

Review

Variable Combinations of Tridentate Ligands in Pt(η³-X₃L)(PL) Derivatives: Structural Aspects

Milan Melník 1,2,*, Veronika Mikušová 3 and Peter Mikuš 1,4,*

- ¹ Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
- ² Faculty of Chemical and Food Technology, Slovak University of Technology Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
- ³ Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
- ⁴ Toxicological and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
- * Correspondence: qmelnik@stuba.sk (M.M.); mikus@fpharm.uniba.sk (P.M.)

Abstract: This review covers over fifty Pt(II) monomeric complexes with a wide combination of η^3 -ligands of the composition Pt(η^3 -X₃L)(PL), (X₃ = N₃; S₃; Te₃; ONO; CNC, SeNSe; ONC; ONS; CNS; NNC, NNS; NNSe, SOS; SBS; NON; SSO). The η^3 -ligand with monodentate PL displays distorted square-planar geometry about Pt(II) atoms. The structural parameters (Pt-L, L-Pt-L) are analyzed and discussed, with a particular emphasis on the distortion of square-planar geometry about Pt(II) atoms, as well as of the trans-influence. There is a relation between the membered nature of the metallocycles and the distortion of square-planar geometry about the Pt(II) atoms. The distortion increases as indicated by parameter τ_4 in the following order: 0.023 (6+6) < 0.024 (^+5) < 0.040 (5+6) < 0.062 (5+5).

Keywords: structure; Pt(ŋ³-X₃L)(PL); distortion; trans-effect

1. Introduction

The chemistry of platinum is particularly important in the areas of catalysis and biochemistry. There are numerous published structural studies on platinum complexes that have been classified and analyzed [1]. The high affinity of platinum (II) ions for phosphorous enables it to bind effectively to organophosphines. Organophosphines as soft P-donor ligands are very useful for building a wide variety of platinum complexes. Recently, we classified and analyzed structural data of monomeric organoplatinum complexes with PtP₃C inner coordination spheres [2]. Another review covers structural data of monomeric Pt(II) coordination complexes with inner coordination spheres, including PtP₄, PtP₃X, and PtP₂X₂, in which P-donor ligands are monodentate organomonophosphines [3].

This study aims to correlate the following structural parameters available for $Pt(\eta^3-X_3L)(PL)$: (X₃ = N¹,N²,N³; S¹,S²,S³; Te¹,Te²,Te³; O¹,N¹,O²; O¹,N¹,C¹; O¹,N¹,S¹; N¹,N²,C¹; N¹,N²,S¹; N¹,N²,Se¹; N¹,N²,C¹; C¹,N¹,S¹; S¹,C¹,S²; S¹,S²,O¹; Se¹,N¹,Se².

2. Pt(η³-X₃L)(PL) Derivatives

There are over fifty examples in which the inner coordination spheres about the Pt(II) atoms of the Pt(η^3 -X₃L)(PL) type are formed by variable combinations of donor atoms of tridentate ligands. Each η^3 -ligand creates two metallocyclic rings. The complexes based on membered metallocyclic rings can be divided into four groups.

Citation: Melník M.; Mikušová V.; Mikuš P. Variable Combinations of Tridentate Ligands in Pt(ŋ³-X₃L)(PL) Derivatives: Structural Aspects. *Crystals* 2023, 13, 599. https://doi.org/10.3390/cryst13040599

Academic Editors: Sławomir Grabowski and Vadim Yu. Kukushkin

Received: 14 February 2023 Revised: 15 March 2023 Accepted: 29 March 2023 Published: 1 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

2.1. 6+6-Membered Metallocyclic Rings

There are only three examples in which a η^3 -ligand creates such rings (Table 1). In [Pt(η^3 -C₂₂H₁₁F₆N₃O₂–O¹,N¹,O²)(PPh₃)] (at 173 K) [4], the η^3 -ligand forms a metallocyclic ring of the O¹C₃N¹C₃O² type with common ligating N¹ atoms. The values of the chelate L-Pt-L angles are 90.6° (O¹-Pt-N¹) and 90.2° (N¹-Pt-O²). The O¹C₂NN¹C₃O² type with the respective chelate angles of 88.2° (O¹-Pt-N¹) and 90.0° (N¹-Pt-O²) was found in [Pt(η^3 -C₁₄H₁₀N₂O₃–O¹,N¹,O²)(PPh₃)] (at 150 K) [5]. The remaining L-Pt-L angles open in the following order (mean values): 88.1° (O²-Pt-P) < 89.0° (O¹-Pt-P) < 176.0° (N¹-Pt-P) < 177.7° (O¹-Pt-O²). The monodentate PPh₃ displayed square-planar geometry about each Pt(II) atom. The Pt-L bond distance increased in the following order (mean values): 1.995 Å (Pt-O¹ trans to O²) < 1.996 Å (Pt-O²) < 2.010 Å (Pt-N¹) < 2.254 Å (Pt-P).

For the complex [Pt{ η^3 -C₁₂H₂₄S₃-S¹,S²,S³}(PPh₃)]BF₄, the η^3 -ligand creates a pair of sixmembered metallocyclic rings of the S¹C₃S²C₃S³ type (as shown in Figure 1) [6]. The values of the chelate angles are 87.1° (S¹-Pt-S²) and 89.5° (S²-Pt-S³). The remaining L-Pt-L bond angles open in the following order: 91.1° (S¹-Pt-P) < 92.3° (S³-Pt-P) < 171.0° (S²-Pt-P) < 176.3° (S¹-Pt-S³). The Pt-L bond distance increases in the following order: 2.330 Å (Pt-S¹) < 2.332 Å (Pt-P) < 2.336 Å (Pt-S³) < 2.339 Å (Pt-S² trans to P). Noticeably, the trans-X¹-Pt-X³ bond angles are somewhat bigger than the trans-X²-Pt-P bond angles (Table 1).

Complex	Chromophore Chelate Rings τ4 ^b	Pt -L ° (Å)	L-Pt-L ° (°)	Ref.
			O ¹ ,N ¹ 90.6 ^d	
		O ¹ 1.994(2)	N1,O2 90.2 d	
$[Pt(1)^{3}-C22\Pi 11F6IN3O2-$	$PtO^{1}N^{1}O^{2}P$	N ¹ 2.021(2)	O ¹ ,O ² 179.0	E 4 1
$(1, N^{1}, O^{2})(PPN3)$	$[1^{1},O^{2})(PPh_{3})]$ (O ¹ C ₃ N ¹ C ₃ O ²)	O ² 2.004(2)	O ¹ ,P 90.6	[4]
(at 173 K)	0.032	P 2.256(2)	O²,P 87.5	
			N ¹ ,P 177.0	
			O1,N1 88.2 d	
		O ¹ 1.995(2)	N ¹ ,O ² 90.0 ^d	
$[Pt(1)^3-C_{14}\Pi_{101}N_2O_{3}^3-O_{11}N_1O_{22}(DDb_{22})]$	$\Gamma(\mathbf{U}^{-1}\mathbf{N}^{-1}\mathbf{U}^{-1}\mathbf{r})$	N ¹ 2.000(2)	O ¹ ,O ² 176.5	[5]
(at 150 V)	$(0^{1}C_{2}NN^{1}C_{3}O^{2})$	O ² 1.988(2)	O ¹ ,P 89.0	[5]
(at 150 K)	0.024	P 2.251(2)	O²,P 90.7	
			N¹,P 175.0	
			S1,S2 87.1(2) d	
	D1C1C2C3D	S1 2.330(2)	S ² ,S ³ 89.5(2) d	
$\begin{array}{l} [Pt\{\eta^{3}\text{-}C_{12}H_{24}S_{3}\text{-}\\ S^{1},S^{2},S^{3}\}(PPh_{3})]BF_{4} \end{array}$	$Pt5^{1}5^{2}5^{3}P$	S ² 2.339(2)	S ¹ ,S ³ 176.3(2)	[7]
	$(5^{4}C_{3}5^{2}C_{3}5^{3})$	S ³ 2.336(2)	S ¹ ,P 91.1(2)	[6]
	0.055	P 2.332(2)	S ³ ,P 92.3(1)	
			S ² ,P 171.0(2)	

Table 1. Structural data for $Pt(\eta^3-X_3)(Y)$ derivatives. ^a - 6+6-membered metallocyclic rings.

(a) Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The number in parentheses is the e.s.d. (b) Parameter τ_4 , degree of distortion. (c) The chemical identity of the coordinated atom/ligand is specific to these columns. (d) Six-membered metallocyclic ring.

Figure 1. Structure of [Pt{η³-C₁₂H₂₄S₃-S¹,S²,S³}(PPh₃)] [6].

