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Abstract: In the present work, the interaction between electrons and holes in semiconductor materials
is investigated. According to the excitation process, the optical-elastic-thermal-diffusion (OETD)
process is considered when the medium is exposed to a strong magnetic field and laser pulses.
Photo-elastic and photo-electronics deformations are taken into account when the Hall current impact
appears due to the magnetic field pressure on the semiconductor medium. Due to the complexity
of the model, the governing equations that describe the system in one dimension (1D) are studied.
Mathematical transformations (Laplace transform) were used to simplify the equations to obtain the
physical quantities under study which were affected by laser pulses. To obtain complete solutions,
some conditions were obtained from the free surface as well as from a mechanical ramp type and
pulse heat flux, and then numerical transformations were applied using the inverse Laplace transform.
Under the influence of several variables in this question, the results were explained graphically for
silicon (Si) material and the results were analyzed in terms of their physical significance.

Keywords: holes and electrons; laser pulses; Hall current; silicon; photo-generated; semiconductors

1. Introduction

Through studying semiconductors, current physics research demonstrates that charge
carriers in motion are particle-free but nevertheless transmit electric charges. Electrons,
ions, and holes are only a few examples of the many distinct forms of charge carriers.
In semiconductors, electrons and holes serve as the charge carriers. At zero Kelvin, free
electrons populate the outermost atomic layers of semiconductors (the valence energy band).
In these conditions, it is impossible for electrons or electric currents to move or switch
positions. Increasing the temperature of a semiconductor causes its internal resistance to
drop, which may allow some electrons to move from the valence band to the conduction
band. To be more precise, an electric current is produced because electrons are moving
about freely on the surface of the material. There will always be a vacancy in the valence
band when an electron transitions to the conduction band. This causes electrons and holes
in semiconductors to be physically near to one another. Electric currents flow through a
semiconductor because of the motion of these free electrons. The holes also transfer electric
currents in very unusual situations when the material is exposed to temperature gradients.

In recent years, scientists have been studying the Hall effect to learn more about the
physics behind charge transport in semiconductors. When Edwin Hall [1] introduced a
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magnetic field perpendicular to the direction of the current, he found that the locations
and concentrations of electrons in semiconductor material deviated from a steady state.
The electromotive force between the two particles is proportional to both the magnetic
field and the current. The Hall effect occurs when electrons and holes move about due to
the presence of a strong magnetic field. Hall voltage, current, and sample geometry may
be monitored to determine the positive and negative conductivities of materials, notably
semiconductors used in mobile chargers. Using a transistor and silicon oxide under the
impact of a magnetic field as a semiconductor material, potential Hall measurements of
a two-dimensional electron gas were made [2]. GaAs (Gallium arsenide) is a crossed-gap
system, and it may hold both electrons and holes in equilibrium due to natural charge
transfers [3]. A compensated quantum Hall plateau develops in perpendicular magnetic
fields at the magnitude of the Hall resistance corresponding to the difference in occupancies
of the electron and hole Landau levels, as shown by previous experimental investigations of
this system with many more electrons than holes. This results right away in two interesting
deviations from the standard single carrier model. To begin, the energy gap between
Landau levels has no effect on the Hall resistance for a given sample [4]. The detection
of several quantum Hall states is possible when the Hall resistance is identical but the
number of occupied Landau levels varies. Second, the current distribution is substantially
altered because the electron and hole edge states in the edge state picture are aligned along
the same side of the sample. In a quantum Hall state of a two-dimensional (2D) electron
system, the Fermi energy is positioned in a mobility gap between Landau levels when there
is no net current flow between the bulk interior of the sample and the outside [5].

Both electronic (ED) and thermoelastic (TE) deformations occur in the study of semi-
conductors, particularly when a thermal (temperature) gradient is applied as a result
of the absorbed optical light. As plasma waves are produced by the carrier density of
holes and electrons, it follows that the ED is created when electrons and holes travel.
The photothermal (PT) method might be utilized here. Nevertheless, thermal excitation
processes cause a particle to vibrate, leading to the development of TE deformation. The
photo-thermoelasticity (TE) hypothesis is created when ED and TE are taken into account
together. Thermoelastic models were developed by Biot [6], Lord and Shulman [7], and
Green and Lindsay (GL) [8] to take into consideration the impact of thermal and elastic
relaxation durations on the governing equations of thermoelastic theory. This research
provided support for the underlying scientific concepts by showing that waves may move
at certain velocities. The generalized thermoelasticity (GTE) hypothesis has been applied to
the study of elastic materials by a number of scientists [9–11]. The two-temperature theory
is used inside the GTE framework to study the connections between thermal, elastic, and
magnetic waves under the effect of gravity and thermal shock [12,13]. Maruszewski has
investigated the relationship between the optical and elastic properties of a select group of
semiconductor materials using a thermodynamic approach [14].

