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Abstract: LCT (lithium–cesium–tantalum) pegmatites from the Kaustinen and Kolmozero regions
contain columbite–tantalite mineralization, which has been presented in this study. Crystal structure,
Raman microscopy, and optical property analyses of these minerals were performed. As a result of the
structural studies and micro-area analyses, it was determined that these minerals in the pegmatites in
question constitute a solid solution with numerous Mn-Fe and Nb-Ta substitutions within a single
crystal. The ratio between Mn-Fe and Nb-Ta can change from crystal to crystal, which makes it
impossible to find precise stechiometry between these ions. The crystallization conditions of these
minerals were also determined by studying the associations of other rock-forming minerals and
accessory minerals in the discussed rocks.
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1. Introduction

In the region of northern Finland and Russia (NE Scandinavia), LCT (lithium-cesium-
tantalum) pegmatites are exposed, containing lithium and columbite–tantalum mineral-
ization [1]. In the case of Russia, this is the Kolmozero region, located in the northern
part of the Kola Peninsula, where pegmatites up to several meters thick are exposed in
the vicinity of Archean rocks [2–7]. In the case of Finland, it is in the Kaustinen region
where such formations can be found [8,9]. These are rocks of granitoid composition, rich
in quartz, plagioclase, and orthoclase, muscovite, and accessory minerals such as apatite
and zircon. These minerals are accompanied by spodumene, and in its vicinity can be
found several ore minerals, including grains of columbite–tantalite. These pegmatites are
the product of residual crystallization under the influence of hydrothermal processes. The
purpose of this article is to discuss the microscopic and spectroscopic differences between
columbite–tantalite coming from these two regions.

2. Geology of the Study Area

The northern part of the Scandinavian Peninsula is part of the Baltic shield included
in Fennoscandia [10–13] (Figure 1). It is a region located within Finland and Russia [14–16].
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Archean and Proterozoic gneisses metamorphosed in amphibolite and granulite facies
are exposed there [18,19]. In these rocks, there are numerous younger intrusions with
interesting mineralization [20]. Veins forming pegmatites mainly of granitoid composition
are exposed there. Among these veins, LCT pegmatite are also encountered, characterized
by spodumene/lepidolite–columbite–tantalite mineralization [21,22]. They usually form
bodies of up to several meters in thickness, located over several tens of meters. In the
Kolmozero area, these veins are located in the boundary zone between the Kola and
Murmansk blocks, while in the Kaustinen area they accompany Belomorides (Figure 1).
Their age has been estimated at 1.8–1.9 Ga years [23,24]. These rocks are exposed on the
ground surface or covered by a small overburden of Pleistocene sediments [25,26]. These
formations form an interesting landscape [27–31], with small hills and extended walleyes
with lots of lakes.

3. Materials and Methods

Rock samples were collected during numerous field investigations between 2018 and
2022. During this time, the discussed massifs were visited, and geological documentation
of the samples was also collected. All the rock types investigated were collected in the Kol-
mozero and Kaustinen regions, from which only two representative samples from each area
are presented in the paper. The selected rocks were targeted for thin section preparations to
determine further the characteristics of the minerals discussed. Subsequently, these miner-
als were subjected to analyses using a Leica DM2500P polarizing optical microscope [32]
and examination with a scanning electron microscope, the Hitachi SU6600, with an EDS
(energy dispersive X-ray spectroscopy) attachment [33,34]. These samples were analyzed
under low vacuum (10 Pa) with a 15 kV beam diameter of 0.2 µm. A total of 453 mineral
analyses were performed in the microprobe (at Kaustinen 179 and Kolmozero 274, respec-
tively). Next, the selected minerals were separated and analyzed with single-crystal X-ray
diffraction. Data were collected on a Rigaku diffractometer (Rigaku, Tokyo, Japan) with
CuKα radiation (λ = 1.54184 Å) at 293 K. Crystallographic refinement and data collection,
as well as data reduction and analysis were performed with the CrysAlisPro v42 (Rigaku
Oxford Diffraction, Tokyo, Japan) [35]. Selected single crystals were mounted on the nylon
loop with oil. Structures were solved by applying direct methods using the SHELXS-86 pro-
gram and refined with SHELXL−2018/3 [36–38] in Olex2 software [39]. Table 1 provides
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the experimental details for the single crystal’s X-ray measurement. These samples were
also examined with the Raman technique [40,41]. Samples were measured using a Raman
microscope in Via Reflex, Renishaw, UK. Optical and microscopic studies were performed
in the Department of Geology, Soil Science, and Geoinformation of the Institute of Earth
and Environmental Sciences, and crystal chemistry studies were performed at the Faculty
of Chemistry.

