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Abstract: The different masses, ionic radii, and chemical valences of the nonequivalent crystallo-
graphic sites of thermoelectric (TE) compounds provide an effective way to modulate the thermoelec-
tric performance by selective substitution. In this work, the selective substitution of In+ by Pb for the
binary InTe material monotonically reduces the carrier concentration, which is greatly beneficial to the
mechanism investigation of serious grain boundary scattering (GBS). This is the first time this point
has been mentioned with regard to InTe material. As a result, we found that GBS was dominated
by the grain size when the carrier concentration was higher than 0.7 × 1019 cm−3 but was inversely
governed by the carrier concentration when the carrier was situated at a lower density. In particular,
the occupation of Pb on the targeted In+ site could further reduce the lattice thermal conductivity.
Finally, In0.9999Pb0.0001Te achieved the improved power factor and average zT value, which could
contribute to high-power generation below a medium temperature. This effect of increasing the
carrier concentration on the suppression of GBS sheds light on the possibility of improving electron
mobility by increasing the carrier concentration.

Keywords: InTe; thermoelectric performance; grain size; carrier concentration; grain boundary
scattering

1. Introduction

Thermoelectric (TE) materials have the ability to create direct conversion between heat
and electricity without any moving parts or noise; they are regarded as eco-friendly energy
materials and have attracted intensive attention in the scientific community [1–3]. The
heat-to-power conversion efficiency (η) is strongly related to the materials’ dimensionless
figure of merit, zT = S2σT/(κL + κe), where T, σ, S, κL, and κe are the absolute temperature,
electrical conductivity, Seebeck coefficient, lattice, and electron thermal conductivity [4].
The strong coupling of S, σ, and κe through carrier concentration makes it extremely
difficult to improve the zT value. Thus, it requires the band engineering of degeneracy [5,6],
curvature [7], and valley anisotropy to improve the electronic performance as well as
microstructural defect engineering to reduce the independent κL in order to increase the
thermoelectric performance [8–11]. In addition, the exploration of new materials with low
κL provides an effective way to achieve outstanding TE properties [9,10,12–17].

The new rising binary InTe possesses a typical characteristic of phonon-glass electron-
crystal (PGEC) [18,19]. It features a TlSe-type structure with one directional (1D) strong
covalent chains of [In3+Te4/2

2−]− along a c direction, which are further weakly bridged
by an In+ cation with 5s2 lone pair electrons [20]. The weak ionic bonds result in the large
anharmonic vibrations of In+ and the strong anharmonic phono–phonon interactions, which
induce an extremely low κL even for the single crystal of InTe. In recent years, the high
TE performance has been obtained by atomic doping and single crystal growth [16,21–27],
which promotes the peak zT high up to 1.2 @648 K [15]. Compared with the varied doping
results of Cu, Na [27], Cd [23], Sb [22], Pb [21], Ga [15], etc., Pb:InTe achieved the lowest
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lattice thermal conductivity, which was derived from the anharmonic vibrations of In+ and
the selective doping at the In+ site for the different ionic radii (rIn+> rPb2+ > rIn3+ ).

On the other hand, lattice thermal conductivity is totally governed by specific heat
CV, phonon group velocity v, and the mean free path of the heat-carrying phonon, i.e.,
κL = CVvl. The inherently anharmonic vibrations have generated a low v and κL for InTe.
In addition, the l can also be modulated to further reduce the κL since it mainly depends
on the phonon scattering mechanism, such as phonon–phonon scattering, microstructural
defect scattering, and nanoparticle scattering. However, the previous investigation of
polycrystalline InTe with varied grain sizes indicated that the reduction in grains actually
reduced κL but also caused it to be strongly scattered by the grain boundary (GB) of the
carrier, which resulted in low electrical conductivity below ~500 K [15,21,22] and severely
deteriorated the TE performance at room temperature. Therefore, how to enhance the
phonon scattering but not seriously affect the carriers’ transportation becomes the main
purpose for grain size modulation. In principle, GBS is related to the Fermi level, grain size,
grain boundary barrier, and so on for materials [15,22], resulting in the strong relationship
of the GBS and the carrier concentration. Up to now, how the carrier concentration affects
the GBS is rarely mentioned for InTe. Thus, it prompted us to explore the synergistic effect
of grain size and carrier concentration on depressing GBS based on varied grain sizes with
a monotonic reduction in the carrier concentration.

