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Supplementary Materials 

1. Dataset 

The dataset to train and evaluate the CSP model was obtained from the COD. The COD predominantly 

collects data published in the peer-reviewed scientific papers. Each structure deposited into the COD receives 

a unique seven-digit number, called COD number. A COD number identifies a particular instance of a 

structure determination. The data in the COD are stored in the Crystallographic Interchange File/Framework 

(CIF) format, one structure per file. Each file contains all data necessary to describe the structure, interpret 

experimental data and find the corresponding publication. The COD website allows for the searching of the 

database using queries such as unit cell parameters, chemical composition, and bibliographic data (authors, 

journal names, paper titles).  The selection is powered by the Structured Query Language (SQL) database, 

which is accessible by several protocols. Each structure in the COD crystallographic database is described as 

an entry in the SQL database. Such entries are generated automatically from the COD CIFs and consist of 

bibliography and parameters that describe the size and contents of a unit cell, space group, the diffraction 

experiment, and the quality of the data (such as the R factor and goodness-of-fit parameter). Parameters of the 

unit cells are stored together with their respective measurement precisions. Both Hermann-Mauguin and Hall 

symmetry space group symbols are included in the entries. To avoid errors, the Hall and Hermann-Mauguin 

space group symbols are regenerated from the symmetry lines, replacing the original entries if necessary. The 

correspondence of cell lengths and angles to the space group symmetry constraints are checked as well. Three 

datasets were extracted from the COD containing lithiated oxide of iron manganese and cobalt. The search 

returned a dataset containing 720 entries for iron, 618 for manganese and 220 for cobalt. Compounds 

containing carbon or with atomic number (AN) exceeding 56, except tungsten (AN = 74) mercury (AN = 80) 

and lead (AN = 82) were eliminated. This effectively avoided taking into consideration organometallic 

compounds, lanthanides, precious metals, uranium, transuranic, and other less common elements. In such a 

way, the dataset was decreased to 419 entries for iron, 439 for manganese and 109 for cobalt. A further 

reduction was carried out by eliminating compounds repeated several times. The final dataset comprised 276 

entries for iron, 220 for manganese and 93 for cobalt.  

2. Descriptors 

The descriptors used in this work were contained in strings each of which represents a specific 

crystallographic structure. Each string was made up of the following elements: the ID number (as reported in 

the COD), the elementary cell chemical formula, the crystalline group, the number of chemical elements 

present in the compound, the atomic number of the elements, and the stoichiometric coefficient with which 

the elements appeared in the cell formula. Three of these strings are reported in Tab. 1. For example, for 

Fe1.9Li2.1O4 are reported: the ID (1541312), the crystalline phase (225 in the International System which 

corresponds to the Fm-3m phase of the cubic system ), the number of elements that make up the unit cell (3), 

the atomic number of iron (26), lithium (3), and oxygen (8) followed by the stoichiometric coefficient with 

which they appear in the chemical formula of the elemental cell (1.9 for iron, 2.1 for lithium and 4 for oxygen).  
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1541312 Fe1.9Li2.1O4 225 3 26 3 8 1.9 2.1 4 

1541958 Fe20Li4O32 212 3 26 3 8 20 4 32 

1542046 Fe8Li40O32 61 3 26 3 8 8 40 32 

Table 1. Graphical representation of part of the data matrix. 

 

3. ML method 

The iron dataset was used as training matrix while the manganese and cobalt matrix were use as test 

matrices. The stoichiometric coefficients of the compound to be analysed was subtracted from the 276 rows 

which formed the training matrix. The result, in the internal feature, is a number representing the Euclidean 
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distance (d) that separates the stoichiometry of the compound under test from that of the training element. 

Mathematically we have: 

d = �∑ (�� − ��)��
���

�  = �(�� − ��)� + (�� − ��)� + ⋯ + (�� − ��)��
   (1) 

Where qi and pi are the stoichiometric coefficients of the ith element which constitutes the formula of the 

compound to be analysed and of the training one, respectively. Iron, manganese, and cobalt were treated as a 

generic transition metal and the stoichiometric coefficient of manganese or cobalt was subtracted from the 

stoichiometric coefficient of iron. For this reason, compounds containing the three elements simultaneously 

were not taken into consideration. The individual entries have been transformed into a distance matrix 

composed of 59 columns and 3 rows. The 59 columns represent the maximum number of elements in the data 

set, consisting of the first 56 elements (excluding C) to which W, Hg and Pb must be added. The first two rows 

of the distance matrix contained the stoichiometric coefficients of the compound under test and that of the 

training one, respectively. The third row contained the intermediate distance value calculated as the square of 

the difference of the stoichiometric coefficients. Table 2 shows an example of the matrix when the compound 

to be analysed is Co3.54Li0.46O4 and the training compound is Fe1.9Li2.1O4. 