Table 1. Single crystals X-ray diffraction results for all measured minerals.

Mineral Columbite

Empirical formula FeNb2O6
Temperature/K 294
Crystal system Orthorhombic

Space group Pbcn
a/Å 14.281(2)
b/Å 5.7366(7)
c/Å 5.1234(5)
α/◦ 90
β/◦ 90
γ/◦ 90

Volume/Å3 419.73(9)
Z 4

ρcalc g/cm3 5.344
Crystal size/mm3 0.4 × 0.4 × 0.2

Data/restraints/parameters 361/0/17
Goodness-of-fit on F2 2.703

Final R indexes [I > =2σ (I)] R1 = 0.1743,
wR2 = 0.5169

Largest diff. peak/hole/e Å−3 41.40/−7.29

4. Results

The collected pegmatite samples were analyzed using the methods described above.
Below are the results of these analyses.

4.1. Rocks Geology
4.1.1. Kaustinen

Exposed near Kaustinen, the pegmatites containing LCT mineralization coexist among
biotite gneisses with magnetite [42]. Macroscopically, the pegmatites are cream-gray.
They are characterized by a coarse crystalline structure, a compact texture, and disorder.
Macroscopic observations show large, light gray plaques of plagioclase several cm in size,
accompanied by greenish microcline. Next to these minerals, gray quartz and silvery
mica are visible, forming small aggregates reaching up to 1 cm in size (Figure 2B). Next
to these minerals is visible spodumene, whose size reaches several centimeters and is not
inferior to plagioclase. In the microscopic image, the background of the rock is made up
of quartz crystals sutured between each other, characterized by wavy extinction. They
are accompanied by plaques of plagioclase and particle-rich, acidic albite, which form
polysynthetic twinning. Next to these minerals, microcline can be found, also having an
anhedral character similar to the other minerals mentioned. Between them, muscovite is
seen in large numbers, forming variously oriented aggregates of lamellae (Figure 3C,D).
Alongside these minerals, there are also small clusters of clinochlore. These minerals are
accompanied by spodumene, which forms hypautomorphic crystals that often approximate
each other. The crystals of this mineral are sometimes woven with fine muscovite and
biotite. Muscovite is accompanied by epidote. Fine grains of zircon can be seen against the
mica. Next to these minerals, fine ore crystals are visible, which are opaque. These minerals,
along with epidote and fine muscovite, are also present on a background of microcline.
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4.1.2. Kolmozero

Among the gabbro-anorthosites that form a small intrusion in the Kolmozero belt are
pegmatite bodies containing spodumene and lepidolite [43]. Macroscopically, they have
a light cream-gray color. The presence of a coarse crystalline structure and a compact,
disordered texture characterize them. On closer field observation, gray-cream plagioclase,
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gray quartz, and accompanying large crystals of greenish-cream spodumene are visible
(Figure 2A). Alongside these minerals, aggregates of muscovite and lepidolite are visible.
Small-sized reddish garnets and bluish apatites can be seen as accessories. Accompanying
columbite–tantalite minerals form black metallic inclusions among the rock-forming min-
erals. Microscopic images show large crystals of quartz, which form multi-grain clusters.
These crystals have an anhedral shape and are in contact with each other (Figure 3A,B).
Next to them, plagioclase is visible, represented mainly by an acidic variety, rich in albite
particles. Usually, polysynthetic twinning forms small clusters of anhedral crystals between
quartz grains. Alongside these minerals, microcline can be seen forming small crystals
accompanied by quartz and plagioclase. These minerals are interspersed with scales of
muscovite, which sometimes form significant aggregates. These minerals are sometimes
deformed and disentangled; among them, quartz can be found usually in the form of small
grains and small crystals of epidote. Small crystals of zircon and small crystals of garnet are
present in the vicinity of mica. Small ore minerals are also visible, sometimes surrounded
by goethite. Fine lamellae of muscovite can also be observed against some quartz grains.
Small crystals of apatite can also be seen among the leucocratic minerals. Alongside these
phases, large crystals of spodumene can be seen, which usually have a hypautomorphic
shape. Spodumene in these rocks is usually approximated, co-occurring with muscovite
and lepidolite. In those varieties of pegmatite where the amount of lepidolite is greater,
spodumene usually forms relic corroded crystals interspersed with mica.