In this work, we systematically investigated the effects of Pb doping amounts and
grain sizes on the modulation of the electron and phonon transports of InTe. In addition,
the Pb doping could monotonically reduce the carrier concentration, which provided the
opportunity to explore the effect of carrier concentration on the suppression of GBS for InTe.
As a result, both grain size and carrier concentration significantly influenced the GBS. The
GBS could be depressed by increasing the grain size only when the carrier concentration
was larger than 0.7 × 1019 cm−3. In addition, Pb doping also greatly reduced the lattice
thermal conductivity. Therefore, the improved zT value below 600 K for Pb0.0001In0.9999Te
was obtained, which was beneficial to the power generation below medium temperature.
Furthermore, this effect of carrier concentration on the suppression of GBS illustrated the
possibility of electron mobility improvement by increasing the carrier concentration.

2. Materials and Methods

In order to synthesize the pure phase of In1-xPbxTe (x = 0, 0.0001, 0.001, 0.003, 0.005), the
high-purity (>99.99%) indium, lead, and tellurium particles were weighed in stoichiometric
ratios and then loaded into the carbon-coated quartz tubes. The indium, lead, and tellurium
particles were produced by Zhongnuo Advanced Material Technology Co., Ltd (Beijing,
China). Additionally, due to the very small doping amount of Pb, the total amount in
our experiment was >20 g. However, in this situation, for Pb0.0001In0.9999Te the amount
of Pb was >2 mg, which could be accurately weighed because the weighing error was
only ±0.0005 g. Subsequently, the quartz tubes were sealed with a vacuum of ~10−1 Pa.
The tubes containing In, Te, and Pb were heated to 1123 K in 7 h and then held at this
temperature for 4 h before the furnaces were switched off. The obtained InTe ingot was
hand-ground and sieved with two particle size ranges of >150 µm (80 mesh) and <50 µm
(300 mesh), respectively (marked as InTe-Coarse and InTe-Fine, respectively), and the other
ingots of In1−xPbxTe (x = 0.0001, 0.001, 0.003, 0.005) were hand-ground and sieved with only
large sizes of >150 µm. Finally, these powders were loaded into graphite dies with an inner
diameter of 10 µm, which were placed in the hot-press sintering furnace (NYRH-HP). The
sintering was operated under a uniaxial pressure of 50 MPa with a vacuum <5 Pa at 773 K
for 30 min, producing pellets with high densities (>95% of the theoretical densities), which
were then cut into small samples with dimensions of 10 × 2 × 2 mm3 and 6 × 6 × 1.5 mm3

for measurements of the electrical and thermal properties. It needs to be mentioned that
the electrical and the thermal conductivity were measured along the pressure direction due
to the anisotropic atomic structure of InTe and the high texture degree of the (110) along
this direction.
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The phase purity of the samples was confirmed by powder X-ray diffraction (PXRD)
using a Bruker AXSD8 Adance X diffractometer (Saarbrücken, Germany) with Cu Kα

radiation of 1.5406 Å at room temperature. A scanning electron microscope (Thermo
Scientific Apreo 2 S HiVac, 5 kV, Waltham, America) equipped with an energy-dispersive
X-ray spectrometer (EDS, Waltham, America) was used to investigate the microstructures
and chemical compositions. The electrical conductivity and Seebeck coefficient were
measured using an Ulvac ZEM-3 (Chigasaki, Japan) from 300 K to 773 K, based on the same
sample. The thermal diffusivity (D) was measured between 300 K and 773 K by using the
laser flash diffusivity technique on an LFA-467 instrument (Netzsch, Selb, Germany). The
total thermal conductivity was calculated using the relation of κ = DCpρ, where ρ is the
density of the sample measured by the Archimedes method, and Cp is the specific heat
capacity using the Dulong–Petit estimation, due to the low Debye temperature of around
200 K [22]. The Hall coefficients (RH) were measured by the van der Pauw technique
with a Xiangjin self-made Hall electrical performance test system (NYMS) under a helium
atmosphere. The Hall carrier concentrations (nH) and Hall mobilities (µH) were estimated
by nH = 1/eRH and mH = sRH, respectively.