2.2. 6+5-Membered Metallocyclic Rings

There are five examples that will be discussed in this section, namely [Pt(η^3 -C₁₆H₁₄N₂OS₂–O¹,N¹,S¹)(PPh₃)] [7], [Pt(η^3 -C₁₆H₁₃N₃O₃S₂–O¹,N¹,S¹)(PPh₃)] (at 200K) [7], [Pt(η^3 -C₈H₈N₃OS-O¹,N¹,S¹)(PPh₃)] toluene [8], [Pt(η^3 -C₉H₉N₃OS-O¹,N¹,S¹)(PPh₃)] (at 100 K) (Figure 2) [9], and [Pt(η^3 -C₁₈H₁₆N₂OS₂–O¹,N¹,S¹)(PPh₃)] [7] (Table 2). In each of them, the η^3 -ligand creates six- and five-membered metallocyclic rings with a common ligating N¹ atom of the O¹C₃N¹NCS¹ type. The values of the respective chelate angles (mean values) are 92.3° (O¹-Pt-N¹) and 84.6° (N¹-Pt-S¹). The remaining L-Pt-L bond angles open in the following order (mean values): 90.7° (O¹-Pt-P) < 92.4° (S¹-Pt-P) < 175.8° (N¹-Pt-P) < 175.9° (O¹-Pt-S¹). Interestingly, the mean values of both trans-O¹-Pt-S¹ and N¹-Pt-P angles are equal. The Pt-L bond distance increases (mean values) in the following order: 2.028 Å (Pt-O¹ trans to S¹) < 2.035 Å (Pt-N¹ trans to P) < 2.244 Å (Pt-S¹) < 2.259 Å (Pt-P).

Table 2. Structural data for Pt(ŋ³-X₃)(Y) derivatives. ^a - 6+5-membered metallocyclic rings.

Complex	Chromophore Chelate Rings τ4 ^b	Pt -L ° (Å)	L-Pt-L ° (°)	Ref.
[Pt(ŋ ³ -C ₁₆ H ₁₄ N ₂ OS ₂ - O ¹ ,N ¹ ,S ¹)(PPh ₃)]	PtO ¹ N ¹ S ¹ P (O ¹ C ₃ N ¹ NCS ¹) 0.016	O ¹ 1.992 N ¹ 2.034 S ¹ 2.245 P 2.258	O ¹ ,N ¹ 91.2 ^d N ¹ ,S ¹ 85.0 ^e O ¹ ,S ¹ 176.0 O ¹ ,P 89.0 S ¹ ,P 93.1 N ¹ ,P 178.1	[7]
[Pt(η ³ -C ₁₆ H ₁₃ N ₃ O ₃ S ₂ - O ¹ ,N ¹ ,S ¹)(PPh ₃)] (at 200 K)	PtO ¹ N ¹ S ¹ P (O ¹ C ₃ N ¹ NCS ¹) 0.018	O ¹ 2.001 N ¹ 2.041 S ¹ 2.239 P 2.248	O ¹ ,N ¹ 92.6 ^d N ¹ ,S ¹ 85.3 ^e O ¹ ,S ¹ 177.6 O ¹ ,P 89.0	[7]

_

			S ¹ ,P 93.3	
			N ¹ ,P 176.0	
			O ¹ ,N ¹ 93.1 ^d	
		O ¹ 2.015	N1,S1 83.8 °	
[Pt(\eta ³ -C8H8N3OS-	$PtO^{1}N^{1}S^{1}P$	N1 2.031	O ¹ ,S ¹ 176.6	101
O ¹ ,N ¹ ,S ¹)(PPh ₃)].toluene	$(O^{1}C_{3}N^{1}NCS^{1})$	S1 2.234	O ¹ ,P 89.9	[8]
	0.020	P 2.257	S ¹ ,P 93.3	
			N ¹ ,P 176.3	
			O ¹ ,N ¹ 92.5 ^d	
		O ¹ 2.085	N ¹ ,S ¹ 85.1 ^e	
$[Pt(\eta^{3}-C_{9}H_{9}N_{3}OS-$	$PtO^{1}N^{1}S^{1}P$	N1 2.036	O ¹ ,S ¹ 175.7	[0]
$O^{1}, N^{1}, S^{1})(PPn_{3})$	$(O^1C_3N^1NCS^1)$	S ¹ 2.257	O ¹ ,P 91.5	[9]
(at 103 K)	0.024	P 2.260	S ¹ ,P 91.0	
			N ¹ ,P 175.6	
			O ¹ ,N ¹ 92.3 ^d	
		O ¹ 2.045	N ¹ ,S ¹ 83.2 ^e	
[Pt(η ³ -C ₁₈ H ₁₆ N ₂ OS ₂ -	PtO ¹ N ¹ S ¹ P	N ¹ 2.029	O ¹ ,S ¹ 173.6	[
$O^{1}, N^{1}, S^{1})(PPh_{3})$]	$(O^{1}C_{3}N^{1}NCS^{1})$	S1 2.246	O ¹ ,P 93.1	[2]
	0.037	P 2.269	S ¹ ,P 91.2	
			N ¹ ,P 173.1	

(a) Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The number in parentheses is the e.s.d. (b) Parameter τ_4 , degree of distortion. (c) The chemical identity of the coordinated atom/ligand is specific to these columns. (d) Six-membered metallocyclic ring. (e) Five-membered metallocyclic ring.

Figure 2. Structure of [Pt(η³-C₉H₉N₃OS-O¹,N¹,S¹)(PPh₃)] [9].

2.3. 5+6-Membered Metallocyclic Rings

There are four complexes mentioned in this section, namely $[Pt(\eta^3-C_{12}H_{10}N_{4-N^1,N^2,N^3})(PPh_3)]$ (at 100 K) [10], $[Pt(\eta^3-C_{13}H_9NO_2-O^1,N^1,O^2)(PPh_3)]$ [11], $[Pt(\eta^3-C_{12}H_{16}N_2O_4Se_2-Se^1,N^1,Se^2)\{P(\eta^1-C_{11}H_{19}O_5)(Ph)_2\}]$ [12], and $[Pt(\eta^3-C_{29}H_{20}F_6S_2O-S^1,S^2,O^1)(PPh_3)]$ (at 100 K) [13], and their structural parameters are gathered in Table 3. The structure of $[Pt(\eta^3-C_{12}H_{10}N_4-N^1,N^2,N^3)(PPh_3)]$ [10] is shown in Figure 3 as an example. Each η^3 -ligand creates five and six metallocyclic rings. The donor atoms of the respective η^3 -ligands play a role in the size of the L-Pt-L chelate angles. These angles increase in the following sequences:

 $\begin{array}{l} N^{1}C_{2}N^{2}NC_{2}N^{3}-81.7^{\circ}\ (N^{1}-Pt-N^{2})\ and\ 89.6^{\circ}\ (N^{2}-Pt-N^{3});\\ O^{1}C_{2}N^{1}C_{3}O^{2}-2.4^{\circ}\ (O^{1}-Pt-N^{1})\ and\ 94.8^{\circ}\ (N^{1}-Pt-O^{2});\\ Se^{1}C_{2}N^{1}NC_{2}Se^{2}-83.3^{\circ}\ (Se^{1}-Pt-N^{1})\ and\ 98.3^{\circ}\ (N^{1}-Pt-Se^{2});\\ S^{1}C_{2}S^{2}C_{3}O^{1}-90.2^{\circ}\ (S^{1}-Pt-S^{2})\ and\ 99.2^{\circ}\ (S^{2}-Pt-O^{1}). \end{array}$

The monodentate PL displayed distorted square-planar geometry about Pt(II) atoms. The Pt-L bond distance to PL increased in the following order: 2.025 Å (Pt-N²) < 2.064 Å (Pt-N¹) < 2.078 Å (Pt-N¹) < 2.277 Å (Pt-S²). The order follows the above-mentioned sentence for the Pt-L (L is a common central ligating atom between five and six-rings).

Table 3. Structural data for $Pt(\eta^3-X_3)(Y)$ derivatives. ^a - 5+6-membered metallocyclic rings.

Complex	Chromophore Chelate Rings τ4 ^b	Pt -L ° (Å)	L-Pt-L ° (°)	Ref.
$Pt(\eta^{3}-C_{12}H_{10}N_{4}-$	Pt N ¹ N ² N ³ P	N1 1.984	N^{1} , N^{2} 81.7 e	[10]
$N^{1}, N^{2}, N^{3})(PPh_{3})]$	$(N^{1}C_{2}N^{2}NC_{2}N^{3})$	N ² 2.025	N^2 , N^3 89.6 d	[10]