4.2. Results of SEM-EDS Analyses

The discussed crystals of columbite and tantalite form adhesions. The micro-area in
the minerals shows the co-occurrence of these phases side by side. In these minerals, in
addition to niobium (columbite) and tantalum (tantalite), there are variable admixtures of
iron and manganese (Figures 4 and 5, Table A1). Tantalum in the minerals in question is an
admixture oscillating between 11–20 wt% (see Table A1). Micro-area studies performed
along the crystals in question showed that the ratio of iron to manganese and niobium to
tantalum is variable throughout the crystal in both its central and edge parts. Most of these
minerals have a significant admixture of niobium and a small proportion of tantalum. In the
case of iron and manganese, these values are close to half (although with a predominance
of manganese nitrogen). Due to the small size of the studied crystals in the samples in
question and their strongly elongated shape, determining the changes in the proportions
of these elements at the edge and center of these minerals is very difficult. In rocks from
Kaustinen, it is accompanied by cassiterite, titanite, ilmenite, and magnetite in the form
of small crystals. They coexist with galena, sphalerite, chalcopyrite, and barite. In the
Kolmozero pegmatite, on the other hand, columbite–tantalite is accompanied by bixbyite, as
well as clarkeite and selenite. Accompanying these minerals, quartz makes up a significant
percentage of the rocks in question. Next to it is plagioclase, represented mainly by albite
(84% of the crystals examined by SEM-EDS) with a small admixture of oligoclase (4%) and
andesite-labradorite (6%). The pegmatites from Kaustinen also contain microcline, and
the pegmatite from Kolmozero has orthoclase. In addition to these minerals, mica was
found in the form of muscovite, co-mingling with spodumene and lepidolite. A small
admixture of sodium (up to 5%) was found in muscovite. In addition, clinozoisite and
epidote were found in pegmatites from Kaustinen. The accompanying spodumene contains
a small admixture of sodium (averaging from less than 1% to 9%). Micro-area studies also
made it possible to show that the coexisting phosphates are represented by a variety of
hydroxyapatite, with about 3% carboxy apatite and 2% fluorapatite content.



Crystals 2023, 13, 612 6 of 14

Crystals 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

small admixture of sodium (up to 5%) was found in muscovite. In addition, clinozoisite 
and epidote were found in pegmatites from Kaustinen. The accompanying spodumene 
contains a small admixture of sodium (averaging from less than 1% to 9%). Micro-area 
studies also made it possible to show that the coexisting phosphates are represented by a 
variety of hydroxyapatite, with about 3% carboxy apatite and 2% fluorapatite content. 

 
Figure 4. Backscattering electron microphotography of the columbite–tantalite grains with the 
marked analysis points. 

 
Figure 5. Proportion of the Fe, Mn, Nb, and Ta ions of the measured crystals. 

4.3. Optical Properties of the Discussed Minerals 
Macroscopically, crystals of columbite–tantalite have a black color with a metallic, 

rusty luster. They stand out from the minerals with which they coexist and are relatively 
easy to find. They have a size that reaches below 1 mm. Their quantity in Kolmozero peg-
matites is much higher than that in Kaustinen, where this mineral is much rarer. In the 
microscopic image, Kolmozero tantalite crystals form small, jagged inclusions visible 
against a background of quartz and feldspar. In the case of rocks from Kolmozero, these 

Figure 4. Backscattering electron microphotography of the columbite–tantalite grains with the
marked analysis points.

