4Cl (RE = Y, Sm–Lu) [3,6,12–14], the common
mode valence vibration of the terminal oxygen atoms to the antimony is similarly pro-
nounced at about 700–720 cm−1. However, La5Cl3[SbO3]4 lacks the push-pull vibration,
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which is found in the range of 660 cm−1 for GdSb2O4Cl and at 672 cm−1 for SmSb2O4Cl,
since the latter contains discrete [Sb4O8]4− rings of four cyclically vertex-connected ψ1-
tetrahedral [SbO3]3− units according to RE2[Sb4O8]Cl2 [3,6,12–14].
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3.3. Crystal Structure of La2Sb12O19Br4 and La2Sb12O19I4

Synthesis experiments to prepare LaSb2O4Br and LaSb2O4I have failed so far but yielded
two isostructural lanthanum oxoantimonate(III) halides with the composition La2Sb12O19X4
(X = Br and I). Both crystallize orthorhombically in the space group Pnma with Z = 2. The unit-
cell parameters for the bromide are a = 3184.69(19) pm, b = 417.78(3) pm, c = 1019.85(6) pm,
while for the iodide, they amount to a = 3215.08(19) pm, b = 419.94(3) pm, c = 1062.89(6) pm,
so as expected, the iodide shows larger values as compared to the bromide owing to the larger
radius of the iodide anion (ri(I–) = 220 pm) versus ri(Br−) = 195 pm). One of the characteristic
structural features of these compounds becomes apparent when considering the environment
of the unique La3+ cation. This crystallographically singular cation is coordinated by nine
oxygen atoms arranged as a capped square antiprism. These [LaO9]15− polyhedra form an

endless strand along the b-axis according to 1
∞

{[LaO
t

5/1
O

e
4/2

]11−}, which undergoes linkage via

two polyhedral edges (2 × O4···O7). The lanthanum–oxygen distances fall into the range of
d(La–O) = 239–297 pm for the bromide and d(La–O) = 240–296 pm for the iodide derivative
(Figure 11). These numbers agree quite well with literature values of d(La–O) = 237–273 pm for
C.N. = 7 in A-type La2O3 [22] and even better with PbFCl-type LaOBr (d(La–O) = 240 pm) [31]
and LaOI (d(La–O) = 241 pm) [32] although there are no X– anions in the coordination sphere
of La3+ in the La2Sb12O19X4 cases.
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]11−} in the crystal structure of La2Sb12O19Br4 and La2Sb12O19I4.

Another substructure within these compounds is that of the antimony–oxygen environ-
ment. Most of the Sb3+ cations, together with four oxygen atoms, form trigonalψ1

eq-bipyramids
[SbO4]5− (Sb1–Sb5, Figure 12), which are linked to each other either by an edge (Sb2 with
Sb3 and Sb1 with Sb4) or by a corner (Sb1 with Sb3 and Sb5 with Sb4, as well as Sb5 with
Sb6). In contrast, the (Sb6)3+ cations form ψ1-tetrahedra [SbO3]3− (Figure 12) with only three
oxygen atoms each, which in turn are linked to one another via edges (O6···O6). The oxygen
atom O7 remains terminal, and both O6 atoms link two open “halfpipes” with two (Sb6)3+

cations each as linkers to form a “double-halfpipe” 1
∞

{[Sb12O19]2−} (Figure 12). Within these

so-called “double-halfpipes”, the antimony–oxygen distances range from 197 to 225 pm (plus
254 pm) for La2Sb12O19Br4 and from 192 to 227 pm (plus 256 pm) for La2Sb12O19I4, which
agree quite well with literature values of d(Sb–O) = 198–202 pm (plus 251 and 262 pm) in valen-
tinite (β-Sb2O3) [27] and come slightly higher than d(Sb–O) = 198 pm (3×) in senarmontite
(α-Sb2O3) [26], but show a high degree of diversity.
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{[Sb12O19]2−}, which run along [010] and consist of two “half-

pipes” linked via O6 (2×) at Sb6 in the crystal structure of La2Sb12O19Br4 and La2Sb12O19I4. An
inversion center is notable within the central (Sb6)–(O6)···(O6)–(Sb6) rhombuses.
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The capped square hemiprisms [LaO9]15− are located within these “double-halfpipes”,
where each oxygen atom of every [LaO9]15− polyhedron is also a component of the
antimony-oxygen “double-halfpipe” arrangement (Figure 13).
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{[Sb12O19]2−} of antimony and oxygen in the crystal structure of La2Sb12O19Br4 and La2Sb12O19I4.