(at 100 K)	0.034	N ³ 1.964	N ¹ ,N ³ 170.6	
		P 2.255	N ¹ ,P 93.0	
			N³,P 96.3	
			N ² ,P 177.2	
			O ¹ ,N ¹ 82.4(4) ^e	
		O ¹ 1.975(9)	N1,O2 94.8(4) d	
[Pt(η ³ -C ₁₃ H ₉ NO ₂ -	Pt O'N'O'P	N ¹ 2.064(12)	O ¹ ,O ² 176.4(4)	[11]
O ¹ ,N ¹ ,O ²)(PPh ₃)]	$(0^{4}C_{2}N^{4}C_{3}O^{2})$	O ² 1.996(9)	O ¹ ,P 91.5(3)	[11]
	0.034	P 2.248	O ² ,P 91.5(3)	
			N ¹ ,P 172.4	
			Se ¹ ,N ¹ 83.3 ^e	
[Dt/m3 C. H. N.O.Co.	$\mathbf{D} \in \mathbf{C} \circ 1 \mathbf{N} 1 \mathbf{C} \circ 2$	Se ¹ 2.394	N ¹ ,Se ² 98.3 ^d	
$[\Gamma t(\eta^{3}-C_{12}\Pi_{161}N_{2}O_{4}Se_{2}-C_{12}\Pi_{161}N_{2}O_{4}-C_{12}\Pi_{161}N_{2}O_{4}-C_{12}\Pi_{161}N_{2}O_{4}-C_{12}-C_$	(\mathbf{C}_{2})	N1 2.078	Se ¹ ,Se ³ 176.3	[10]
$Se^{1}N^{2}, Se^{2} \{\Gamma(1)^{2} - C_{1}, N^{2}, Se^{2}\} \{\Gamma(1)^{2} - C_{2}, N^{2}, Se^{2}\} \}$	$(50^{\circ}C_{21}N^{\circ}NC_{2}S_{2}S_{2})$	Se ² 2.349	Se ¹ ,P 87.2	[12]
$C_{11}\Pi_{19}O_{5}(P_{11})_{2}$	0.036	P 2.259	Se ² , P 90.7	
			N ¹ ,P 170.9	
			S1,S2 90.2 °	
[Pt(η ³ -C ₂₉ H ₂₀ F ₆ O ₄ S ₂ O-	\mathbf{D} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{D}	S1 2.268	S ¹ ,O ¹ 99.2 ^d	
S ¹ ,S ² ,O ¹)(PPh ₃)]	$Pt 5^{2}O^{4}P$	S ² 2.277	S ¹ ,O ¹ 169.6	[12]
(at 100 K)	$(5^{+}C_{2}5^{+}C_{3}O^{+})$	O ¹ 2.066	S ¹ ,P 89.2	[15]
	0.039	P 2.253	O ¹ ,P 99.2	
			S ² P 169.4	

(a) Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The number in parentheses is the e.s.d. (b) Parameter τ_4 , degree of distortion. (c) The chemical identity of the coordinated atom/ligand is specific to these columns. (d) Six-membered metallocyclic ring. (e) Five-membered metallocyclic ring.

Figure 3. Structure of $[Pt(\eta^3-C_{12}H_{10}N_4-N_1,N^2,N^3)(PPh_3)]$ [10].

2.4. 5+5-Membered Metallocyclic Rings

There are thirty-nine compounds in which each η^3 -ligand creates two five-membered metallocyclic rings. These complexes based on variable combinations of atoms involved in the chelate angles can be divided into twelve groups. Structural data are given in Table 4.

Table 4. Structural data for $Pt(\eta^3-X_3)(Y)$ derivatives. ^a - 5+5-membered metallocyclic rings.

Complex	Chromophore Chelate Rings T4 ^b	Pt -L ° (Å)	L-Pt-L ° (°)	Ref.
			S ¹ ,C ¹ 87.9 ^e	
$[Pt(n^3 - C_{22}H_{24}P_2S_2]$	P+S1C1S2P	S ¹ 2.332	C ¹ ,S ² 87.7 ^e	
$S^{1} C^{1} S^{2} (PPh_{2}) CH_{2} Ch_{2}$	$(S^1PCC^1CPS^2)$	C ¹ 2.020	S ¹ ,S ² 173.8	[14]
(at 193 K)	0.026	S ² 2.316	S ¹ ,P 89.7	[14]
(41 175 10)	0.020	P 2.332	S²,P 94.2	
			C ¹ ,P 176.9	
			Te ¹ ,Te ² 91.6(2) ^e	
	Pt Te1Te2Te3P	Te ¹ 2.588(3)	Te ² ,Te ³ 91.4(2) ^e	
$[Pt(\eta^3-C_{12}H_{10}N_2T_{e3}-T_{e1}T_{e2}T_{e3})/(PPh_2)] C_{e}H_{e}$	$(Te^{1}CNTe^{2}NCTe^{3})$	Te ² 2.569(3)	Te ¹ ,Te ³ 174.0(2)	[15]
$Te^{1}, Te^{2}, Te^{3})(PPh_{3})].C_{6}H_{6}$	0.029	Te ³ 2.612(3)	Te ¹ ,P 90.4(2)	[15]
	0.02)	P 2.283(3)	Te ³ ,P 87.0(2)	
			Te ² ,P 175.5	
			Te ¹ ,Te ² 92.8(1) ^e	
[Pt(n3 CtoHoNaToo	$P_{t} T_{0}^{1} T_{0}^{2} T_{0}^{3} P$	Te ¹ 2.594	Te ² ,Te ³ 92.6(1) ^e	
$Te^{1}, Te^{2}, Te^{3})(PPh_{3})$	(Te ¹ CNTe ² NCTe ³)	Te ² 2.574	Te ¹ ,Te ³ 172.7(2)	[15]
		Te ³ 2.572	Te ¹ ,P 86.1(2)	
	0.044	P 2.282	Te ³ ,P 89.3(2)	
			Te ² ,P 171.4(2)	
			S1,B1 79.8 °	
[Pt(n3-C12H0N2S2B-	P+S1B1S2P	S1 2.304	B ¹ ,S ² 85.0 °	
$S_1 B_1 S_2 (PPb_2) = 0.06 CH_2 Cl_2$	(S1CNB1NCS2)	B ¹ 2.192	S ¹ ,S ² 161.4	[16]
(at 100 K)	(J-CIND-INCJ-) 0.061	S ² 2.275	S ¹ ,P 99.8	[10]
(at 100 K)	0.001	P 2.384	S²,P 95.9	
			B ¹ ,P 176.7	
			S ¹ ,B ¹ 81.0 °	
[Dt(m3 CasHa NI-SaB	D+C1D1C2D	S ¹ 2.299	B ¹ ,S ² 86.5 ^e	
$[1 t(1)^{2} - C_{131} I_{141} N_{5} S_{3} D_{5} - C_{15} I_{141} N_{$	$\Gamma (5^{\circ}D^{\circ}5^{\circ}\Gamma)$	B ¹ 2.192	S ¹ ,S ² 163.4	[17]
$(2 \pm 100 k)$	$(5^{\circ}CIND^{\circ}INC5^{\circ})$	S ² 2.294	S ¹ ,P 98.8	[17]
(at 100 k)	0.067	P 2.379	S²,P 96.4	
			B ¹ ,P 172.2	
			N ¹ ,N ² 78.7 ^e	
	D4 NI1NI2C a1D	N1 2.020	N ² ,Se ¹ 82.3 ^e	
[Pt(η ³ -C ₂₈ H ₂₄ N ₄ Se ₂ - N ¹ ,N ² ,Se ¹)(PPh ₃)].0.5H ₂ O	Pt IN IN Ser	N ² 1.980	N ¹ ,Se ¹ 162.0	[10]
	$(IN^{+}CININ^{-}INCSe^{+})$	Se ¹ 2.368	N ¹ ,P 100.0	[18]
	0.068	P 2.272	Se ¹ ,P 98.6	
			N²,P 173.4	
	$PtN^1N^2S^1P$	N1 2.031	N1,N2 78.5 °	
$[I't(\eta^{3}-C_{28}H_{24}N_{4}S_{2}-N_{11}N_{22}C_{13})$	(N ¹ CNN ² NCS ¹)	N ² 1.987	N ² ,S ¹ 81.6 ^e	[19]
1N ¹ ,1N ² ,S ¹)(PPh ₃)].0.5thf	0.076	S1 2.266	N ¹ ,S ¹ 162.2	-