Crystals 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

small admixture of sodium (up to 5%) was found in muscovite. In addition, clinozoisite 
and epidote were found in pegmatites from Kaustinen. The accompanying spodumene 
contains a small admixture of sodium (averaging from less than 1% to 9%). Micro-area 
studies also made it possible to show that the coexisting phosphates are represented by a 
variety of hydroxyapatite, with about 3% carboxy apatite and 2% fluorapatite content. 

 
Figure 4. Backscattering electron microphotography of the columbite–tantalite grains with the 
marked analysis points. 

 
Figure 5. Proportion of the Fe, Mn, Nb, and Ta ions of the measured crystals. 

4.3. Optical Properties of the Discussed Minerals 
Macroscopically, crystals of columbite–tantalite have a black color with a metallic, 

rusty luster. They stand out from the minerals with which they coexist and are relatively 
easy to find. They have a size that reaches below 1 mm. Their quantity in Kolmozero peg-
matites is much higher than that in Kaustinen, where this mineral is much rarer. In the 
microscopic image, Kolmozero tantalite crystals form small, jagged inclusions visible 
against a background of quartz and feldspar. In the case of rocks from Kolmozero, these 

Figure 5. Proportion of the Fe, Mn, Nb, and Ta ions of the measured crystals.

4.3. Optical Properties of the Discussed Minerals

Macroscopically, crystals of columbite–tantalite have a black color with a metallic,
rusty luster. They stand out from the minerals with which they coexist and are relatively
easy to find. They have a size that reaches below 1 mm. Their quantity in Kolmozero
pegmatites is much higher than that in Kaustinen, where this mineral is much rarer. In
the microscopic image, Kolmozero tantalite crystals form small, jagged inclusions visi-
ble against a background of quartz and feldspar. In the case of rocks from Kolmozero,
these crystals have a euhedral shape, forming much larger individuals visible against a
background of spodumene and quartz. Rather, in the rocks from Kaustinen, it occurs in
the form of single anhedral grains, sometimes of very elongated skeletal character. In the
microscopic image, they are opaque black. In reflected light, this mineral has no clear relief
and reflects light uniformly in a silvery gray color. In polarized light, the birefringence is
barely visible due to the mineral’s dark coloration (Figure 6).
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Figure 6. Images of columbite–tantalite (col-tan) in transmitted light (A,D) and reflected light
(B,C,E,F), and under unpolarized light (B,E) and polarized light (A,C,D,F), showing the optical
properties of this sample.

4.4. Spectroscopic Properties of the Discussed Minerals

Raman studies were conducted for a columbite–tantalite grain. Since it was a small
grain, the spectrum shows only the most significant enhancements. The accompanying
spectra show an enhancement in the region of 868 cm−1, characteristic of Nb-O vibrations.
Ca-O vibrations are noted at 793 cm−1. The accompanying enhancement in the vicinity
of 559 cm−1 corresponds to stretching vibrations for Nb-O. The observed vibration of
110 cm−1 corresponds to the stretching vibrations for Nb-Nb [44,45]. Some deviations from
the standard spectra are due to the presence of manganese and iron admixtures in the
minerals in question (Figure 7).
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4.5. Single Crystals Analysis Results

The examined crystal is a mixture of columbite–tantalite with iron and manganese
substitution in varying proportions. These grains are present in the discussed pegmatites
from both locations (Figure 8). The defecting of the crystals due to adhesions and fissures
in this case made it difficult to determine their crystal structure. A presentation of this
structure is given below [46]. Figure 8 presents the unit cell packing of the investigated
columbite crystal. The relatively high R1 is related to low crystal quality. The solved
structures indicate that the main building elements are Nb, Fe, and oxygen. However, the
Fe position can be partly occupied by Mn, but the exact ratio between Fe and Mn was
impossible to determine with this technique. Other elements are possible but in amounts
smaller than 0.1 per atomic position. The unit cell parameters and space group are typical
for this mineral and similar to those found by Borett et al. [47]. The Qiso parameters were
set to 0.03 by hand to obtain the best fit of the model to the experimental data. As expected
for this type of crystal with strong bonds, all the ATP values are smaller than 0.05 (see
Tables A2–A5).
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5. Discussion