Furthermore, the environment of the heavy halide anions X− (X = Br and I) is also
very interesting. (X1)− is surrounded by ten Sb3+ cations with the shape of a bicapped
square prism, while (X2)– has nine Sb3+ cations arranged as monocapped square prisms
as nearest neighbors. Therefore, once again, no bonding La3+···X− contacts occur since
the shortest La3+···X− distances are 332 pm for X = Br and 342 pm for X = I. There are
always two of these prisms [(X1)Sb10]29+ and [(X2)Sb9]26+ linked together to form a
double unit via a shared face (2× Sb2 + 2× Sb4). Figure 14 also shows that the (Sb6)3+

cations can be present only in half of their abundance in both cases to avoid too short
distances between two of them (110 pm for X = Br, 104 pm for X = I) at the corresponding
corners of each [(X2)Sb9]26+ polyhedron. The antimony–halide distances range from 332
to 375 pm for La2Sb12O19Br4 and from 342 to 385 pm for La2Sb12O19I4, so one can not
speak of real chemical bonds here, but only of long secondary contacts.

The content of an extended unit cell of the crystal structure of both La2Sb12O19X4
representatives (X = Br and I) as viewed along [010] can be seen in Figure 15, which
suggests the impression of a hexagonal packing of rods or better “double-halfpipes”

1
∞

{[Sb12O19]2−}, encapsulating the La3+ cations to form one 1
∞

{[LaO
t

5/1
O

e
4/2

]11−} strand

per “halfpipe”.
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Tubular or semi-tubular arrangements of antimony and oxygen are not so rare, es-
pecially when heavy anions (X– = Br− and I−) occur in antimony(III) oxide halides, such
as Sb8O11X2 (X = Cl–I) [33–35], Sb5O7I [36–38], and Sb3O4I [39]. Even with additional
alkali-metal cations, they persist, for example, in the systems AI4RE2Sb8.333O14 (A = K–Cs;
RE = Y, Pr–Tm) [6,20,21].

The crystallographic data of La2Sb12O19Br4 and La2Sb12O19I4 and other parame-
ters, such as fractional atomic coordinates and selected bond lengths, are summarized
in Tables 4–7.
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Table 4. Crystallographic data of La2Sb12O19Br4 and La2Sb12O19I4 and their determination.

Compound La2Sb12O19Br4 La2Sb12O19I4

Crystal system orthorhombic
Space group Pnma (no. 62)

Lattice parameters, a/pm 3184.69(19) 3215.08(19)
b/pm 417.78(3) 419.94(3)
c/pm 1019.85(6) 1062.89(6)

Number of formula units, Z 2
Calculated density, Dx/g·cm−3 5.782 5.902
Molar volume, Vm/cm3·mol−1 408.60 432.15

Diffractometer STADI-VARI (Stoe
& Cie)

κ-CCD
(Bruker-Nonius)

Wavelength λ = 56.08 pm
(Ag-Kα)

λ = 71.07 pm
(Mo-Kα)

Electron sum, F(000)/e− 2036 2180
Measurement limit, Θmax/◦ 30.66 27.48

Measurement range (±hmax, ±kmax, ±lmax) 57, 7, 18 41, 5, 13
Number of measured reflections 33659 22948

Number of symmetry-independent ones 4554 1873
Absorption coefficient, µ/mm−1 11.01 18.37

Absorption correction Program X-SHAPE 2.21 [18]
Rint/ Rσ 0.069/0.059 0.175/0.092

R1/R1 with |Fo| ≥ 4σ(Fo) 0.104/0.066 0.119/0.063
wR2/Goodness of Fit (GooF) 0.173/1.043 0.161/0.985

Structure determination and refinement Program SHELX-97 [19]
Residual electron density, ρmax/min/e− 10−6 pm−3 7.77/−7.31 5.50/−3.18

CSD number 2250889 2250901

Table 5. Fractional atomic coordinates, Wyckoff sites, and equivalent isotropic displacement parame-
ters of La2Sb12O19Br4.