Several theoretical physical mathematical models for semiconductor materials [15,16]
depict the overlap between thermal, elastic, and optical elastic features during diffu-
sion transport processes of electron/hole charges. Semiconductors undergo an elastic-
thermal-diffusive transport mechanism, the wave propagation of which was investigated
by Sharma et al. [17]. Mass and heat diffusion may be measured by performing a photoa-
coustic sensitivity test on a semiconductor sample [18]. The photo-excitation of transport
mechanisms in semiconductors may now be measured directly, thanks to technological
advancements [19]. Several researchers subsequently linked the idea of thermoelasticity
with the photothermal theory [20–24] to investigate the electronics, thermal, and elastic
characteristics of semiconductor materials subjected to different external fields. Lotfy
et al. looked at the Hall current impact of diffusive semiconductor material operating
at microtemperatures and subjected to a magnetic field. A study by Mahdy et al. [25]
examined how laser pulses exiting a semiconductor with fractional thermal order are
affected by the electromagnetic field. The foregoing examination of photo-thermoelasticity
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theory [26–31] does not account for the interaction between holes and electrons during
thermo-diffusive processes.

This research looks at how a powerful magnetic field affects the Hall current as a
consequence of electron-hole interactions. The effects of laser pulses on photo-generated
charges in semiconductor media, including their optical, elastic, and thermal properties,
are taken into account. The basic equation for electronics and thermoelastic deformation is
reduced to one dimension (1D) when mass and heat are transmitted by thermo-diffusive
processes. On the other hand, a unique mathematical model is developed to investigate
photo-thermoelasticity cases of the semiconductor media subject to the influence of the
Hall current. Analytical solutions of the principal fields are obtained by operating in the
Laplace domain. To obtain the primary fields numerically, we approximate the Laplace
transform inversion procedures. Numerical simulations of wave propagation for funda-
mental physical characteristics have been implemented in semiconductors using silicon’s
physical constants as an example. A graphical presentation and explanation of the findings
are presented.

2. Basic Equations

An initially applied magnetic field
⇀
H = (0, H0, 0) along the y-axis is superimposed

over a flawlessly conducting semiconductor material. In this case, the induced magnetic

field
⇀
h = hi = (0, h2, 0) = (0, h, 0) is generated along the same axis. Once optical energy

plus a powerful magnetic field creates electronic/thermo-elastic deformation, an induced

electric field
⇀
E = Ei = (0, 0, E) perpendicular to

⇀
h is produced. The current density

Jr = (0, 0, J3), on the other hand, is created in the same direction as
⇀
E . The semiconductor

medium’s linearized electromagnetic properties are satisfied in situations of isotropy and
homogeneity with optoelectronics qualities (Figure 1) [32–37].
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Ohm’s law for electromagnetic fields may be used to determine the Hall current, as
shown below [38,39]:

Jr = σ0 (Ei + µ0εijr

(
uj,t −

µ0
ene

Jj

)
Hr

Fi = µ0εijr Jj Hr , (i, j, r = (1 = x, 2 = y, 3 = z))

}
(1)

where uj = (ux, uy, uz) refers to the tensor of displacement, uj,t is the particle velocity,
and µ0 stands for magnetic permeability. The symbols σ0 = netξ e2/me denote the electrical
conductivity of semiconductor material at the time of electronic deformation, e stands for
electron charge, ne stands for electron number density, tξ represents the electron’s collision
time, me is the electron mass, εijr stands for permutation, and Fi stands for the Lorentz force
that gauges the force pressure of a magnetic field. Assuming that the strong, extremely
magnetic field H0 falls on the medium’s outer surface, the induced electric field is assumed
to vanish, or E = 0. For a 1D deformation in the x-axis direction, we may express the
displacement amount as ui = (ux(x, t), 0, 0) = (u, 0, 0); the strain tensor is e = ux = ∂u

∂x .
Ohm’s law of conduction (Equation (1)), on the other hand, expresses the current density
components as: J1 = Jx = 0, and J2 = Jy = 0, but the z-axis can be written as [25]:

J3 = Jz =
σ0µ0H0

1 + m2

(
∂u
∂t

)
(2)

To get the Hall current parameter m = tξωe , we solve Equation (2), where ωe = eµ0 H0/me
is the electron frequency. For a 1D electronic/thermoelastic deformation, however, the magnetic
field strength may be calculated using Lorentz’s force Fi = (Fx, 0, 0), which can be rewritten as
follows [25,26]:

Fx =

(
σ0µ2

0H2
0

1 + m2

)
∂u
∂t

(3)

Free holes and electrons in a diffusive semiconductor material follow a steady stream
or plasma distribution. Yet, unbound electrons and holes somewhat alter their course after
colliding with internal particles. The free electrons and holes within a semiconductor are
pushed in a 1D direction when a laser or light beam and an external magnetic field are
applied to the material. When this occurs at photo-excited energies, or when holes and
electrons interact, the other three 1D quantities may be included for analysis. The carrier
density is N(x, t), which reduces the electron charge carrier’s efficiency and masseurs the
concentration of electrons (plasma wave). The thermal influence of the medium or thermal
waves is measured by the temperature, T (x, t). However, H(x, t), which measures the hole
charge carrier, can be used to describe the concentration of holes. The principal equations
that describe the link between thermal, photo-electronic, elastic, and hole fields under the
effect of magnetic fields and laser pulses with a power intensity of the laser p according to
the coefficient of optical absorption δ in 1D can be expressed in the absence of body forces
as [13]:

K(1 + τθ
∂
∂t )