The discussed rocks containing columbite–tantalite mineralization are classified as
granitoid pegmatites. These rocks are exposed in northern Scandinavia (in the area of the
Kola Peninsula in Russia and the area of northern Finland) [48–51]. Although granitoid
pegmatites in this area are visible in many places, further exploration of these rocks may
increase the number of occurrences of LCT varieties. These rocks may be an interesting
object of industrial exploration in the future, although their nature and the size of the
observed exposures make such activities dependent on economic prosperity. An analysis
of the mineralization of these pegmatites indicates that they represent the final stage of
crystallization of residual melt, containing mismatched elements [52–56]. The presence of
hydrated minerals in these rocks indicates that hydrothermal processes played a major role
in the crystallization of minerals. This is also evidenced by sulfides and sulfates (barite,
galena, sphalerite, and chalcopyrite). In addition, the chemical composition of ore minerals
indicates the influence of fluids from the surrounding rocks [57]. This peculiarity is evident
in the presence of such minerals including magnetite in the Kaustinen pegmatite and
bismuth- and uranium-bearing minerals in the rocks at Kolomzero. Studies of niobium
and tantalum minerals indicate that they form comagmatic adhesions that were formed
during the same period of crystallization. Micro-area analyses have indicated both iron
and manganese admixtures in both columbite and tantalite. In addition, there are variable
amounts of niobium and tantalum in both minerals, which substitute for each other in
the lattice. Additional difficulties such as cracks and close-ups prevented their separation
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and thus hindered the analysis of the monocrystals by the X-ray method, showing their
complex nature in the rocks in question. The analysis of the Raman spectrum obtained from
these minerals is similar. The rocks in question are a solid solution in which the amount of
iron and manganese varies according to the tests, as also shown by the analyses carried out
along the grain from its boundary to the center of the grain.

6. Conclusions

Columbite–tantalite minerals are an important source of Nb and Ta. Their presence
in LCT pegmatites, together with spodumene and lepidolite, is an interesting occurrence
that may be the subject of further exploration in northern Scandinavia. These pegmatites
represent a granitoid variety, crystallizing among Archean and Proterozoic rocks from the
last portion of magma melt involving hydrothermal processes. Detailed studies of these
minerals have shown their approximations, forming a solid solution. This means that these
minerals were formed in one stage of crystallization.
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Appendix A

Table A1. SEM-EDS results of the columbite–tantalite crystals and modal composition of these phases
based on the proportion of measure element.

Point Elements Content [wt%] Mineral Modal Composition
O Mn Fe Nb Ta Mn Fe Nb Ta O

Kolmozero(11)/1 26.20 15.97 29.59 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(11)/2 28.73 13.16 30.42 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(11)/3 28.52 12.60 29.13 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(11)/4 25.43 14.86 3.06 28.41 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(12)/1 24.05 17.31 3.64 29.53 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(12)/2 25.25 17.07 2.59 29.50 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(12)/3 31.42 2.87 35.90 Columbite 0.0 1.0 2.0 0.0 6
Kolmozero(12)/4 26.22 11.89 2.13 30.77 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(12)/5 26.71 11.55 4.82 30.76 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(12)/6 26.06 11.86 4.60 32.01 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(12)/7 24.67 13.25 6.32 30.86 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(12)/8 26.74 12.51 3.03 31.35 Columbite 0.3 0.7 2.0 0.0 6

Kolmozero(12)/10 24.74 17.61 30.98 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(12)/11 24.47 17.90 4.16 28.17 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(12)/12 24.47 15.22 4.50 30.48 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/3 24.95 13.71 29.16 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/4 22.18 16.45 31.93 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/5 21.71 15.98 2.36 30.89 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/6 22.58 13.00 2.89 32.18 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/7 20.73 17.75 2.38 30.39 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(26)/8 23.32 12.29 8.60 28.03 Columbite 0.3 0.7 2.0 0.0 6
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Table A1. Cont.