Atom Site s.o.f. x/a y/b z/c Ueq/pm2

La 4c 1 0.40012(2) 1/4 0.64836(6) 147(1)
Sb1 4c 1 0.29137(2) 1/4 0.81595(8) 183(2)
Sb2 4c 1 0.13081(2) 1/4 0.86234(7) 130(1)
Sb3 4c 1 0.29463(2) 1/4 0.46716(7) 127(1)
Sb4 4c 1 0.13980(3) 1/4 0.47176(8) 279(2)
Sb5 4c 1 0.03442(3) 1/4 0.38192(9) 332(2)
Sb6 8d 0.500(3) (a) 0.01684(3) 0.1180(4) 0.87741(12) 269(4)
O1 4c 1 0.1884(2) 1/4 0.9352(8) 146(12)
O2 4c 1 0.3206(3) 1/4 0.6449(8) 186(14)
O3 4c 1 0.3562(2) 1/4 0.4099(8) 153(13)
O4 4c 1 0.0953(3) 1/4 0.3314(10) 240(17)
O5 4c 1 0.1887(3) 1/4 0.3465(10) 262(18)
O6 4c 1 0.4700(3) 1/4 0.5066(9) 225(16)
O7 4c 1 0.1027(2) 1/4 0.0347(8) 173(14)
O8 4c 1 0.3506(3) 1/4 0.8952(11) 309(20)
O9 4c 0.73(4) (b) 0.4643(5) 1/4 0.8020(16) 383(52)
O10 4c 0.77(4) (b) 0.0204(5) 1/4 0.1941(16) 442(49)
Br1 4c 1 0.27927(5) 1/4 0.14307(13) 318(3)
Br2 4c 1 0.43006(4) 1/4 0.12576(14) 302(3)

(a) freely refined fractional site occupation factor (s.o.f.); (b) constraintly refined site occupation factors with
s.o.f.(O9) + s.o.f.(O10) = 1.5.
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Table 6. Fractional atomic coordinates, Wyckoff sites, and equivalent isotropic displacement parame-
ters of La2Sb12O19I4.

Atom Site s.o.f. x/a y/b z/c Ueq/pm2

La 4c 1 0.39978(5) 1/4 0.64015(13) 165(4)
Sb1 4c 1 0.29170(5) 1/4 0.80393(14) 186(4)
Sb2 4c 1 0.13171(5) 1/4 0.86652(14) 145(4)
Sb3 4c 1 0.29476(5) 1/4 0.46760(14) 132(4)
Sb4 4c 1 0.13978(6) 1/4 0.45113(15) 279(5)
Sb5 4c 1 0.03568(6) 1/4 0.36641(16) 370(6)
Sb6 8d 0.500(4) (a) 0.01618(7) 0.1258(6) 0.88214(19) 275(8)
O1 4c 1 0.1888(5) 1/4 0.9406(14) 170(40)
O2 4c 1 0.3194(6) 1/4 0.6373(14) 278(45)
O3 4c 1 0.3563(5) 1/4 0.4150(14) 188(38)
O4 4c 1 0.0953(5) 1/4 0.3193(16) 288(46)
O5 4c 1 0.1897(6) 1/4 0.3309(17) 361(49)
O6 4c 1 0.4694(5) 1/4 0.5037(16) 257(42)
O7 4c 1 0.1029(5) 1/4 0.0307(15) 223(41)
O8 4c 1 0.3505(6) 1/4 0.8757(18) 489(60)
O9 4c 0.74(5) (b) 0.4614(8) 1/4 0.786(3) 916(167)
O10 4c 0.76(5) (b) 0.0214(8) 1/4 0.191(2) 788(142)
I1 4c 1 0.28347(5) 1/4 0.13865(14) 224(4)
I2 4c 1 0.42943(6) 1/4 0.12643(15) 294(5)

(a) freely refined fractional site occupation factor (s.o.f.); (b) constraintly refined site occupation factors with
s.o.f.(O9) + s.o.f.(O10) = 1.5.

3.4. Raman Spectroscopy on La2Sb12O19I4

The Raman spectrum of La2Sb12O19I4, shown in Figure 16, was recorded at an exci-
tation wavelength of λ = 532 nm. At a wavenumber of 627 cm−1, the push-pull valence
vibration can be seen, which is much more pronounced in contrast to the chloride deriva-
tives RESb2O4Cl (RE = Y, Sm–Lu) [3,6,12–14], while the valence vibration in the common
mode can not be detected in the spectrum at all. This is due to the presence of isolated
[Sb4O8]4−-ring units consisting of four vertex-connected ψ1-tetrahedra [SbO3]3− in the
RESb2O4Cl examples, while in La2Sb12O19I4 and La2Sb12O19Br4, endless “double-halfpipes”
of antimony and oxygen with mostly tetracoordinated Sb3+ cations are encountered. Fur-
thermore, the peaks at 511 and 479 cm−1 can be assigned to the symmetric deformation
vibrations of the vast minority of ψ1-tetrahedra [SbO3]3−. At 201, 144, 108, 74, and 61 cm−1,
several bands are found, which probably belong to lattice vibrations [29,30].
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Table 7. Selected interatomic distances (d/pm) in La2Sb12O19Br4 (left) and La2Sb12O19I4 (right).