		P 2.279	N ¹ ,P 99.9	
			5 ¹ ,P 99.7	
			N^2 , P 1/2.5	
		01 2 100	0 ¹ ,IN ¹ 80.9 ^e	
	$PtO^1N^1C^1P$	O ¹ 2.189	$N^{1}, C^{1} / 9.0^{e}$	
$[Pt(\eta^{3}-C_{17}H_{12}N_{2}O_{-})]$	$(O^1C_2N^1NCC^1)$	N ¹ 1.997	O ¹ ,C ¹ 159.9	[20]
$O^{1}, N^{1}, C^{1})(PPh_{3})$	0.059	C ¹ 2.004	O ¹ ,P 99.8	
		P 2.254	C ¹ ,P 100.1	
			N ¹ ,P 178.9	
			C ¹ ,N ¹ 80.9 ^e	
	PtC ¹ N ¹ S ¹ P	C ¹ 2.045	N ¹ ,S ¹ 81.7 e	
$[Pt(\eta^3-C_9H_9N_3S-C$	$(C_1C_2N_1NCS_1)$	N ¹ 2.032	C ¹ ,S ¹ 162.5	[21]
$C^{1}, N^{1}, S^{1})(PPh_{3})$	0.057	S ¹ 2.340	C ¹ ,P 96.6	
		P 2.229	S ¹ ,P 101.0	
			N ¹ ,P 176.4	
			C1,N1 77.9 e	
	PtC ¹ N ¹ S ¹ P	$C^{1} 2.018$	N1,S1 83.2 e	
$[Pt(\eta^{3}-C_{10}H_{11}N_{3}S-$	$(C^1C_2N^1NCS^1)$	N ¹ 2.029	C ¹ ,S ¹ 161.4	[22]
$C^{1}, N^{1}, S^{1})(PPh_{3})]$	0.063	S ¹ 2.335	C ¹ ,P 98.5	[]
	0.000	P 2.235	S ¹ ,P 99.9	
			N ¹ ,P 176.0	
			C1,N1 80.6 e	
	PtC1N1S1P	C1 2.038	N1,S1 82.8 e	
[Pt(η ³ -C12H19Cl2N3O2S3- C ¹ ,N ¹ ,S ¹)(PPh3)].2NH2SO	$(C^{1}C_{2}N^{1}NCS^{1})$ 0.053	N1 2.037	C ¹ ,S ¹ 163.6	[23]
		S ¹ 2.332	C ¹ ,P 97.0	[20]
	0.000	P 2.236	S ¹ ,P 99.4	
			N ¹ ,P 177.2	
			C1,N1 80.7 e	
[Pt(n ³ , C ₀ H ₇ Cl ₂ Nl ₂ S	P+C1N1S1P	C1 2.027	N ¹ ,S ¹ 83.0 ^e	
$C_1 N_1 S_1 V P(p_3 - C_1 H_2 N_2) V$	$PtC^1N^1S^1P$	N ¹ 2.035	C ¹ ,S ¹ 163.7	[23]
$(a \pm 173 \text{ K})$	(C C2N NC3)	S ¹ 2.332	C ¹ ,P 98.6	[20]
(at 175 K)	0.077	P 2.240	S ¹ ,P 97.6	
			N ¹ ,P 168.2	
			N^{1} , N^{2} 79.0 e	
IDt/m ³ C-rH-rCl-NLC	D4NI1NI2C1D	N1 2.042	N ² ,S ¹ 82.0 ^e	
$[\Gamma t(1)^{\circ}-C_{20}\Pi_{31}C_{121}N_{4}S_{2}^{\circ}-N_{11}N_{12}S_{11}^{\circ}/DD_{h-1}]E_{10}H$	(NIC-N2NCSI)	N ² 2.000	N ¹ ,S ¹ 161.0	[24]
(at 100 K)	$(1N^{2}C21N^{2}INCS^{2})$	S ¹ 2.270	N ¹ ,P 100.0	[24]
(at 100 K)	0.072	P 2.268	S ¹ ,P 96.0	
			N²,P 173.0	
			O¹,N¹ 76.0 e	
		O ¹ 2.136	N1,C1 81.8 e	
$[Pt(\eta^{3}-C_{18}H_{12}N_{2}O-$	$PtO^{1}O^{1}O^{1}O^{1}O^{1}O^{1}O^{1}O^{1}$	N1 1.995	O ¹ ,C ¹ 157.7	[25]
O ¹ ,N ¹ ,C ¹)(PPh ₃)].MeCN	$(0^{\circ}CNN^{\circ}C2C^{\circ})$	C1 2.025	O ¹ ,P 103.2	[25]
	0.066	P 2.244	C ¹ ,P 99.1	
			N ¹ ,P 170.4	
			N ¹ C ¹ 80.5 ^e	
$[Pt(\eta^3-C_{12}H_{21}N_{2}-$		N ¹ 2.130	C ¹ ,N ² 79.9 ^e	
$N_{1}^{1}, C_{1}^{1}, N_{2}^{2} \{P(C_{6}H_{4}SO_{3})_{3}\}^{2}$	$PtN^{4}C^{4}N^{2}P$	C ¹ 1.971	N ¹ ,N ² 159.8	1073
$[Pt(\eta^3-C_{12}H_{21}N_6)(H_2O)_2]$	$(IN^{+}C_{2}C^{+}C_{2}N^{2})$	N ² 2.131	N ¹ ,P 102.6	[26]
(at 150 K)	0.065	P 2.363	N ² ,P 97.6	
· · · · ·			C ¹ ,P 176.8	

			N1,N2 79.1 e	
Dt(m3 CarHarNa	D4N I1N I2N I3D	N ¹ 2.009	N²,N³ 78.8 °	
$[\Gamma l(1)^{2}-C_{30}\Pi_{351}N_{5}^{-}]$	$\Gamma U N^{2} I N^{2} I N^{3} \Gamma$ $(N I C \cdot N I 2 C \cdot N I 3)$	N ² 2.022	N ¹ ,N ³ 157.5	[27]
$[N^{1}, N^{2}, N^{3})(FFR3)]$	$(1N^{1}C_{2}IN^{2}C_{2}IN^{3})$	N ³ 2.010	N ¹ ,P 97.6	[27]
(at 223 K)	0.067	P 2.243	N³,P 105.9	
			N²,P 175.7	
			N ¹ ,N ² 78.6 ^e	
		N1 2.005	N²,N³ 79.2 °	
$[Pt(\eta^3-C_{11}H_3F_6N_7-N_1N_2N_2N_2)(P(\Lambda_1)P_1-N_2)]$	$PtIN^{1}N^{2}IN^{3}P$	N ² 2.032	N ¹ ,N ³ 157.7	[00]
$N^{1}, N^{2}, N^{3}\}\{P(Me)Ph_{2}\}$	$(\mathbb{N}^{1}\mathbb{C}_{2}\mathbb{N}^{2}\mathbb{C}_{2}\mathbb{N}^{3})$	N ³ 2.006	N ¹ ,P 100.0	[28]
(at 223 K)	0.068	P 2.256	N ³ ,P 102.2	
			N²,P 177.9	
$Pt(\eta^{3}-C_{15}H_{11}N_{3}-$			N ¹ ,N ² 79.8 e	
$N^{1}, N^{2}, N^{3}) \{P(\eta^{1} -$		N1 1.998	N²,N³ 79.5 °	
$C_{14}H_{19}O_5)Ph_2$].2SO ₃ CF ₃ .	PtN ¹ N ² N ³ P	N ² 2.000	N ¹ .N ³ 158.7	
2Me ₂ CO	$(N_{1}C_{2}N_{2}C_{2}N_{3})$	N ³ 2.097	N ¹ .P 97.9	[12]
(at 223 K)	0.068	P 2.287	N ³ .P 103.0	
()			N ² .P 176.6	
			$C^1 N^1 794^{e}$	
$[Pt(n^3-C_{17}H_{11}N-C^1N^1C^2)]$		$C^{1} 2 082$	$N^{1}C^{2}801^{e}$	
{P(n ¹ -	$PtC^1N^1C^2P$	N ¹ 2 033	$C^{1}C^{2}157.3$	
(I (I) $C_{14}H_{0}\Omega_{E})(Pb)_{2}]CH_{2}Cl_{2}$	$(C_1C_2N_1C_2C_2)$	$C^{2} 2.083$	$C^{1} P 100 6$	[29]
(at 100 K)	0.086	P 2 227	$C_{2}^{2} P_{1010}$	
(at 100 K)		1 2.227	NI P 171 8	
			NI NI 79.2 e	
		NI 2 015	N ² ,1N ² 79.2 °	
$[Pt(\eta^{3}-C_{25}H_{19}N_{5}-$	$PtN^{1}N^{2}N^{3}P$	$N^2 2.013$	N1 N3 159 4	
N ¹ ,N ² ,N ³)(PPh ₃)].3CH ₂ Cl ₂	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	N3 1 006	N1 D 06 0	[30]
(at 223 K)	0.070	$10^{\circ} 1.990$	N ² , I ² 90.9	
		F 2.255	Nº, I° 104.0	
			N ² , I ² 170.2	
		N11 0 010	N ¹ ,N ² 78.9 ^e	
[Pt(η ³ -C ₂₉ H ₃₃ N ₇ -	PtN ¹ N ² N ³ P	N ¹ 2.012	N ² ,N ³ 78.9 ^e	
$N^{1}, N^{2}, N^{3})$ (PPh ₃)].CH ₂ Cl ₂	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^2 2.036$	N ¹ ,N ³ 157.7	[30]
(at 223 K)	0.070	N ³ 2.009	N ¹ ,P 99.9	
		P 2.244	N ³ ,P 102.2	
			N ² ,P 177.1	
			N ¹ ,N ² 79.6 ^e	
	PtN ¹ N ² N ³ P	N ¹ 2.043	N ² ,N ³ 80.0 ^e	
	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	N ² 1.978	N ¹ ,N ³ 159.2	
	0.070	N ³ 2.052	N ¹ ,P 101.8	
[Pt(n ³ -C ₁₅ H ₁₁ N ₃ -		P 2.276	N³,P 98.8	
$N^{1}N^{2}N^{3}(PPh_{3}) = 2SO_{3}CF_{3}f$			N²,P 175.4	- [31]
(at 173 K)			N1,N2 79.9 e	[01]
(4(1))1()	PtN1N2N3P	N ¹ 2.057	N²,N³ 79.3 °	
	$(N_1C_2N_2C_2N_3)$	N ² 1.975	N ¹ ,N ³ 158.5	
	0.082	N ³ 2.040	N ¹ ,P 103.2	
	0.002	P 2.288	N³,P 98.1	
			N²,P 172.0	
[Pt(η ³ -C ₂₂ H ₁₅ N ₇ O-	PtN ¹ N ² N ³ P	N ¹ 2.006	N^{1}, N^{2} 78.0 e	
N ¹ ,N ² ,N ³)(PPh ₃)]	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	N ² 2.033	N²,N³ 78.3 °	[27]
(at 223 K)	0.072	N ³ 2.012	N ¹ ,N ³ 156.3	