3. Results and Discussion

The obtained samples of In1-xPbxTe (x = 0, 0.0001, 0.001, 0.003, 0.005) showed high
phase purity, which could be verified by the good agreement of their PXRD pattern positions
with the standard JCPDS card (PDF#81-1972) of the InTe, as shown in Figure 1a. However,
the different intensities of the PXRD peaks for the samples revealed their varied texture
degrees. In detail, through the grain size modulation, the texture degree of the (ll0) plane
could be increased from 0.01 to > 0.1, which was calculated by the formula:

F =
P − P0

1−P0
, P0 =

I0(00l)
ΣI0(hkl)

, P =
I(00l)

ΣI(hkl)
(1)

where I(hkl) and I0(hkl) are the peak integral intensities for the measured and randomly
oriented samples, respectively [28]. In addition, the Pb-doped samples with large grain
sizes also had the large orientation factor F(ll0), which was similar to that of the coarse pure
polycrystalline InTe. This improved texture degree was highly beneficial to the utilization
of the expected anisotropic transports of higher electrical conductivity and lower thermal
conductivity along the [110] direction; this was confirmed by the investigation of the
transports based on a single InTe crystal and could be taken advantage of to improve the TE
performance of InTe [29]. Furthermore, the cell parameters were refined based on the XRD
data, and the results are shown Figure 1b. It can be seen that the lattice gradually decreases
with the increase in the Pb doping concentration, which is consistent with our experimental
design with regard to the substitution of In+ by Pb2+ ions, because of their different ionic
radii rIn+ > rPb2+ > rIn3+ . In addition, the pure phases can also be confirmed by the uniform
distribution of the elements, which can be seen from the EDS results presented in Figure 1c
because there is no second phase that can be observed.

The SEM results are displayed in Figure 2, which clearly shows that the average grain
sizes of the sieved coarse In1-xPbxTe (x = 0, 0.0001, 0.001, 0.003, 0.005) are larger than 150 µm,
and this value is much larger than that of InTe-Fine (<50 µm). According to the previous
studies, the large grain sizes are beneficial to the depression of the GBS of InTe and can be
expected to considerably improve the carrier mobility below 500 K [15,30,31]. Therefore,
the samples with large grains can remove the influence of the grain size when analyzing
the relation of the carrier concentration and the GBS in this work.
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and Pb2+ (1.19 Å) [32,33], Pb2+ prefers to replace In+ to locate between the covalent chains, 
which can reduce the carrier concentrations, as displayed in Figure 3a,c, and can give rise 
to the reduction in the σ with the increase in the doping amount, as shown in Figure 3b. 
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Figure 1. (a) The PXRD patterns of samples for the sieved coarse In1-xPbxTe (x = 0, 0.0001, 0.001,
0.003, 0.005) and the sieved fine InTe. (b) The lattice parameter dependence on the Pb dopant
concentration. (c) SEM image and corresponding EDS compositional mappings for the sieved coarse
In0.995Pb0.005Te sample.
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Figure 2. Cross-section SEM images for the sieved fine InTe and coarse In1-xPbxTe (x = 0, 0.0001, 0.001,
0.003, 0.005).