Atomic  

Number 
1 2 3 4 5 6 7 8 9 ….  …. 22 23 24 

   TM 

(25, 26, 27) 
28 29 …. 

Co3.54Li0.46O4   0,46     4        3,54    

Fe1.9Li2.1O4   2,10     4        1,90    

(q-p)2   2,6896     0        2,6896    

Table 2. The distance matrix used to calculate the Euclidean distance between Co3.54Li0.46O4 and Fe1.9Li2.1O4. 

To evaluate the distance that separates the two compounds, the values contained in the third column 

were algebraically added and the square root of the sum was calculated. In the case shown, the distance is 

equal to the square root of 5,3792, i.e., just over 2,319. The distance value is entered into a distance vector 

comprising (n) values corresponding to the (n) testing compounds. 

4. Classification model 

The K-Nearest Neighbours (KNN) method, a non-parametric supervised learning classifier, which 

employs proximity to make classifications or predictions about the clustering of a single data point was used. 

While it can be used for regression or classification problems, it is typically used as a classification algorithm, 

based on the assumption that similar points can be found close to each other. Once the distance vector was 

completed, the minimum value was searched for in it. The crystallographic group of the training compound 

with the minimum distance value is then assigned to the compound to be analysed. At the end, for each of the 

n compounds forming the dataset it is possible to have a prediction of the crystalline group to which it belongs. 

5. Space group prediction 

Manganese and cobalt were treated as vicarious atoms with respect to iron. The compound under test 

was compared with all those present in the training dataset and the proximity between the cell formulas was 

calculated. The first six compounds closest to the compound to be tested were then extrapolated. The 

normalized exponential function (Softmax, equation 2) was used to normalize the outputs, converting them 

from weighted-sum values into probabilities that add up to one. The Softmax function has the following 

expression: 
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  (2) 

The Softmax function has been reversed to give greater weight to smaller distances. Each value in the 

Softmax function output was interpreted as the membership probability for each space group. At the 

compound under test was assigned the space group of the training compound that compared with the highest 

percentage. 
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6. Evaluation metrics 

Traditional evaluation metrics such as accuracy, precision, sensitivity, selectivity, and F1_score were used 

to evaluate the performance of the method. In addition, false positive ratio (FPR) was evaluated as an 

additional performance measure. 
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The logarithmic cross-entropy loss (LCEL) was used in evaluating the predicted results. 

LCEL = - 
�

�
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For example, for the compound of formula the Co3.54Li0.46O4, the program found six close neighbours 

with different space group as reported in table 3: 

ID Cell formula Group d Exp(d) 1/Softmax Norm y yi LCEL 

1541312 Fe1.9Li2.1O4  225 2,319 10,169 15,882 0,314 1 0,314 1,672 

1008561 Fe4.0008Li1.7392O3  227 2,420 11,246 14,360 0,284 0 0,716 0,481 

9012897 Fe0.99999HLiO5P  2 3,121 22,678 7,121 0,141 0 0,859 0,219 

1525051 Cl2Fe2LiO2  59 3,265 26,192 6,166 0,122 0 0,878 0,187 

4342290 Fe2.376H2Li1.58O2Se2  129 3,820 45,590 3,542 0,140 0 0,860 0,217 

4342295 Fe2.378H2Li1.586O2Se2  129 3,820 45,619 3,540     

Table 3. Table for the calculation of the logarithmic cross-entropy loss.  

The first three columns contain respectively the ID, the cell formula, and the space group of the six 

compounds whose distance is closest to the compound under test. Column (d) contains the distance measured 

between the compound under test and the reference compounds, as calculated by the model. The Exp(d) 

column contains the exponential value of the distance (ed). The (1/Softmax) column contains the inverse of the 

Softmax equation. The column (Norm) contains the probability that the structure of the reference compound 

is the same as that under test, obtained by normalization of the previous column. Column (y) assigns a value 

of "1" to the component with the highest probability value and a "0" to all the others. The (yi) column contains 

the corrected probability that corresponds to the probability listed in the column Norm if y= 1 or (1-Norm) if 

y = 0. The logarithmic cross-entropy loss can be calculated by adding the negative log (with base two) of the 

corrected probabilities column (yi) divided by the number of entries: 
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If two or more entries have the same spatial group their probability is summed together. For example, in 

the case shown, the fifth and sixth compounds belong to the same crystalline group (129) so that the probability 

corresponding to this group is obtained by adding the two probabilities (0.07+0.07 = 0.14). The corrected 

probability (yi) is therefore (1-0.14) = 0.86. The crystallographic group of the training compound with the 

maximum probability value is then assigned to the compound under testing. 

 