		P 2.269	N ¹ ,P 101.2	
			N³,P 102.4	
			N²,P 177.8	
			N1,N2 78.3 e	
$[Pt(n_{-1}^{3}-C_{1}+H_{2}F_{-}N_{-}]$	PtN1N2N3P	N ¹ 2.027	N²,N³ 78.5 °	
$N_1 N_2 N_3 (PPh_2)$	$(N_1C_2N_2C_2N_3)$	N ² 2.037	N ¹ ,N ³ 156.8	[27]
(at 223 K)	0.076	N ³ 2.012	N ¹ ,P 97.7	[27]
(dt 225 K)	0.070	P 2.275	N³,P 105.9	
			N²,P 175.7	
			N^{1}, N^{2} 78.0 e	
[Pt(n3-C12H/E/NzO-	P+N11N2N13P	N ¹ 2.015	N²,N³ 78.4 °	
$N_1 N_2 N_3 (PPh_2)$	$(N_1C_2N_2C_2N_3)$	N ² 2.031	N ¹ ,N ³ 156.4	[27]
$(2 \pm 223 K)$	$(1N^2C_{21}N^2C_{21}N^3)$	N ³ 2.035	N ¹ ,P 97.6	[27]
(at 223 K)	0.077	P 2.263	N³,P 105.9	
			N²,P 175.7	
			${ m N^{1},N^{2}}$ 78.5 $^{ m e}$	
[Dt/m ³ CH. N.	D4N I1N I2N I3D	N1 2.022	N²,N³ 78.7 °	
$[\Gamma l(1)^{2}-C_{17}\Pi_{21}N_{7}^{2}-N_{11}N_{12}$	$\Gamma U N^{2} I N^{2} I N^{2} \Gamma$ $(N I C \cdot N I C \cdot N I 3)$	N ² 2.021	N ¹ ,N ³ 157.0	[27]
(a + 222 K)	$(1N^{1}C_{21}N^{2}C_{21}N^{3})$	N ³ 2.010	N ¹ ,P 101.0	[27]
(at 223 K)	0.078	P 2.263	N³,P 101.9	
			N²,P 174.8	
			${ m N^{1},N^{2}78.4}$ e	
IDt/m ³ C II N O	D+N I1N I2N I3D	N1 2.016	N²,N³ 78.5 °	
$[\Gamma t(1)^{-}-C_{18}\Pi 2_{31}N_{7}O_{-}]$	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	N ² 2.026	N ¹ ,N ³ 156.9	[27]
$[N^{1}, [N^{2}, [N^{3})]$		N ³ 2.008	N ¹ ,P 98.4	
(at 223 K)	0.081	P 2.256	N³,P 104.6	
			N²,P 173.9	
			N1,N2 78.2 e	
$[Pt(\eta^{3}-C_{14}H_{10}N_{3}-$		N ¹ 2.124	N²,C1 80.6 e	
N ¹ ,N ² ,C ¹)(PPh ₃)].ClO ₄	$PtIN^{T}N^{2}C^{T}P$	N ² 2.022	N ¹ ,C ¹ 158.8	[20]
(at 173 K)	$(N^{1}C_{2}N^{2}C_{2}C^{1})$	C1 2.018	N ¹ ,P 103.2	[32]
	0.065	P 2.243	C ¹ ,P 97.1	
			N²,P 177.5	
			N1,N2 78.5 e	
		N ¹ 2.101	N ² ,C ¹ 81.1 ^e	
$[Pt(\eta^{3}-C_{14}H_{10}N_{3}-N_{14}N_{10}N_{3}-N_{14}N_{10}N_{14}$	PtN ¹ N ² C ¹ P	N ² 2.025	N ¹ ,C ¹ 159.1	[20]
$N^{1}, N^{2}, C^{1})(PPh_{3})$].CIO ₄	$(N^{1}C_{2}N^{2}C_{2}C^{1})$	C ¹ 2.005	N ¹ ,P 103.0	[32]
(at 193 K)	0.068	P 2.227	C ¹ ,P 97.6	
			N²,P 175.8	
			N ¹ ,N ² 79.0 ^e	
		N ¹ 2.130	N ² ,C ¹ 81.0 ^e	
$[Pt(\eta^{3}-C_{14}H_{10}N_{3}-$	PtN ¹ N ² C ¹ P	N ² 2.029	N ¹ ,C ¹ 157.4	
$N^{1}, N^{2}, C^{1})(PPh_{3})].ClO_{4}$	$(N^{1}C_{2}N^{2}C_{2}C^{1})$	C ¹ 2.005	N ¹ ,P 101.8	[33]
(at 295 K)	0.079	P 2.242	C ¹ ,P 100.6	
			N ² ,P 174.1	
			N ¹ .N ² 77.8 ^e	
		N ¹ 2.147	N ² ,C ¹ 80.9 e	
$[Pt(\eta^{3}-C_{24}H_{20}N_{3}-$	PtN ¹ N ² C ¹ P	N ² 2.022	N ¹ .C ¹ 158.2	
$N^{1}, N^{2}, C^{1})(PPh_{3})].ClO_{4}$	$(N^{1}C_{2}N^{2}C_{2}C^{1})$	$C^{1} 2.022$	N ¹ ,P 106.1	[34]
(at 113 K)	0.072	P 2.246	C ¹ ,P 97.3	
			N ² ,P 175.8	
			,	

			N1,N2 78.5 e	
$[Pt(\eta^{3}-C_{28}H_{23}N_{2}-$	P+N1N2C1P	N ¹ 2.103	N²,C¹ 79.7 °	
$N^{1}, N^{2}, C^{1})(Pcy_{3})].ClO_{4}.$	$I UN^{1}N^{2}C^{1}I$	N ² 2.023	N ¹ ,C ¹ 156.4	[25]
2MeCN	$(1N^{2}C_{2}N^{2}C_{2}C^{2})$	C1 2.054	N ¹ ,P 101.6	[33]
(at 253 K)	0.120	P 2.283	C ¹ ,P 102.4	
			N ² ,P 160.3	
			C ¹ ,N ¹ 79.8 ^e	
		C1 2.085	N ¹ ,C ² 79.5 °	
$[Pt(\eta^{3}-C_{17}H_{9}F_{2}N-C^{1},N^{1},C^{2})$	PtC ¹ N ¹ C ² P	N ¹ 2.024	C ¹ .C ² 158.9	
{P(o-tolyl) ₃ }].CHCl ₃	$(C^1C_2N^1C_2C^2)$	C ² 2.094	C ¹ .P 103.1	[36]
(at 150 K)	0.066	P 2.255	C ² .P 97.5	
		1 _1_00	N ¹ .P 177.3	
			C1 N1 79 9 e	
		$C_{1,2,056}$	$N_1 C_2 80.5 e$	
$[Pt(\eta^{3}-C_{18}H_{11}F_{2}N-C^{1},N^{1},C^{2})]$	$PtC^1N^1C^2P$	C ¹ 2.030	$C_1 C_2 150.8$	
$\{P(CH_2Et)_3\}$	$(C^{1}C_{2}N^{1}C_{2}C^{2})$	$1N^{2} 2.027$	$C_{1}C_{1}D_{1}D_{2}$	[37]
(at 150 K)	0.072	C ² 2.074	C^{2} , $\Gamma 102.1$	
		P 2.299	C ² ,P 97.7	
			N ¹ ,P 174.2	
			C ¹ ,N ¹ 79.8 e	
$Pt(n^{3}-C_{20}H_{15}NO_{2}-$	$PtC^1N^1C^2P$	$C^{1} 2.075$	N1,C2 80.4 e	
$C^{1}.N^{1}.C^{2})(PPh_{3})]$	$(C^{1}C_{2}N^{1}C_{2}C^{2})$	N ¹ 2.007	C ¹ ,C ² 159.0	[38]
(at 150 K)	0.083	C ² 2.073	C ¹ ,P 93.2	[00]
(41 100 11)		P 2.252	C²,P 103.2	
			N ¹ ,P 171.0	
			C ¹ ,N ¹ 79.9 ^e	
$[Pt(\eta^{3}-C_{18}H_{11}F_{2}N-$	D+C1N1C2D	C ¹ 2.062	N1,C2 80.2 e	
$C^{1}, N^{1}, C^{2})\{P(CH_{2}Ph)_{3}\}].1.4$	$\Gamma(C^1C_2N^1C_2C^2)$	N ¹ 2.029	C ¹ ,C ² 158.8	[20]
CHCl ₃	$(C^{1}C^{2}N^{1}C^{2}C^{2})$	C ² 2.071	C ¹ ,P 102.2	[39]
(at 150 K)	0.087	P 2.241	C²,P 98.7	
			N ¹ ,P 169.8	
			C ¹ ,N ¹ 79.5 ^e	
		C ¹ 2.070	N ¹ ,C ² 80.2 ^e	
$[Pt(\eta^3-C_{17}H_9F_2N-$	PtC ¹ N ¹ C ² P	N ¹ 2.005	C ¹ .C ² 158.5	
$C^{1}, N^{1}, C^{2})(PMe_{3})]$	$(C^{1}C_{2}N^{1}C_{2}C^{2})$	$C^2 2.065$	C ¹ .P 92.0	[40]
(at 150 K)	0.087	P 2.243	C ² .P 102.5	
		1 _1_10	N ¹ P 170 0	
			$C^1 N^1 79.7 e$	
		$C_{12} 073$	N1 C2 80 2 e	
$[Pt(\eta^{3}-C_{17}H_{11}N-$	$PtC^1N^1C^2P$	N1 2 049	$C_1 C_2 158.8$	
$C^{1}, N^{1}, C^{2})(PPh_{3})]$	$(C^{1}C_{2}N^{1}C_{2}C^{2})$	$10^{-2} \cdot 2.049$	$C^{-}, C^{-} 100.0$	[41]
(at 100 K)	0.087	C ² 2.074	$C_{1}^{2}P_{103.0}$	
		P 2.241	C^{2} , P 98.7	
			N ¹ , P 169.8	
		.	C ¹ ,N ¹ 79.8 ^e	
[Pt(ŋ ³ -C ₁₇ H ₉ F ₂ N-	$PtC^{1}N^{1}C^{2}P$	C ¹ 2.075	N ¹ ,C ² 80.0 ^e	
$C_1^1 N_1^2 C_1^2 P(CH_2Ph)_3$	$(C^{1}C_{2}N^{1}C_{2}C^{2})$	N ¹ 2.033	C ¹ ,C ² 159.2	[36]
(at 150 K)	0.089	C ² 2.085	C ¹ ,P 103.8	[20]
(41 100 10)	0.007	P 2.228	C²,P 96.9	
			N ¹ ,P 168.7	