Point Elements Content [wt%] Mineral Modal Composition
O Mn Fe Nb Ta Mn Fe Nb Ta O

Kolmozero(26)/9 21.35 15.20 3.61 30.32 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/10 21.56 16.23 32.44 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/11 20.21 16.39 7.33 29.11 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(26)/12 22.39 12.44 4.36 32.02 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/13 21.66 14.08 4.64 30.59 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/14 22.86 15.71 31.96 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/15 20.97 15.20 2.26 33.59 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(26)/16 29.96 7.98 Columbite 0.0 1.0 2.0 0.0 6
Kolmozero(30)/1 26.96 16.76 28.55 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(30)/2 27.87 17.17 27.47 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(30)/3 29.50 17.31 23.50 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(30)/4 29.74 13.11 0.52 28.69 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(30)/5 28.61 14.99 2.20 29.14 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(30)/6 35.06 33.87 Columbite 0.0 1.0 2.0 0.0 6
Kolmozero(30)/7 28.90 14.54 3.02 26.83 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(30)/8 29.19 14.36 1.81 27.75 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(30)/9 25.71 17.47 4.94 25.46 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(31)/1 40.06 18.81 Columbite 0.0 1.0 2.0 0.0 6
Kolmozero(34)/3 29.07 8.49 4.10 28.98 Columbite 0.2 0.8 2.0 0.0 6
Kolmozero(35)/1 28.25 14.79 3.06 25.94 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(35)/2 27.93 13.33 4.50 25.95 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(35)/3 28.01 14.39 27.27 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(35)/4 27.88 15.50 2.53 25.89 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(35)/5 27.54 16.15 2.04 24.85 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(35)/6 28.36 11.62 1.78 28.02 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(35)/7 26.24 16.35 3.23 25.40 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(35)/8 27.19 12.99 4.07 27.61 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(35)/9 27.16 14.95 3.46 26.32 Columbite 0.4 0.6 2.0 0.0 6

Kolmozero(35)/10 26.44 14.28 6.08 25.26 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(40)/1 24.59 16.55 29.23 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero(40)/2 23.90 11.65 3.71 30.56 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(40)/3 24.04 14.89 4.28 28.26 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(40)/4 22.89 15.71 29.31 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(40)/5 25.31 12.72 29.89 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero-2(1)/1 26.14 17.97 3.44 25.16 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero-2(4)/1 24.83 22.65 30.17 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero-2(4)/3 26.06 21.57 1.82 28.37 Columbite 0.4 0.6 2.0 0.0 6
Kaustinen-2(9)/1 29.86 13.02 23.37 Columbite 0.4 0.6 2.0 0.0 6
Kaustinen-2(9)/2 32.23 9.85 4.59 14.86 Columbite 0.4 0.6 2.0 0.0 6

Kaustinen-2(10)/1 34.57 3.18 21.38 Columbite 0.0 1.0 2.0 0.0 6
Kaustinen-2(10)/2 27.49 12.73 9.76 17.55 Columbite 0.4 0.6 2.0 0.0 6
Kaustinen-2(10)/10 33.17 5.45 1.84 10.43 Columbite 0.3 0.7 2.0 0.0 6
Kolmozero(12)/9 24.47 12.14 3.23 30.07 6.80 Tantalite 0.3 0.7 1.6 0.4 6