∂2T
∂x2 + mnq

∂2 N
∂x2 + mhq

∂2 H
∂x2 − ρ(an

1
∂N
∂t + ah

1
∂H
∂t )−

(1 + τq
∂
∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
−[

ρan
1

tn N +
ρah

1
th H

]
= (1 + τq

∂
∂t )pδe−(Ωt+δx)

 (4)

mqn
∂2T
∂x2 + Dnρ ∂2 N

∂x2 − ρ(1− an
2 T0αn + tn ∂

∂t )
∂N
∂t

−an
2

[
ρ Ce

∂T
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
+ ρ

tn
1
(1 + tn ∂

∂t )N = 0

}
(5)

mqh
∂2T
∂x2 + Dhρ ∂2 H

∂x2 − ρ(1− ah
2 T0αh + th ∂

∂t )
∂H
∂t

−ah
2

[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + T0γ ∂

∂t
∂u
∂x

]
+ ρ

th
1
(1 + th ∂

∂t )H = 0

 (6)
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where the pulse parameter is Ω. The Hall current phenomenon, which illustrates the effects
of electrical current flowing through a semiconductor media subjected to a strong magnetic
field, might be used to formulate the corresponding equation of motion [12,25]:

ρ
∂2u
∂t2 = (2µ + λ )

∂2u
∂x2 − γ(1 + τθ

∂

∂t
)

∂T
∂x
− δn

∂N
∂x
− δh

∂H
∂x
−
(

σ0µ2
0H2

0
1 + m2

)
∂u
∂t

(7)

Equation (7) is differentiated with respect to x, and the result is:

ρ
∂2e
∂t2 = (2µ + λ )

∂2e
∂x2 − γ(1 + τθ

∂

∂t
)

∂2T
∂x2 − δn

∂2N
∂x2 − δh

∂2H
∂x2 −

(
σ0µ2

0H2
0

1 + m2

)
∂e
∂t

(8)

where an
1 =

aQn
aQ

, ah
1 =

aQh
aQ

, an
2 =

aQn
an

and ah
2 =

aQh
ah

.
In terms of the associated thermal, photo-electric, elastic, and hole fields, the constitu-

tive relation (stress) for 1D deformation may be expressed as follows:

σxx = σ = −(γ(1 + τθ
∂

∂t
)T + δnN + δh H) + (2µ + λ)e (9)

Here is a considerable reduction of the dimensionless quantities:

x′, u′ = ω∗(x,u)
CT

,
(

t′, τ′q, τ′θ , tn′ , th′ , tn′
1 , th′

1

)
= ω∗

(
t, τq, τθ , tn, th, tn

1 , th
1

)
, C2

L = µ
ρ ,

β2 =
C2

T
C2

L
, k = K

ρCe
, σ′ij =

σij
2µ+λ , N′ = δn(N)

2µ+λ , C2
T = 2µ+λ

ρ , Ω′ = ΩK
ρCeC2

T
,

δ′ = δK
ρCeCT

, ω∗ = Ce(λ+2µ)
K ,

(
δn, δh

)
= (δnn0,δhh0)

γT0
, T′ = γ(T)

2µ+λ , H′ = δn(H)
2µ+λ

 (10)

For the sake of convenience, removing the primes from Equations (4)–(6), (8) and (9)
results in:{(

1 + τθ
∂
∂t

)
∂2

∂x2 −
(

1 + τq
∂
∂t

)
∂
∂t

}
T +

{
α1

∂2

∂x2 − α2

(
1 + τq

∂
∂t

)
− α3

∂
∂t − α4

}
N+{

α5
∂2

∂x2 −
(

1 + τα
∂
∂t

)
α6 − α7

}
H −

(
1 + τq

∂
∂t

)
ε1

∂e
∂t =

(
1 + τq

∂
∂t

)
Γ1e−(Ωt+δx)

 (11)

{
∂2

∂x2 − α8
∂
∂t

}
T +

{
α9

∂2

∂x2 − (α10 + tn ∂
∂t )α11 + (1 + tn ∂

∂t )
α11
tn

}
N−

α12
∂H
∂t − α13

∂e
∂t = 0

}
(12)

{
∂2

∂x2 − α18
∂
∂t

}
T +

{
α14

∂2

∂x2 − (α15 + th ∂
∂t )α16

∂
∂t + (1 + th ∂

∂t )α17

}
H−

α19
∂N
∂t − α20

∂e
∂t = 0

}
(13)

[
∂2

∂x2 −
∂2

∂t2 −
M

1 + m2
∂

∂t

]
e− (1 + τθ

∂

∂t
)

∂2T
∂x2 −

∂2N
∂x2 − α21

∂2H
∂x2 = 0 (14)

e− H − ( N + (1 + τθ
∂

∂t
)T ) = σ (15)
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M =
σ0t∗µ2

0 H2
0

ρ denotes the number of magnetic pressure, or Hartmann number, that is
present. However, the coefficients in the aforementioned equations are:

α1 =
mmqαt

dnK , α2 = T0αn
Ce

, α3 =
an

1
Ce

, α4 =
an

1 γ

Ceτn(2µ+λ)
, α5 =

γmhqh0
(2µ+λ)K , α6 = T0αhKh0

Ce
,

α7 =
ah

1γω∗

thK , α8 =
an

2 K
mqn

, α9 = Dnραt
mqndn

, α10 = 1− an
2 T0αn, α11 = αtK

mqndnCe
, α12 =

an
2 γh0αhω∗

mqn
,

α13 =
an

2 γ2T0ω∗

ρmgn
, α14 = Dnh0γ

C2
Tmqh

, α15 = 1− ah
2T0αn, α16 = γh0ω∗

mqh
, α17 = γh0ω∗

mqhτh
1

, α18 = ah
2

K
mqh

,

α19 =
ah

2γT0αn(2µ+λ)ω∗

mqhδn
, α20 =

ah
2γ2T0ω∗

mqhρ , α21 = δh
ρ(2µ+λ)

, Γ1 =
pδ(1−τqΩ)

ρCeCT
, ε1 = T0γ2ω∗

ρK ,

which indicates the thermoelastic coupling parameters ε1 and α1 to α21 displays the optical-
elastic-thermal coupling parameters.

To approach the issue theoretically, a few initial conditions are introduced. The initial
conditions in this scenario can be thought of with the homogeneity qualities as follows:

e(x, t)|t=0 = ∂e(x, t)
∂t

∣∣∣
t=0

= 0, T(x, t)|t=0 = ∂T(x, t)
∂t

∣∣∣
t=0

= 0,

H(x, t)|t=0 = ∂H(x, t)
∂t

∣∣∣
t=0

= 0, N(x, t)|t=0 = ∂N(x, t)
∂t

∣∣∣
t=0

= 0
(16)

3. The Mathematical Analysis

The engineering problem can be studied using Laplace transforms, which can be built
for function Σ(x, t) as:

L(Σ(x, t)) = Σ(x, s) =
∞∫

0

exp(−st) Σ(x, t) d t (17)

Laplace transformations on the dimensionless fundamental system (11)–(16) with the
assistance of the initial conditions Equation (16) produce:(

q1 D2 − q2

)
T +

(
α1D2 − q3

)
N +

(
α5D2 − q4

)
H − q5e = Γ2e−δx (18)

(
D2 − q7

)
T +

(
α9D2 − q6

)
N − q8H − q9e = 0 (19)

(
D2 − q10

)
T +

(
α14D2 − q11

)
H − q12N − q13e = 0 (20)

(
D2 − <H

)
e− q14D2T − D2N − α∗21D2H = 0 (21)

σxx = α23
(
e − ( (1 + sτθ)T + N)

)
− H (22)

where q1 = (1 + τθ
∂
∂t ), <H = s2 + s M

1+m2 , q2 = (1 + τq
∂
∂t ) s, Γ2 =

Γ1(1+τqs)
s+Ω ,

q4 = (1 + τq
∂
∂t )α6 + α7,

q3 =
(

α2(1 + τq
∂
∂t ) + α3

∂
∂t + α4

)
, q6 = (α10 + tns)α11− (1+ tns) α11

tn , α∗21 = δh
(2µ+λ)

, D = d
dx ,

q5 = (1 + τq s)ε1 s, q7 = α8 s, q8 = α12s, q12 = α19s, q13 = α20s, q14 = 1 + τθs, q9 =
α13 s, q10 = α18s,
q11 = (α15 + ths)α16s− (1 + ths)α17.

Major-quantity T, u, N and H solutions may be found using the elimination technique
of the system of Equations (17)–(20). In this situation, the equation that follows can be
written as:

(D8 −Π1D6 + Π2D4 −Π3D2 + Π4)
{

H, T, e, N
}
(x, s) = Ξe−δx (23)
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where Ξ = Γ1(δ
2q2−s2)

(s+Ω)
. On the other hand, the main coefficients of Equation (23), which have the

following form, can be determined using computer programming software (Mathematica):

Π1 = −1
(α9α14q1−α1α14−α5α9)

(α14q1(<Hα9 − α1q14) + α9q14(α5q13

+α14q5) + α∗21α9q13q1 − α1α14(<H + q7)− α1α∗21q9 − α9q4−
α1α∗21q13 − α5α9q10 + α14α9q2 − α9α∗21q5 + α9q1q11 + α14q1q6+
q6(α14q1 − α5)− α1(q11 − q8) + α5(q12 + q13)− α14(q3 + q5))

 (24)

Π2 = 1
(α9α14q1−α1α14−α5α9)

(<H(α9α14q1 + α9(α5q10 − α14q2 − q1q11)

−α14q1q6) + α1
(
α21q7q13 − α∗21q9q10 − q14(q8q13 − q9q11)

)
+ α5q14(q6q13−

q9q12)− α9α∗21(q2q13 − q5q10) + α9q14(q4q13 − q5q11) + α14q14(q3q9 − q5q6)−
α∗21q1(q6q13 + q9q12)−<H(α1(q8 − q11) + α5q12 − α9q4 − α14q3) + α1(q7q11−
q8q10) + α5(q6q10 − q7(q12 + q13) + q9q10)− α9(q2q11 − q4q10)−
α14
(
q2(q6 − q9)− α∗21(q3q13 − q5(q6 + q12))− q7(q3 + q7)− q1(q6q11−

q8(q12 + q13) + q9q11)− q5(q8 − q11)− q3(q8 − q11) + q4(q6 + q9 − q12 + q13)