Figure 3 displays the electrical performance of the In1-xPbxTe (x = 0, 0.0001, 0.001,
0.003, 0.005) samples. As shown in Figure 3b, the σ reduces with the rising Pb doping ratio.
In terms of the crystal structure, the In atom has two independent crystallographic sites
of In+ and In3+, and the In+ cation with 5s2 lone pair electrons has a larger size than the
In3+ cation. Considering the large difference in the ionic radii of In+ (1.32 Å), In3+ (0.81 Å),
and Pb2+ (1.19 Å) [32,33], Pb2+ prefers to replace In+ to locate between the covalent chains,
which can reduce the carrier concentrations, as displayed in Figure 3a,c, and can give rise
to the reduction in the σ with the increase in the doping amount, as shown in Figure 3b.
This result is consistent with the reduced cell parameters resulting from the increasing of
the doping ratio.

It should be noted that the temperature-dependent conductivity shows greatly dif-
ferent trends for In1-xPbxTe (x = 0, 0.0001, 0.001, 0.003, 0.005) with the varied carrier
concentration. As shown in Figure 3b, the temperature-dependent electrical conductivity of
coarse InTe presents a monotonically decreased trend which is similar to that of the single
crystal due to the depression of GBS [29]. Although they have the smaller n, the σ of coarse
InTe and Pb0.0001In0.9999Te at room temperature are definitely much higher than those of
the samples with fine grains [21]. These results are consistent with those in the literature on
depressing GBS by increasing the grain size. However, when the carrier concentration is
reduced, the electrical conductivity trend changes from a monotonic decrease to one which
first rises then falls, even with samples with coarse grains. This situation has not been
observed in other works of InTe. In order to analyze the mechanism of carrier scattering
in detail, the carrier mobility was calculated based on the temperature-dependent carrier
concentration, as shown in Figure 3d. When the doping ratio is lower than 0.1%, the µH
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shows the temperature-dependent behaviors of T−1.04 for x = 0.0001 and T−0.89 for x = 0.001
within 300–423 K (Figure 3d), which is close to the acoustic phonon scattering (APS) relation
of T−1.5. However, the µH shows a T−0.52 relation when the doping ratio is higher than
0.3% and the nH is smaller than 0.7 × 1019 cm−3, indicating the strengthened GBS and
weakened APS when the carrier concentration is reduced.
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(x = 0, 0.0001, 0.001, 0.003, 0.005). (b) Electrical conductivity, (c) Hall carrier concentration, (d) Hall
carrier mobility, (e) Seebeck coefficient, and (f) power factor [21].

Academically, the GBS is related to the potential barrier (Eb) of the GB based on the
trapping state model [34–36], which is expressed as:

Eb =

{
e2d2 N

8ε dN < Qt
e2Qt
8Nε dN > Qt

(2)

where d is the grain size, e is the elementary charge (C), ε is the dielectric constant, Qt is the
density of the trapping states at the grain boundaries (C m−2), and N is originally defined as
the concentration of ionized impurity atoms for the intrinsic semiconductor (usually dopant
atoms, m−3), which reflects the carrier concentration. Therefore, the Eb of the TE material
largely depends on the carrier concentration and the grain size. Generally, there are three
different situations in which to estimate the Eb: (1) when the carrier concentration is high
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enough, the Eb could be very weak and can be ignored regardless of whether the grain size
is large or small, which has been verified in other materials with high carrier concentration;
(2) for TE materials with a normal carrier concentration, merely growing the grain size can
reduce the Qt and then depress the Eb and GBS, which is commonly used to remove the
GBS of TE materials [31,37,38]; and (3) when the grain size is large enough, reducing the
carrier concentration can still elevate the Eb and then promote the GBS, which is merely
mentioned in electrical transport [30,39]. In this work, even for the coarse polycrystalline
InTe, when raising the Pb doping ratio higher than 0.3%, the decreased nH contributes to
the increase in Eb and magnifies the GBS effect. The increase in carrier concentration to
suppress the GBS illustrates the possibility of improving electron mobility by increasing
the carrier concentration.