Kolmozero(30)/10 24.97 14.96 1.62 25.38 11.89 Tantalite 0.4 0.6 1.4 0.6 6
Kaustinen-2(10)/3 27.74 9.59 4.15 10.42 18.41 Tantalite 0.5 0.5 0.7 1.3 6
Kaustinen-2(10)/4 25.56 9.71 6.52 15.36 20.94 Tantalite 0.4 0.6 0.8 1.2 6
Kaustinen-2(10)/5 27.76 7.20 5.74 16.15 17.87 Tantalite 0.3 0.7 0.9 1.1 6
Kaustinen-2(10)/6 26.61 10.02 7.05 17.34 15.39 Tantalite 0.4 0.6 1.1 0.9 6
Kaustinen-2(10)/7 25.34 11.96 3.24 19.04 16.27 Tantalite 0.4 0.6 1.1 0.9 6
Kaustinen-2(10)/8 25.61 11.14 3.92 20.87 13.92 Tantalite 0.3 0.7 1.2 0.8 6
Kaustinen-2(10)/9 27.79 12.33 5.34 15.66 11.90 Tantalite 0.4 0.6 1.1 0.9 6
Kolmozero-2(4)/1 24.83 22.65 30.17 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero-2(4)/2 20.54 21.86 31.72 12.52 Tantalite 0.4 0.6 1.4 0.6 6
Kolmozero-2(4)/3 26.06 21.57 1.82 28.37 Columbite 0.4 0.6 2.0 0.0 6
Kolmozero-2(4)/4 19.02 20.86 9.72 25.39 14.92 Tantalite 0.5 0.5 1.3 0.7 6
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Appendix B

Table A2. Crystal data and structure refinement for Columbite_autored.

Identification Code Columbite_Autored

Empirical formula FeNb2O6
Formula weight 337.67
Temperature/K 294
Crystal system Orthorhombic

Space group Pbcn
a/Å 14.281(2)
b/Å 5.7366(7)
c/Å 5.1234(5)
α/◦ 90
β/◦ 90
γ/◦ 90

Volume/Å3 419.73(9)
Z 4

ρcalc g/cm3 5.344
µ/mm−1 70.926

F(000) 624.0
Crystal size/mm3 0.4 × 0.4 × 0.2

Radiation Cu Kα (λ = 1.54184)
2θ range for data collection/◦ 12.396 to 135.856

Index ranges −15 ≤ h ≤ 16, −6 ≤ k ≤ 6, −5 ≤ l ≤ 6
Reflections collected 1425

Independent reflections 361 [Rint = 0.0351, Rsigma = 0.0211]
Data/restraints/parameters 361/0/17

Goodness-of-fit on F2 2.703
Final R indexes [I > = 2σ (I)] R1 = 0.1743, wR2 = 0.5169

Final R indexes [all data] R1 = 0.1859, wR2 = 0.5396
Largest diff. peak/hole/e Å−3 41.40/−7.29

Table A3. Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters
(Å2 × 103) for Columbite_autored. Ueq is defined as 1/3 of the trace of the orthogonalized UIJ tensor.

Atom x y z U(eq)

Nb1 6641.6(14) 8256(6) 7555(3) −1(2)
Fe1 5000 6716(12) 2500 −1(4)
O1 7568(14) 6200(30) 5910(40) 30
O3 5778(14) 3830(30) 4020(40) 30
O2 5961(15) 8960(30) 4280(40) 30

Table A4. Bond lengths for Columbite_autored.

Atom Atom Length/Å Atom Atom Length/Å

Nb1 Nb1 1 3.250(4) Fe1 O3 2.14(2)
Nb1 Nb1 2 3.250(4) Fe1 O3 8 2.14(2)
Nb1 O1 3 2.20(2) Fe1 O2 2.09(2)
Nb1 O1 4 2.08(2) Fe1 O2 8 2.09(2)
Nb1 O1 1.96(2) O1 Nb1 9 2.08(2)
Nb1 O3 5 1.88(2) O1 Nb1 10 2.20(2)
Nb1 O2 2 2.07(2) O3 Nb1 7 1.88(2)
Nb1 O2 1.98(2) O3 Fe1 6 2.13(2)
Fe1 O3 6 2.13(2) O2 Nb1 1 2.07(2)
Fe1 O3 7 2.13(2)

1 +X, 2 − Y, −1/2 + Z; 2 +X, 2 − Y, 1/2 + Z; 3 3/2 − X, 1/2 + Y, +Z; 4 3/2 − X, 3/2 − Y, 1/2 + Z; 5 +X, 1 − Y, 1
2 + Z;

6 1 − X, 1 − Y, 1 − Z; 7 +X, 1 − Y, −1/2 + Z; 8 1 − X, +Y, 1/2 − Z; 9 3/2 − X, 3/2 − Y, −1/2 + Z; 10 3/2 − X,
−1/2 + Y, +Z.
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Table A5. Bond angles for Columbite_autored.