(25)

Π4 =
<H(−q2q6q11 + q2q8q12 + q3(q7q11 − q8q10) + q4(q6q10 − q7q12))

(−α9α14q1 + α1α14 + α5α9)
(26)

Π3 = −1
(α9α14q1−α1α14−α5α9)

{<H(α1q8q10 − α1q7q11 − α5q6q10

+α5q7q12 + α9(q2q11 − q4q10) + α14(q2q6 − q3q7) + q1(q6q11 − q8q12))+
+α∗21(q2(q6q13 − q9q12)− q3(q7q13 − q9q10)− q5(q6q10 − q7q12))+
q3q14(q8q13 − q9q11)− q4q14(q6q13 − q9q12)− q5q14(q6q11 − q8q12) +<H(
q3(q8 − q11)− q4(q6 − q12)) + q2(q6q11 − q8q12 − q8q13 + q9q11)− q3(q7q11−
q8q10)− q4(q6q10 − q7(q12 + q13) + q9q10) + q5(q8q10 − q8q10)}


(27)

The correct roots of Equation (23) may be found by factoring as follows:(
D2 −m2

1

)(
D2 −m2

2

) (
D2 −m2

3

)(
D2 −m2

4

){
T, e, N, H

}
(x, s) = Ξe−δx (28)

where m2
i (i = 1, 2, 3, 4) stands for the roots of the auxiliary equation, which are found when

x → ∞ . In this case, we may choose any one of the four positive real components of the
roots. For the main field, linearity yields a rewrite of the answers as:

T(x, s) =
4

∑
i=1

Bi(s) e−mix +Qe−δx (29)

Nonetheless, linear solutions exist for the following physical values:

N(x, s) =
4

∑
i=1

B′ i(s) e−mix + f1(s)e−δx =
4

∑
i=1

H1iBi(s) e−mix + f1(s)e−δx (30)

e(x, s) =
4

∑
i=1

Bi
′′(s) e−mix + f2(s)e−δx =

4

∑
i=1

H2i Bi(s) e−mix + f2(s)e−δx (31)

H (x, s) =
4

∑
i=1

B′′′ i(s) e−mix + f3(s)e−δx =
4

∑
i=1

H3i Bi(s) e−mix + f3(s)e−δx (32)

σ (x, s) =
4

∑
i=1

(
B′′′ ′ i (s)

)
e−mix + f4(s)e−δx =

4

∑
i=1

(H4i Bi(s) ) e−mix + f4(s)e−δx (33)
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where
Q = Ξ(δ8 −∏1 δ6 + ∏2 δ4 −∏3 δ2 + ∏4)

H1i = −
α14m6

i +c7m4
i +c8m2

i +c9

α9α14m6
i +c4m4

i +c5m2
i +c6

,

H2i =
c10m6

i +c11m4
i +c12m2

i
α9α14m6

i +c4m4
i +c5m2

i +c6
,

H3i = −
α9m6

i +c1m4
i +c2m2

i +c3

α9α14m6
i +c4m4

i +c5m2
i +c6

,

H4i = α23(H2i − ((1 + sτθ)H1i + 1)− α22H3i),
c1 = −(q6 + q9 − q12 − q13) + α9(−q13q14 − RH − q10),
c2 = RHα9q10 + q9q13q14 − q9q12q14 + RH(q6 − q12) + q6q10 − q7q12 − q7q13 + q9q10,
c3 = RH(q7q12 − q6q10),
c4 = −RH(α9α14 − α9α21q13 − α9q11 − α14q6 − α14q9),
c5 = RHα9q11 + RHα14q6 + α21q6q13 − α21q9q12 + q6q11 − q8q12 − q8q13 + q9q11,
c6 = RH(q8q12 − q6q11),
c7 = α14(−q9q14 − RH − q7) + α21(q9 − q13) + q8 − q11,
c8 = RHα14q7 + α21(q7q13 − q9q10)− q8q13q14 + q9q11q14 − RH(q8 − q11) + q7q11 − q8q10,
c9 = RH(−q7q11 + q8q10),
c10 = α9(α14q14 − α21 − α14),
c11 = α9α21q10 + α9q11q14 − α14q6q14 − q8q12q14 + α14q7 + α21(q6 − q12)− q8 + q11,
c12 = −α21q6q10 + α21q7q12 + q6q11q14 − q8q12q14 − q7q11 + q8q10,

f1 = Q c1δ4+c2δ2+c3
c4δ4+c5δ+c6

,

f2 = −Q
{
−(δ2q1−q2)q9δ−q5δ(δ−q7)

−(δ2α5−q4)q9δ+q5q8δ
− (−(δα1−q3)q9δ−q5δ(δ2α9−q6))H3i

−(δ2α5−q4)q9δ+q5q8δ

}
,

f3 = Q
{
(δ2q1−q2)

q5δ +
(δ2α5−q4)H2i

q5δ +
(δ2α1−q3)H1i

q5δ

}
,

f4 = Q(α23(δH2i − ((1 + sτθ)H1i + 1)− α22H3i)),.

4. Boundary Conditions

The parameters’ values may be determined by subjecting the semiconductor’s free
surface to a controlled set of environmental conditions, as there are no limits to the medium
at infinity.