The positive Seebeck coefficients of all the samples reveal their p-type transports,
as displayed in Figure 3e. With the doping ratio increasing, the room temperature S
monotonically enhances due to the reduction in carrier concentration. It is interesting
that the Seebeck coefficients are approached even with the different doping ratios at high
temperature; this originates from the different intensity of the bipolar transports resulting
from the thermal activation of the samples. This can also be reflected in their different band
gaps (Eg) because the Eg of the samples decrease from 0.42 eV to 0.33 eV with the increase
in the Pb doping amount, according to the calculation based on the Seebeck coefficient in
the following formula [40]:

Eg = 2eSmaxT(Smax) (3)

where Smax and T(Smax) are the peak Seebeck coefficient and the corresponding temperature,
respectively. Specifically, the reduced Eg lowers the thermal activation temperature of
the electron, and these thermally excited electrons reduce the S significantly at the high
temperature due to the involvement of two kinds of carrier, which is expressed as [40]:

S =
Snσn + Spσp

σn + σp
(4)

where Sn, Sp, sn, and sp are the Seebeck coefficient and the electrical conductivity for the
electron (n) or hole (p), respectively. Therefore, a suitable band gap is important for the
thermoelectric material to achieve high a Seebeck coefficient. Finally, the improved S of
In0.9999Pb0.0001Te and the high σ give rise to the 20% increment of the power factor (PF) near
room temperature, as shown in Figure 3f. However, with the increasing doping amount of
Pb, the PF will monotonically reduce because of the reduction in σ, which originates from
the low carrier concentration and the strengthened GBS.

The single parabolic band (SPB) model, which is applicable under the condition of the
acoustic phonon dominating the carrier scattering, is used to study the S-nH and µH-nH
relationship and predict the optimal nH to achieve the highest electrical performance in this
work [15,41]. At room temperature, the S-nH relation fits well the SPB Pisarenko curves
(i.e., S vs. nH), with the density-of-states effective mass (m*

DOS) of 0.78 me (Figure 4a), which
is close to those of coarse grain-In0.99Ga0.01Te [15], In0.999Pb0.001Te [21], InTe ingot [16], and
InTe single crystal [29]. For InTe, there are complex carrier scattering mechanisms, including
GBS, APS, and point defect scattering (DPS), as well as intervalley scattering and ionized
impurity scattering [15,22,25,26]. However, it seems that the mixed scattering mechanism
does not affect the Seebeck coefficient trend significantly. However, the µH is strongly
related to the scattering mechanisms; this means that µH will increase with the elimination
of GBS, which can be illustrated by the µH-nH relation, as shown in Figure 4b. Therefore,
removing the GBS can significantly increase the electrical properties.
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Figure 4. Room temperature Seebeck coefficient (a) and carrier mobility (b) versus the carrier
concentration for the samples studied herein in comparison with the data in literature [15,16,21,29].

The sieved coarse In1-xPbxTe (x = 0, 0.0001, 0.001, 0.003, 0.005) with a high texture
degree of the (ll0) plane can utilize the extraordinarily low thermal conductivity of InTe
along the [110] direction. In addition, the doping of the heavy atom Pb can further introduce
the point defect to reduce the lattice thermal conductivity (κL) and thus produce extremely
low total thermal conductivity (κtotal), as shown in Figure 5a. At room temperature, the
κtotal tonelessly decreased with the increase in the doping amount due to the intensified
point defect derived from the fluctuations of the atomic mass and radius. In addition, the
κtotal of all the samples normally decreased with the increase in temperature below 500 K
for the increased phonon–phonon scattering as the temperature increased. However, the
κtotal for the doped samples showed a slight upturn when the temperature was higher than
500 K, indicating the contribution of the bipolar diffusion and the recombination, which
was analyzed above. In order to evaluate the intrinsic κL, the electron thermal conductivity
(κe) was first calculated according to the Wiedemann–Franz law and is expressed as [42]:

κe = LσT, L = 1.5 + exp [−|S|/116] (5)

where L is the Lorenz number, σ is the electrical conductivity, and T is the absolute temper-
ature. The L can be estimated from the experimental Seebeck coefficient. Being consistent
with the electrical conductivity, κe reduces with the increase in the doping ratio, as shown in
Figure 5b. As noted in the Debye model, the dominant Umklapp scattering indicates that κL
and T obey the relation of κL = aT−1 + b above the Debye temperature [43,44]. Thus, the lat-
tice thermal conductivity was first estimated by subtracting κe from κtotal within 300–400 K
and then extrapolated in the subsequent temperature range, as shown in Figure 5c. It is clear
that, with increased Pb doping, κL can be reduced by 23% at 300 K to 0.49 Wm−1 K−1 and
by 16% at 700 K to 0.30 Wm−1 K−1, which is lower than the limit of κglass ~ 0.32 Wm−1 K−1

with the Cahill model [45] and close to the limit of κdiff ~ 0.21 Wm−1 K−1 with the diffusion
model [46]. The traditional Cahill model is expressed as:

κglass ≈ 1.21n2/3kB
1
3
(2vt + vl) (6)

where n is the number density of the atoms, kB is the Boltzmann constant, vt is the transverse
sound velocity, and vl is the longitudinal sound velocity. In addition, the κb of each sample
was calculated with the expression κb = κtotal − κe − κL, as shown in Figure 5d; this reveals
the increased contribution of κb with the increase in the temperature and doping amount.
Therefore, in order to obtain a high thermal conductivity of the thermoelectric material at
high temperature, a suitably large band gap is necessary in order to avoid the powerful
influence of bipolar diffusion.
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Figure 5. Temperature dependence of the thermal properties of the sieved coarse In1-xPbxTe (x = 0,
0.0001, 0.001, 0.003, 0.005) and the sieved fine InTe. (a) Total thermal conductivity, (b) electron
thermal conductivity, (c) lattice thermal conductivity. The solid part is calculated by κotal-κe, and the
dashed part is obtained by fitting the solid part within 300–400 K according to aT−1 + b, which is
then extrapolated in the subsequent temperature range. The dotted lines are the minimum thermal
conductivity calculated by Chaill model and diffusion model [45,46]. (d) Bipolar thermal conductivity.

The calculated zT values of all the samples, based on the measured electrical and ther-
mal properties, are presented in Figure 6. Due to the simultaneously optimized electrical
and thermal conductivity, the zT value increased from 0.02 for polycrystalline InTe with
fine grains to 0.2 for the coarse one and further to 0.26 for In0.9999Pb0.0001Te with coarse
grains at room temperature. In addition, the peak zT value can also be increased from 0.54
to 0.70 with the increase in the grains. Because of the depression of GBS when x < 0.3% and
the high texture degree of the (110) plane, the average zT of coarse grain-In1-xPbxTe sample
can also be increased greatly; this was calculated by the following equation:

zTavg =

∫ 623
300 zT(T)dT

∆T
(7)
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In detail, the zTavg increased by 168%, from 0.16 to 0.43, with the increasing grain size
and further increased by 14% to 0.49 with Pb doping. This value is much higher than that
of the Pb-doped (0.29) sample with fine grain in the literature and ranks higher among all
the reported polycrystalline InTe-based TE materials, as shown in Figure 6b.

4. Conclusions

In summary, in order to fully investigate the mechanism of the grain boundary scatter-
ing of InTe, we systematically explored the synergistic effect of grain size and the carrier
concentration on the carrier scattering mechanism with selective Pb doping at the In+ site.
This design could monotonically reduce the carrier concentration, which provided the
opportunity to explore the effect of carrier concentration on the suppression of GBS for InTe.
When the carrier concentration was high, the grain size dominated the GBS, and merely
increasing the grain sizes could depress the GBS. However, when the carrier concentration
was low (<0.7 × 1019 cm−3) the GBS was still strong even for the coarse polycrystalline
InTe. In addition, the Pb doping monotonically reduced the lattice thermal conductivity.
As a result, the Pb0.0001In0.9999Te achieved the improved power factor and high peak zT
value of 0.65@720K, as well as the average zT value of 0.49 within 300–623 K, which was
beneficial to the power generation below a medium temperature. This work uncovers the
influence of grain size and the carrier concentration for the grain boundary scattering of a
semiconductor, which is helpful in improving the TE performance by the grain boundary
scattering modulation of other materials via the synergistic effect of increasing grain size
and carrier concentration.
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