(a) Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The number in parentheses is the e.s.d. (b) Parameter τ_4 , degree of distortion. (c) The

chemical identity of the coordinated atom/ligand is specific to these columns. (e) Five-membered metallocyclic ring.

The structure of $[Pt(\eta^3-C_{33}H_{24}P_2S_2-S^1,C^1,S^2)(PPh_3)]$.CH₂Cl₂ [14] is shown in Figure 4. The η^3 -ligand creates two five-membered metallocyclic rings with a common C¹ atom of the S¹PCC¹CPS² type with chelate angles of 87.9° (S¹-Pt-C¹) and 87.7° (C¹-Pt-S²). This is the only example of this type. The PPh₃ demonstrated distorted square-planar geometry about Pt(II) atoms. The remaining L-Pt-L bond angles open in the following order: 89.7° (S¹-Pt-P) < 94.2° (S²-Pt-P) < 173.8° (S¹-Pt-S²) < 176.9° (C¹-Pt-P). The Pt-L bond distance increases in the following order: 2.020 Å (Pt-C¹) < 2.316 Å (Pt-S²) < 2.332 Å (Pt-S¹) < 2.322 Å (Pt-P).

Figure 4. Structure of [Pt(η³-C₃₃H₂₄P₂S₂-S¹,C¹,S²)(PPh₃)] [14].

In another two complexes, namely [Pt(η^3 -C₁₂H₁₂N₂Te₃-Te¹,Te²,Te³)(PPh₃)].C₆H₆ and [Pt(η^3 -C₁₀H₈N₂Te₃-Te¹,Te²,Te³)(PPh₃)] [15], which are isostructural, the η^3 -ligand creates a pair of five-membered metallocyclic rings with common central ligating Te² atoms of the Te¹CNTe²NCTe³ type. The mean values of the respective angles are 92.2 (±6)° (Te¹-Pt-Te²) and 92.0 (±6)° (Te²-Pt-Te³). The PPh₃ ligand demonstrated distorted square-planar geometry about each Pt(II) atom. The remaining L-Pt-L bond angles open in the following order (mean values): 88.1 (±1.2)° (Te³-Pt-P) ~ 88.1 (±2.31)° (Te¹-Pt-P) < 173.3 (±8)° (Te¹-Pt-Te³) < 173.4 (±2.1)° (Te²-Pt-P). The Pt-L bond distance increases in the following order (mean values): 2.283 (±1) Å (Pt-P) < 2.571 (±2) Å (Pt-Te²) < 2.591 (±3) Å (Pt-Te¹) < 2.592 (±20) Å (Pt-Te³).

In another two complexes, namely Pt(η^3 -C₁₂H₉N₂S₂B–S¹,B¹,S²)(PPh₃)].0.06CH₂Cl₂ [16] and Pt(η^3 -C₁₃H₁₄N₅S₃B–S¹,B¹,S²)(PPh₃)] [17], each η^3 -ligand creates a pair of five-membered metallocyclic rings with a common central ligating B¹ atom of the S¹CNB¹NCS² type. The values of the respective chelate angles are (mean values): 80.4 (±6)° (S¹-Pt-B¹) and 85.7 (±8)° (B¹-Pt-S²). The PPh₃ demonstrated distorted square-planar geometry about the Pt(II) atom. The remaining L-Pt-L bond angles open in the following order (mean values): 95.9 (±5)° $(S^2-Pt-P) < 99.3 (\pm 5)^{\circ} (S^1-Pt-P) < 162.4 (\pm 1.0)^{\circ} (S^1-Pt-S^2) < 174.4 (\pm 2.2)^{\circ} (B^1-Pt-P)$. The Pt-L bond distance increases in the following order (mean values): 2.110 (±19) Å (Pt-B¹) < 2.284 (±10) Å (Pt-S^2) < 2.301 (±3) Å (Pt-S¹) < 2.382 (±2) Å (Pt-P).

Distorted square-planar geometry about the Pt(II) atoms in [Pt(η^3 -C₂₈H₂₄N₄Se₂-N¹,N²,Se¹)(PPh₃)].0.5H₂O [18] was achieved by η^3 -ligands with PPh₃. The η^3 -ligand forms a pair of five-membered metallocyclic rings with a common central ligating N² atom of the N¹CNN²NCSe¹ type. The values of the respective chelate angles are 78.7° (N¹-Pt-N²) and 82.3° (N²-Pt-Se¹). The remaining L-Pt-L bond angles increase in the following sequence: 98.6° (Se¹-Pt-P) < 100.0° (N¹-Pt-P) < 162.0° (N¹-Pt-S¹) < 173.4° (N²-Pt-P). The Pt-L bond distance increases in the order 1.980 Å (Pt-N²) < 2.020 Å (Pt-N¹) < 2.272 Å (Pt-P) < 2.368 Å (Pt-Se¹).

In [Pt(η^3 -C₂₈H₂₄N₄S₂–N¹,N²,S¹)(PPh₃)].0.5thf [19], the η^3 -ligand creates two five-membered metallocyclic rings with common central ligating N² atoms of the N¹CNN²NCS¹ type with the chelate angles of 78.5° (N¹-Pt-N²) and 81.6° (N²-Pt-S¹). The PPh3 demonstrated an inner coordination sphere about the Pt(II) atoms. The remaining L-Pt-L bond angles open in the following order: 99.7° (S¹-Pt-P) < 99.9° (N¹-Pt-P) < 162.2° (N¹-Pt-S¹) < 172.5° (N²-Pt-P). The Pt-L bond distance increases in the following sequence: 1.987 Å (Pt-N²) < 2.031 Å (Pt-N¹) < 2.266 Å (Pt-S¹) < 2.279 Å (Pt-P).

Distorted square-planar geometry about the Pt(II) atoms in $[Pt(\eta^3-C_{12}H_{12}N_2O-O^1,N^1,C^1)(PPh_3)]$ [20] was achieved by η^3 -ligands and PPh_3. The η^3 -ligand creates two five-membered metallocycles with a common central ligating N¹ atom of the O¹C₂N¹NCC¹ type with the chelate angles of 80.9° (C¹-Pt-N¹) and 79.0° (N¹-Pt-C¹). The remaining L-Pt-L bond angles open in the following order: 99.8° (O¹-Pt-P) < 100.1° (C¹-Pt-P) < 159.9° (O¹-Pt-C¹) < 178.9° (N¹-Pt-P). The Pt-L bond distance increases in the following sequence: 1.997 Å (Pt-N¹) < 2.004 Å (Pt-C¹) < 2.109 Å (Pt-O¹) < 2.254 Å (Pt-P).

There are four complexes, namely $[Pt(\eta^3-C_9H_9N_3S-C^1,N^2,S^1)(PPh_3)]$ [21], $[Pt(\eta^3-C_{10}H_{11}N_3S-C^1,N^1,S^1)(PPh_3)]$ [22], $[Pt(\eta^3-C_{12}H_{19}C_{12}N_3O_2S_3-C^1,N^1,S^1)(PPh_3)]$.2Me₂SO [23], and $[Pt(\eta^3-C_9H_7C_{12}N_3S-C^1,N^1,S^1)\{(\eta^3-C_6H_{12}N_3)\}]$ [23], in which each $\eta^3-C^1N^1S^1$ donor ligand creates two five-membered metallocycles with common central ligating N¹ atoms of the C¹C₂N¹NCS¹ type. The mean values of the chelate angles are 80.1 (±2.2)° (C¹-Pt-N¹) and 82.2 (±1.0)° (N¹-Pt-S¹). The remaining L-Pt-L bond angles open in the following order (mean values): 97.2 (±1.1)° (C¹-Pt-P) < 98.8 (±2.2)° (S¹-Pt-P) < 162.8 (±1.4)° (C¹-Pt-S¹) < 174.5 (±5.9)° (N¹-Pt-P). The Pt-L bond distance increases in the following order (mean values): 2.032 (±14) Å (Pt-C¹) < 2.033 (±4) Å (Pt-N¹) < 2.229 (±6) Å (Pt-P) < 2.332 (±8) Å (Pt-S¹).