(I) The Laplace transform was obtained at the free surface (x = 0) after being treated
to an exponential heat flux of pulse (Figure 2). The pulsing heat flow boundary condition
may be shown in the following ways using the thermal gradient temperature:

∂T(x, t)
∂x

∣∣∣∣
x=0

= −q0
t2e
− t

tp

16t2
p

(34)

where tp represents the pulse heat flux time and q0 is an arbitrary constant. When the
Laplace transform is applied to the thermal condition (I), together with the dimensionless
property, we get:

∂T(r, s)
∂x

∣∣∣∣
x=o

= −
q0tp

8(1 + ptp)
3 (35)
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(II) For the normal stress component at x = 0, the mechanical ramp type can be
applied as:

σ(x, t) =


0 t ≤ 0

t
t0

0 < t ≤ t0

1 t > t0

(36)

Nevertheless, using Equation (33), we obtain:

4

∑
i=1

H4i Bi(s) + f4(s) = F(s)
(
1− e−st0

)
t0s2 (37)

(III) During one-dimensional ablation with a pulsed heating source, the physical and
thermal models between photoionization and photothermal ionization are investigated.
Surface recombination activities in the setting of photo-excitation with diffusion might
potentially choose the plasma state. The carrier density is transformed when using the
Laplace method:

N(0, s) =
s̃ňn0

De
(38)

Equation (30), which results in:

4

∑
i=1

H1iBi(s) + f1(s) =
ňs̃n0

De
(39)

(IV) In addition, the surface of the recombination diffusion with photo-excitation
processes exhibits a hole charge carrier field, which can be selected in the equilibrium
situation as (at x = 0):

H(0, s) + f3(s) = h0 (40)

Equation (32) results in:
4

∑
i=1

H3i Bi(s) = h0 (41)

in the relationships mentioned above. s̃ stands for recombination speed, De is the electron
charge diffusion coefficient, and ňstands for any arbitrary parameter. The parameters are
found by algebraically resolving the preceding system of four Equations: (35), (37), (39)
and (41).

5. Inversion of the Laplace Transform

The Laplace domain solutions have so far been found. The Laplace transform must be
inverted to obtain solutions in the time domain. Yet, this cannot be conducted analytically
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because of how complex the solution formulations are. Hence, the rapid Fourier transform-
based numerical inversion of the Laplace transform (NILT) approach is implemented [40].
Laplace transform’s integral form provides an expression for the inverse of any function
Z(x, s) under certain conditions:

Z(x, t′) = L−1
{
Z(x, s)

}
=

1
2πi

∫ n+i∞

n−i∞
Z(x, s) exp(st′)ds (42)

In the time domain, we may rewrite Equation (42) as follows, which is the inversion approach:

Z(x, t′) =
exp(nt′)

2π

∫ ∞

−∞
Z(x, n + iβ) exp(iβt)dβ (43)

In the interval [0, 2t′], using Equation (43) as a guide, we may extend the function
Z(x, t′) into a closed form, yielding the following [37]:

Z(x, t′) =
ent′

t′

[
Re

M

∑
k=1

Z(x, n +
ikπ

t′
)(−1)n +

1
2
Z(x, n)

]
(44)

where i =
√
−1, n ∈ R (real numbers), M is freely selected, with the real part expressed by

the symbol Re, and the approximate value is indicated by the notation nt′≈ 4.7.

6. Validation
6.1. The Photo-Thermoelasticity Models

In photo-thermoelasticity theory, there are three possible models that may be con-
structed using different values for the thermal and elastic relaxation times. The first
phase-lag is represented by the parameter τθ , and the second phase-lag is represented by
the value τq. Three models, however, can be found in this investigation:

(1) 0 ≤ τθ < τq; this yields the dual phase lag (DPL) model.
(2) τθ = 0, 0 < τq; this yields the Lord and S, hulman (LS) model.
(3) τθ = τq = 0.0; this yields the coupled thermoelasticity (CT) model.

6.2. Effect of Magnetic Field

When H0 = 0, the problem is examined without consideration for the effects of the
Hall current, and the impact of a strong magnetic field is disregarded. However, when
H0 6= 0, the effect of the magnetic field on the Hall current has been noticed and is taken
into account.

6.3. Without Electron-Hole Interaction, Thermoelasticity Theory

When the impact of holes and electrons are discarded and just the magnetic field’s
impact is considered, i.e., when H = 0 and N = 0, the issue may be investigated using
the generalized thermoelasticity theory. Using simply the Hall current effect, the system
of governing equations in this case is reduced to two equations under the effect of laser
intensity as follows:

K(1 + τθ
∂

∂t
)

∂2T
∂x2 − (1 + τq

∂

∂t
)

[
ρ Ce

∂T
∂t

+ T0γ
∂e
∂t

]
= (1 + τq

∂

∂t
)pδe−(Ωt+δx) (45)

ρ
∂2e
∂t2 = (2µ + λ )

∂2e
∂x2 − γ(1 + τθ

∂

∂t
)

∂2T
∂x2 −

(
σ0µ2

0H2
0

1 + m2

)
∂e
∂t

(46)
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6.4. The Magneto-Photo-Thermoelasticity Theory