Bond d/pm Bond d/pm

La–O2 1× 253.3(9) La–O2 1× 258.5(19)
La–O3 1× 280.6(8) La–O3 1× 277.2(15)
La–O4 2× 280.5(7) La–O4 2× 283.9(12)
La–O6 1× 265.3(9) La–O6 1× 266.8(16)
La–O7 2× 239.1(4) La–O7 2× 240.2(8)
La–O8 1× 297.1(11) La–O8 1× 296.4(19)
La–O9 1× 257.5(16) La–O9 1× 252(2)
Sb1–O2 1× 197.7(8) Sb1–O2 1× 198.2(17)
Sb1–O5 2× 220.5(3) Sb1–O5 2× 220.2(5)
Sb1–O8 1× 205.3(9) Sb1–O8 1× 203.7(19)
Sb2–O1 1× 198.0(7) Sb2–O1 1× 199.8(16)
Sb2–O3 2× 218.4(2) Sb2–O3 2× 219.6(4)
Sb2–O7 1× 197.2(8) Sb2–O7 1× 197.6(15)
Sb3–O1 2× 218.2(2) Sb3–O1 2× 218.4(4)
Sb3–O2 1× 199.2(8) Sb3–O2 1× 197.0(14)
Sb3–O3 1× 204.6(7) Sb3–O3 1× 205.5(15)
Sb4–O4 1× 201.4(9) Sb4–O4 1× 200.3(15)
Sb4–O5 1× 201.4(9) Sb4–O5 1× 205.3(17)
Sb4–O8 2× 225.1(4) Sb4–O8 2× 226.9(7)
Sb5–O4 1× 200.7(8) Sb5–O4 1× 198.0(18)
Sb5–O9 2× 224.3(6) Sb5–O9 2× 226.9(13)
Sb5–O10 1× 196.7(16) Sb5–O10 1× 192(3)
Sb6–O6 1× 198.1(8) Sb6–O6 1× 200.1(16)
Sb6–O6’ 1× 206.8(6) Sb6–O6’ 1× 209.2(11)
Sb6···O9 1× 254.1(17) Sb6···O9 1× 256(3)
Sb6–O10 1× 207.5(11) Sb6–O10 1× 213.7(19)
Sb1···Br1 1× 335.80(16) Sb1···I1 1× 356.8(2)
Sb1···Br1’ 2× 354.09(13) Sb1···I1’ 2× 356.2(2)
Sb2···Br2 2× 373.39(13) Sb2···I2 2× 384.6(2)
Sb3···Br1 1× 334.11(13) Sb3···I1 1× 351.5(2)
Sb3···Br1’ 2× 362.23(13) Sb3···I1’ 2× 374.7(2)
Sb4···Br1 2× 374.84(15) Sb4···I1 2× 380.4(2)
Sb4···Br2 2× 343.24(13) Sb4···I2 2× 358.3(2)
Sb5···Br2 1× 332.45(16) Sb5···I2 1× 341.6(3)
Sb5···Br2’ 2× 343.91(13) Sb5···I2’ 2× 364.8(2)
Sb6···Br2 1× 343.68(18) Sb6···I2 1× 359.6(3)
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4. Conclusions

With the three new compounds presented here, the spectrum of lanthanum oxoanti-
monate(III) halides has been considerably extended. It was possible to obtain colorless sin-
gle crystals of all three (monoclinic La5Cl3[SbO3]4 as well as orthorhombic La2Sb12O19Br4
and La2Sb12O19I4) and to determine their crystal structures. Furthermore, Raman mea-
surements were performed on both structure types and compared with known rare-
earth metal(III) oxoantimonate(III) halides with the composition RESb2O4X. Moreover, a
structural comparison of tetragonal La5F3[SbO3]4 with three-dimensional and monoclinic
La5Cl3[SbO3]4 with two-dimensional expression was performed, where differences and
similarities could be worked out. According to X-ray powder investigations, there are more
phases to consider (e.g., La5Br3[SbO3]4 with laminar and CsI4La2Sb8.333O14 with tubular
structure characteristics, such as La2Sb12O19Br4 and La2Sb12O19I4), so further studies into
the La–Sb–O–X systems seem to be necessary.
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