In [Pt(η^3 -C₂₀H₃₁N₄S₂–N¹,N²,S¹)(PPh₃)].EtOH [24], the η^3 -ligand forms two five-membered metallocycles with common central ligating N² atoms of the N¹C₂N²NCS¹ type, with the chelate angles of 79.0° (N¹-Pt-N²) and 82.0° (N²-Pt-S¹). The remaining L-Pt-L angles open in the following order: 96.0° (S¹-Pt-P) < 100.0° (N¹-Pt-P) < 161.0° (N¹-Pt-S¹) < 173.0° (N²-Pt-P). The Pt-L bond distance increases in the following order: 2.000 Å (Pt-N²) < 2.042 Å (Pt-N¹) < 2.268 Å (Pt-P) < 2.270 Å (Pt-S¹).

Distorted square-planar geometry in $[Pt(\eta^3-C_{18}H_{12}N_2O-O^1,N^1,C^1)(PPh_3)]$.MeCN [25] was achieved by η^3 -ligands with PPh_3. The η^3 -ligand forms two five-membered metallocycles with a common central ligating N¹ atom of the O¹CNN¹C₂C¹ type with the chelate angles of 76.0° (O¹-Pt-N¹) and 81.8° (N¹-Pt-S¹). The remaining angles open in the following sequence: 99.1° (C¹-Pt-P) < 103.2° (O¹-Pt-P) < 157.7° (O¹-Pt-C¹) < 176.4° (N¹-Pt-P). The Pt-L bond distance increases in the following order: 1.995 Å (Pt-N¹) < 2.025 Å (Pt-C¹) < 2.138 Å (Pt-O¹) < 2.244 Å (Pt-P).

The structure of $[Pt(\eta^3-C_{12}H_{21}N_2-N^1,C^1,N^2){P(C_6H_4SO_3)_3}]^2$ - $[Pt(\eta^3-C_{12}H_{21}N_6)(H_2O)]_2$ consists of complex anions and complex cations [26]. In a complex anion, a η^3 -ligand via N^1,C^1,N^2 atoms with PL ligands achieves distorted square-planar geometry about Pt(II) atoms. This η^3 -ligand creates a pair of five-membered metallocycles with a common central ligating C¹ atom of the $N^1C_2C^1C_2N^2$ type. The values of the chelate angles are 80.5° (N^1 -Pt-C¹) and 79.9° (C^1 -Pt-N²). The remaining L-Pt-L bond angles open in the following sequence: 97.6° (N^2 -Pt-P) < 102.6° (N^1 -Pt-P) < 159.8° (N^1 -Pt-N²) < 176.8° (C^1 -Pt-P). The Pt-L

bond distance increases in the following order: 1.971 Å (Pt-C¹) < 2.130 Å (Pt-N¹) < 2.131 Å (Pt-N²) < 2.363 Å (Pt-P).

In the following eleven complexes, each η3-ligand creates a pair of five-membered metallocycles with a common central ligating N2 atom of the N1C2N2C2N3 type: [Pt(η^3 - $C_{30}H_{35}N_5 - N^1, N^2, N^3)(PPh_3)$ (Sanning et al. 2015) [27], $Pt(\eta^{3}-C_{11}H_{3}F_{6}N_{7} N_{1}N_{2}N_{3}^{2}$ (Me)(Ph₂)] [28], $Pt(\eta^{3}-C_{15}H_{11}N_{3}-N_{1}N_{2}N_{3})$ $C_{14}H_{19}O_5)Ph_2$].2SO₃CF₃.2MeCO [29], [Pt(η^3 -C₂₅H₁₉N₅-N¹,N²,N³)(PPh₃)].3CH₂Cl₂ [30], $[Pt(\eta^3-C_{29}H_{33}N_7-N_1,N_2,N_3)(PPh_3)].CH_2Cl_2$ [30], $[Pt(\eta^3-C_{15}H_{11}N_3-N_1,N_2,N_3)(PPh_3)].2SO_3CF_3$ [31], $[Pt(\eta^3-C_{22}H_{15}N_7O-N^1,N^2,N^3)(PPh_3)]$ [27], $[Pt(\eta^3-C_{11}H_3F_6N_7-N^1,N^2,N^3)(PPh_3)]$ [27], $[Pt(\eta^3-C_{12}H_6F_6N_7O-N^1,N^2,N^3)(PPh_3)]$ [27], $[Pt(\eta^3-C_{17}H_{21}N_7-N^1,N^2,N^3)(PPh_3)]$ [27], and $[Pt(\eta^3-C_{18}H_{23}N_7O-N_1^1,N_2^2,N_3)(PPh_3)]$ [27]. The monodentate PL displayed distorted squareplanar geometry about each Pt(II) atom. The total mean values of the chelate angles are $78.9 (\pm 1.0)^{\circ} (N^{1}-Pt-N^{2})$ and $79.0 (\pm 1.0)^{\circ} (N^{2}-Pt-N^{3})$. The remaining L-Pt-L bond angles open in the following order (total mean values): $99.5 (\pm 3.0)^{\circ} (N^{1}-Pt-P) < 102.9 (\pm 2.8)^{\circ} (N^{3}-Pt-P) < 102.9 (\pm 2.8)^{\circ} (N^$ 157.6 (±1.1)° (N¹-Pt-N³) < 175.7 (±1.5)° (N²-Pt-P). The Pt-L bond distance increases in the following order (total mean values): 2.012 (±20) Å (Pt-N¹) < 2.012 (±32) Å (Pt-N²) < 2.025 (± 32) Å (Pt-N³) < 2.264 (± 24) Å (Pt-P).

There are five complexes, namely $[Pt(\eta^3-C_{14}H_{10}N_3-N_1,N_2,C_1)(PPh_3)]$.ClO₄ (at 173 K) [32], $[Pt(\eta^{3}-C_{14}H_{10}N_{3}-N_{1}N_{2}C_{1})(PPh_{3})].ClO_{4}$ (at 193K) [32], $Pt(\eta^{3}-C_{14}H_{10}N_{3}-$ N¹,N²,C¹)(PPh₃)].ClO₄ (at 245 K) [33], [Pt(η³-C₂₄H₂₀N₃-N¹,N²,C¹)(PPh₃)].ClO₄ [34], and [Pt(n³-C₂₈H₂₃N₂-N¹,N²,C¹)(Pcy₃)].ClO₄.MeCN [35], in which each n³-ligand creates a pair of five-membered metallocycles with a common central ligating N^2 atom of the $N^{1}C_{2}N^{2}C_{2}C^{1}$ type. The structure f [Pt(η^{3} -C₁₄H₁₀N₃-N¹,N²,C¹)(PPh₃)] [32] is shown in Figure 5. The total mean values of the respective chelate angles are 78.4 (± 0.6)° (N¹-Pt-N²) and 80.7 (±1.0)° (N²-Pt-C¹). The remaining L-Pt-L bond angles open in the following order (total mean values): 99.0 (±3.5)° (C1-Pt-P) < 103.1 (±2.5)° (N1-Pt-P) < 158.0 (±1.4)° (N1-Pt-N2) < 172.7 (±5.5)° (N²-Pt-P). The Pt-L bond distance increases in the following order (total mean values): 2.021 (±30) Å (Pt-C¹) < 2.030 (±24) Å (Pt-N²) < 2.121 (±18) Å (Pt-N¹) < 2.242 (±32) Å (Pt-P).

Figure 5. Structure of [Pt(η³-C₁₄H₁₀N₃-N¹,N²,C¹)(PPh₃)] [32].

In the following eight complexes, each η 3-ligand creates a pair of five-membered metallocycles with a common central ligating N1 atom of the C1C2N1C2C2 type: [Pt(η^{3} -C₁₇H₁₁N-C¹,N¹,C²}{P(η^{1} -C₁₄H₁₉O₅)(Ph)₂}].CH₂Cl₂ [29], [Pt(η^{3} -C₁₇H₉F₂N-C¹,N¹,C²}{P(η^{1} -otolyl)₃}].CHCl₃ (at 150 K) [36], [Pt(η^{3} -C₁₇H₉F₂N-C¹,N¹,C²}{P(CH₂Ph)₃}] (at 150 K) [36], [Pt(η^{3} -C₁₇H₉F₂N-C¹,N¹,C²}{P(CH₂Ph)₃}] (at 150 K) [36], [Pt(η^{3} -C₁₈H₁₁F₂N-C¹,N¹,C²}{P(CH₂Et)₂}] (at 150K) [37], [Pt(η^{3} -C₂₀H₁₅NO₂-C¹,N¹,C²)(PPh₃)] (at 150 K) [38], [Pt(η^{3} -C₁₈H₁₁F₂N-C¹,N¹,C²}{P(CH₂Ph)₃}].CHCl₃ (at 150 K) [39], [Pt(η^{3} -C₁₂H₁₁F₂N-C¹,N¹,C²)(PMe₃)] (at 150 K) [40], and [Pt(η^{3} -C₁₇H₁₁N-C¹,N¹,C²)(PPh₃)] (Figure 6) (at 100 K) [41]. The values of the respective chelate angles are 79.7 (±3)° (C¹-Pt-N¹) and 80.1 (±3)° (N¹-Pt-C²). The remaining L-Pt-L bond angles open in the following order: 99.5 (±4.2)° (C²-Pt-P) < 100.0 (±4.5)° (C¹-Pt-P) < 158.5 (±1.4)° (C¹-Pt-C²) < 171.5 (±4.5)° (N¹-Pt-P). The Pt-L bond distance increases in the following order (total mean values): 2.026 (±21) Å (Pt-N¹) < 2.068 (±17) Å (Pt-C¹) < 2.078 (±6) Å (Pt-C²) < 2.249 (±32) Å (Pt-P).