Since the influence of the holes field is ignored (H = 0), the issue can only be studied
using the generalized magneto-photo-thermoelasticity theory. The magnetic field simplifies
this example’s system of equations down to a simpler set of three equations:

mqn
∂2T
∂x2 + Dnρ ∂2 N

∂x2 − ρ(1− an
2 T0αn + tn ∂

∂t )
∂N
∂t − an

2

[
ρ Ce

∂T
∂t + T0γ ∂e

∂t

]
=

− ρ
tn
1
(1 + tn ∂

∂t )N

 (47)

K(1 + τθ
∂
∂t )

∂2T
∂x2 − (1 + τq

∂
∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + T0γ ∂e

∂t

]
+

mnq
∂2 N
∂x2 − ρan

1
∂N
∂t = (1 + τq

∂
∂t )pδe−(Ωt+δx)

}
(48)

ρ
∂2e
∂t2 = (2µ + λ )

∂2e
∂x2 − γ(1 + τθ

∂

∂t
)

∂2T
∂x2 − δn

∂2N
∂x2 − δh

∂2H
∂x2 −

(
σ0µ2

0H2
0

1 + m2

)
∂e
∂t

(49)

6.5. The Non-Gaussian Laser Pulses Impact

The impact of non-Gaussian laser pulses is reflected in the fundamental equations that
were discussed before. When the power intensity of the effect of the laser pulses is ignored
(that is to say, when p = 0 is used), however, the model that is being studied transforms into
a model of the generalized photo-thermoelasticity theory under the influence of electron
and hole interactions only. In this case, Equation (4) can be rewritten in the form:

K(1 + τθ
∂
∂t )

∂2T
∂x2 + mnq

∂2 N
∂x2 + mhq

∂2 H
∂x2 − ρ(an

1
∂N
∂t + ah

1
∂H
∂t )−

(1 + τq
∂
∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
−
[

ρan
1

tn N +
ρah

1
th H

]
= 0

 (50)

7. Numerical Results and Discussions

Temperature, strain, carrier density, hole carrier charge field, and stress may all be
computed and graphically represented in 1D in the time domain using the Riemann
sum approximation and numerical inversion of the Laplace transform. Silicon (Si) is a
semiconductor material that might be used in this hypothetical situation. Here, Table 1
displays the input parameters (in SI units) used for the Si material and the magnetic field
parameters (from [37–39]):

Table 1. The physical parameters in SI units for Si materials.

Unit Symbol Value

N/m2 λ
µ

6.4× 1010

6.5× 1010

kg/m3 ρ 2330

K T0 800

sec (s) τ 5× 10−5

K−1 αt 4.14× 10−6

Wm−1K−1 k 150

J/(kg K) Ce 695

m/s s̃ 2

H/m µ0 4π × 10−7
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Table 1. Cont.

Unit Symbol Value

vk−1

mqn 1.4× 10−5

mnq 1.4× 10−5

mqh −0.004× 10−6

mhq −0.004× 10−6

m2s−1 Dn 0.35× 10−2

m2s−1 Dh 0.125× 10−2

m2/s αn 1× 10−2

m2/s αh 5× 10−3

7.1. The Photo-Electronic-Thermoelasticity Models

The first group of images in Figure 3 illustrates the instantaneous axial distributions
of the primary real dimensional fields (small time t = 0.0004). It is possible to create
models of photo-thermoelasticity exposed to a strong magnetic field and the Hall current
effect by comparing how much thermal relaxation times vary when the influence of laser
pulses is incorporated. The thermal wave under the impact of the laser heat flux condition
applied at the outer surface of the silicon medium is shown in the first inset for examination
of the dimensionless temperature distributions. The effects of optical-thermal excitation,
laser pulses, and magnetic field pressure are depicted in the first subfigure, showing that
the dimensionless thermal wave values begin as positive, increase to a maximum value
near the medium’s edge, and then decrease as distance increases until they approach the
zero line, satisfying the stability state. In contrast, the growth of the thermal wave was
exponential. The second panel shows the distribution of normal stress (mechanical waves)
throughout the axial distance. The mechanical wave distributions exhibit the requisite
abrupt increase from a positive value at the edge to a peak-maximum value towards the
surface that is characteristic of mechanical ramps (due to the pressure force of a strong
magnetic field or Hall current and laser pulse effect). The mechanical wave weakens as it
moves away from the surface, and this weakening continues until the wave approaches
the zero line, where it seeks equilibrium. The third inset depicts the impact of thermal
and elastic relaxation time on the dimensional hole carrier charge distribution throughout
the axial distance (thermal memory). The hole carrier charge distributions start with
positive maximum values at the boundary edge and quickly decline to the lowest peak
after recombination with the plasma. However, in the second region, the hole carrier charge
distributions once again grow, stabilize locally within the material for a brief period of time,
and then fall to the stable state through convergence to the zero line. Plasma recombination
processes cause the carrier density, which represents plasma waves (the dispersion of the
electron charge field), to start off with a positive value at the edge, as seen in the fourth
inset. Plasma waves, driven by optical-thermal energy and a Hall current, peak abruptly
at the surface, then retreat gradually according to an exponential decay curve as they
travel into the semiconductor medium. When the plasma waves approach the zero line,
stability is achieved. According to experimental observations, the distribution decreases
exponentially with distance from the surface until it reaches equilibrium at the zero line
inside the semiconductor medium [41,42].
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Figure 3. Under the influence of the Hall current and laser pulses, the principal physical distributions
vary with distance in accordance with photo-electronic-thermoelasticity theories.