Atom Atom Atom Angle/◦ Atom Atom Atom Angle/◦

Nb1 1 Nb1 Nb1 2 104.03(18) O2 Nb1 O1 4 76.8(9)
O1 3 Nb1 Nb1 2 42.0(5) O2 Nb1 O2 2 88.5(7)
O1 Nb1 Nb1 1 91.8(6) O3 Fe1 O3 6 78.7(11)
O1 Nb1 Nb1 2 135.1(6) O3 7 Fe1 O3 8 162.9(11)

O1 4 Nb1 Nb1 2 80.2(6) O3 8 Fe1 O3 6 85.3(7)
O1 4 Nb1 Nb1 1 39.2(6) O3 7 Fe1 O3 85.3(7)
O1 3 Nb1 Nb1 1 124.0(6) O3 7 Fe1 O3 6 81.5(8)
O1 Nb1 O1 4 87.2(5) O3 8 Fe1 O3 81.5(8)
O1 Nb1 O1 3 94.6(5) O2 6 Fe1 O3 167.3(9)

O1 3 Nb1 O1 4 85.6(7) O2 Fe1 O3 7 96.6(7)
O1 Nb1 O2 95.1(8) O2 Fe1 O3 8 93.9(7)
O1 Nb1 O2 2 164.7(10) O2 Fe1 O3 6 167.3(9)

O3 5 Nb1 Nb1 2 94.5(6) O2 6 Fe1 O3 6 88.6(7)
O3 5 Nb1 Nb1 1 135.1(7) O2 6 Fe1 O3 8 96.6(7)
O3 5 Nb1 O1 103.3(9) O2 Fe1 O3 88.6(7)
O3 5 Nb1 O1 3 97.1(8) O2 6 Fe1 O3 7 93.9(7)
O3 5 Nb1 O1 4 168.9(9) O2 6 Fe1 O2 104.0(11)
O3 5 Nb1 O2 2 90.8(8) Nb1 O1 Nb1 9 130.0(11)
O3 5 Nb1 O2 98.4(8) Nb1 10 O1 Nb1 9 98.8(8)
O2 2 Nb1 Nb1 2 35.7(6) Nb1 O1 Nb1 10 129.1(10)
O2 Nb1 Nb1 2 122.8(6) Nb1 7 O3 Fe1 8 125.7(10)

O2 2 Nb1 Nb1 1 82.1(6) Nb1 7 O3 Fe1 133.7(11)
O2 Nb1 Nb1 1 37.5(6) Fe1 8 O3 Fe1 98.5(8)

O2 2 Nb1 O1 3 77.6(8) Nb1 O2 Nb1 1 106.8(10)
O2 Nb1 O1 3 159.4(8) Nb1 O2 Fe1 124.5(10)

O2 2 Nb1 O1 4 79.2(9) Nb1 1 O2 Fe1 126.7(10)
1 +X, 2 − Y, −1/2 + Z; 2 +X, 2 − Y, 1/2 + Z; 3 3/2 − X, 1/2 + Y, +Z; 4 3/2 − X, 3/2 − Y, 1/2 + Z; 5 +X, 1 − Y, 1

2 + Z;
6 1 − X, 1 − Y, 1 − Z; 7 +X, 1 − Y, −1/2 + Z; 8 1 − X, +Y, 1/2 − Z; 9 3/2 − X, 3/2 − Y, −1/2 + Z; 10 3/2 − X,
−1/2 + Y, +Z.
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