7.2. The Impact of Hall’s Current

The second set of equations illustrates the effect of laser pulses on the fundamental
field distributions T, σ, H, and N as a function of axial distance x in a magnetic field subject
to Hall current influence (Figure 4). In this study, we examine two scenarios in which the
DPL model is applied to silicon semiconductor material for a low-time operation. When
the Hall current is present and the Hartmann number (the strength of magnetic pressure) is
not zero, as seen in the first image, the fundamental field distribution changes. The second
example shows how physical fields are distributed when there is no strong magnetic field
or Hall current. Particles inside the semiconductor medium clash forcefully due to optical
stimulation and the compressive intensity of the strong magnetic field created by the Hall
current (plasma) and laser pulses. All physical values exhibit a wave-like behavior in the
absence of magnetic stimulation, which is distinct from the current condition. However,
when a strong magnetic field is paired with a Hall current, the semiconductor lattice’s
interior particles are rearranged (along with the spindle movement of particles). By raising
the concentration of holes and free electrons on the semiconductor’s surface, the Hall
current boosts the flow of electric current within the material.
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DPL model, when exposed to laser pulses.

7.3. The Laser Pulses Effect

The third group shows the effect of a laser pulse, plotting the major field distributions
versus the laser’s power intensity (Figure 5). This study looks at two scenarios by applying
the DPL model to Hall’s current effects on silicon semiconductor materials over short
periods. The presence of laser intensity is shown in the first subfigure, which depicts
the distribution of basic fields. In the second subfigure, physical fields are shown to be
distributed when no laser pulses are present. Optical stimulation, laser pulses, and the
compressive intensity of a strong magnetic field in conjunction with the Hall current cause
internal particles in the semiconductor medium to smash violently, resulting in a cloud
of surface electrons (plasma). In this situation, all physical values propagate differently
as waves compared to when there is no laser impact. Yet, in the presence of laser pulses,
the semiconductor lattice undergoes a reorganization of its interior particles (through
spindle movement of particles). By increasing the number of holes and free electrons on
the semiconductor’s surface, the laser pulse increases the flow of electric current within
the semiconductor.
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7.4. The 3D Graph

As anticipated by the DPL model for Si media, Figure 6 (the fourth group) shows
three-dimensional (3D) graphs affected by laser pulses and a high magnetic field through
the Hall current effect. This diagram looks at how time and distance affect the wave
distribution of basic physical properties when the dimensionless period 0 ≤ t ≤ 4× 10−2

may be obtained. In this class, the propagation of waves is affected by the passage of
time in all physical domains, satisfying the boundary conditions. The magnitude of wave
propagations, however, varies across all physical domains as a function of axial distance
and time scale variances. According to the steady state, all wave propagation vanishes and
approaches the zero line when increasing the distance and time.
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8. Conclusions

This study looked at how a strong magnetic field affects the movement of photo-
thermoelastic waves induced by laser pulses in a semiconducting material. Hole and
electron interactions during 1D elastic and electronic deformation have inspired a novel
model. Photo-excited diffusion and the role of optical energy were considered. The pressure
force of a strong magnetic field causes the Hall current with a Hartmann number to be
generated. Very few literature reviews have examined the impact of a laser pulse and
the Hall current effect on the interaction between holes and electrons. The difference
between the relaxation time and the time value affects the wave propagation of the physical
distributions in every case. The Hall current, a byproduct of the powerful magnetic field,
also affects the wave propagation of the physical quantities of interest. Waves of the
physical variables under study are modified by the laser pulses. This is because certain
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materials, especially semiconductors, may experience changes in response to the magnetic
field and laser pulse, as predicted by scientific theory. As a result, the Hall current provides
researchers with a wealth of information about semiconductors, linear Hall sensors, and
Hall potentiometers. The Hall effects have widespread applications in many fields of science
and technology, such as those dealing with automation, measurement, and electronics.
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Nomenclature

λ, µ Lame’s constants,
n0 Electrons concentration
h0 Holes concentration
T0 Absolute temperature
γ = (3λ + 2µ)αt The volume coefficient of thermal expansion
σij Stress tensor
ρ Density
αn, αh Thermo-diffusive parameters of Electrons and Holes
τq, τθ The thermal and elastic relaxation times
th, tn The holes and electron’s relaxation times
αt The linear thermal expansion coefficient
Ce Specific heat
K Thermal conductivity
τ∗ The photo-generated carrier lifetime
Eg The energy gap
δn = (2µ + 3λ)dn The electron’s elasto-diffusive parameter
δh = (2µ + 3λ)dh The holes elasto-diffusive parameter
dn The coefficients of electronic deformation
dh The coefficient of holes deformation
mnq, mqn, mhq, mqh Peltier-Dufour- Seebeck-Soret-like constants
Dn, Dh The diffusion coefficient of the electrons and holes
aQn, aQh, aQ, an, ah The flux-like constants
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