Figure 6. Structure of [Pt(η³-C₁₇H₁₁N-C¹,N¹,C²)(PPh₃)] [41].

Each η^3 -ligand creates two five-membered metallocyclic rings. The donor atoms of the respective η^3 -ligands play a role in the size of the L-Pt-L chelate angles. These angles increase in the following sequences:

$$\begin{split} &N^{1}C_{2}N^{2}C_{2}N^{3}; 78.8^{\circ}(N^{1}C_{2}N^{2}), 78.9^{\circ}(N^{2}C_{2}N^{3}) \left[12,26-28,30,31\right] \\ &O^{1}CNN^{1}C_{2}C^{1}; 76.0^{\circ}(O^{1}CNN^{1}), 81.8^{\circ}(N^{1}C_{2}C^{1}) \left[25\right] \\ &N^{1}C_{2}N^{2}C_{2}C^{1}; 78.4^{\circ}(N^{1}C_{2}N^{2}), 80.2^{\circ}(N^{2}C_{2}C^{1}) \left[32-35\right] \\ &C^{1}C_{2}N^{1}C_{2}C^{2}; 79.7^{\circ}(C^{1}C_{2}N^{1}), 80.2^{\circ}(N^{1}C_{2}C^{2}) \left[29,36-41\right] \\ &N^{1}CNN^{2}NCS^{1}; 78.5^{\circ}(N^{1}CNN^{2}), 81.6^{\circ}(N^{2}NCS^{1}) \left[19\right] \\ &N^{1}C_{2}C^{1}C_{2}N^{2}; 80.5^{\circ}(N^{1}C_{2}C^{1}), 79.9^{\circ}(C^{1}C_{2}N^{2}) \left[18\right] \\ &N^{1}CNN^{2}NCSe^{1}; 78.7^{\circ}(N^{1}CNN^{2}), 82.3^{\circ}(N^{2}NCSe^{1}) \left[26\right] \\ &O^{1}CNN^{1}NCC^{1}; 80.9^{\circ}(O^{1}CNN^{1}), 79.0^{\circ}(N^{1}NCC^{1}) \left[20\right] \\ &N^{1}C_{2}N^{2}NCS^{1}; 79.0^{\circ}(N^{1}C_{2}N^{2}), 82.0^{\circ}(N^{2}NCS^{1}) \left[24\right] \\ &C^{1}C_{2}N^{1}NCS^{1}; 77.9^{\circ}(C^{1}C_{2}N^{1}), 83.2^{\circ}(N^{1}NCS^{1}) \left[21-23\right] \\ &S^{1}CNB^{1}NCS^{2}; 79.8^{\circ}(S^{1}CNB^{1}), 85.0^{\circ}(B^{1}NCS^{2}) \left[16,17\right] \\ &S^{1}PCC^{1}CPS^{2}; 87.9^{\circ}(S^{1}PCC^{1}), 87.7^{\circ}(C^{1}CPS^{2}) \left[14\right] \\ &Te^{1}CNTe^{2}NCTe^{3}; 91.6^{\circ}(Te^{1}CNTe^{2}), 91.4^{\circ}(Te^{2}NCTe^{3}) \left[15\right] \\ \end{split}$$

3. Conclusions

This review includes over fifty monomeric Pt(II) coordination complexes with the composition of Pt(η^3 -X₃L)(PL). There are 14 types of η^3 -ligand coordination via donor atoms (X₃ = N¹N²N³; S¹S²S³; Te¹Te²Te³; O¹N¹O²; C¹N¹C²; Se¹N¹Se²; O¹N¹C¹; O¹N¹S¹; C¹N¹S¹; N¹N²C¹, N¹N²S¹; N¹N²Se¹; S¹O¹S²; S¹B¹S²; N¹O¹N²; S¹S²O¹) and each η^3 -ligand with monodentate PL displays distorted square-planar geometry about each Pt(II) atom.

Each tridentate ligand creates two metallocyclic rings. Based on the metallocycles, these complexes can be divided into the following four groups with 6+6-; 6+5-; 5+6-; and 5+5-membered metallocyclic rings:

I. 6+6-membered metallocycles of the O¹C₃N¹C₃O²; O¹C₂NN¹C₃O² and S¹C₃S²C₃S³ types with common N¹ and S² atoms (three examples) (Table 1);

- II. 6+5-membered metallocycles of the O¹C₃N¹NCS¹ type with common central ligating N¹ atoms (five examples) (Table 2);
- III. 5+6-membered metallocycles of the O¹C₂N¹C₃O²; N¹C₂N²NC₂N³; Se¹C₂N¹NC₂Se² and S¹C₂S²C₃O¹ types with common central N¹, ligating N² and S² atoms (four examples) (Table 3);
- IV. 5+5-membered metallocycles of the S¹PCC¹CPS²; Te¹CNTe²NCTe³ (2 examples); S¹CNB¹NCS² (2 examples); N¹CNN²NCSe¹; N¹CNN²NCS¹; O¹C₂N¹NCC¹; C¹C₂N¹NCS¹ (4 examples); N¹C₂N²NCS¹; O¹CNN¹C₂C¹; N¹C₂C¹C₂N²; N¹C₂N²C₂N³ (11 examples); N¹C₂N²C₂C¹ (5 examples); and C¹C₂N¹C₂C² (8 examples) types with common central ligating C¹, Te², B¹, N² and N¹ atoms (39 examples) (Table 4).

The Pt-P (trans to the common central atom) bond distance increases in the following sequence (total mean values): 2.237 Å (N¹) < 2.259 Å (N²) < 2.283 Å (Te²) < 2.293 Å (S²) < 2.348 Å (C¹) < 2.356 Å (B¹), which corresponds quite well with the trans influence of the respective central common donor atoms. The Pt-X (trans to P) bond distance increases in the following sequence (total mean values): 1.995 Å (C¹) < 2.014 Å (N²) < 2.030 Å (N¹) < 2.109 Å (B¹) < 2.308 Å (S²) < 2.574 Å (Te²).

There is a cooperative effect between the covalent radius of the respective donor atoms, the Pt-L bond distance, and chelate rings, as the former grows, the Pt-L bond distance increases and the chelate angles open, as can be observed below (Table 5).

Table 5. Cooperative effects of the respective data.

Chelate rings	L-Pt-L′/L′-Pt-L [°]	Pt-L [Å]	
N ¹ CNN ² NCS ¹	78.5°(N ¹ CNN ²)/81.6°(N ² NCS ¹) N = 0.75 Å; S = 1.02 Å	1.957(N ²), 2.039(N ¹), 2.266(S ¹)	
N ¹ CNN ² NCSe ¹	$78.7^{\circ}(N^{1}CNN^{2})/82.3^{\circ}(N^{2}NCSe^{1})$ N = 0.75 Å:Se = 1.16 Å	$1.980(N^2)$, $2.020(N^1)$, $2.368(Se^1)$	
S ¹ CNB ¹ NCS ²	$79.8^{\circ}(S^{1}CNB^{1})/85.6^{\circ}(B^{1}NCS^{2})$ B = 0.82 Å; S = 1.02 Å	2.129(B ²), 2.302(S ¹), 2.285(S ²)	
Te ¹ CNTe ² NCTe ³	91.6°(Te ¹ CNTe ²)/91.4°(Te ² NCTe ³) Te = 1.36 Å; Te = 1.36 Å	2.572Te ²), 2.592(Te ¹), 2.573(Te ³)	

In transition metal complexes, the oxidation state plays a leading role in the geometry formed and platinum is no exception. In four coordinates, Pt(II) prefers square-planar geometry. The utility of a simple metric to assess molecule shape and degree of distortion, as well as to exemplify the τ_4 parameter for square-planar geometry, is demonstrated by the following equations [42]:

$$\tau_4 = \frac{360 - (\alpha + \beta)}{360}$$
 For square planar geometry
$$\tau_4 = \frac{360 - (\alpha + \beta)}{141}$$
 For tetrahedral geometry

The values of the τ_4 parameter range from 0.00 for perfect square planar geometry to 1.00 for perfect tetrahedral geometry, since 360-2(109.5) = 141.

The total mean values of trans- α -L-Pt-L (L represents terminal ligating atoms of the respective η^3 -ligand) trans- β -L-Pt-P (L is a common central atom) bond angles, as well as of parameter τ_4 , reflect the membered nature of the respective metallocycles, as can be observed from the data in the following summary (Table 6).

Metallocycles	α-L-Pt-L°	β-L-Pt-P°	τ4	Table X
I. 6+6-membered	177.3	174.3	0.023	1
II. 6+5-membered	175.9	174.8	0.026	2
III. 5+6-membered	173.1	172.5	0.040	3
IV.5+5-membered	162.7	174.9	0.062	4

Table 6. Selected data of trans angle and parameter τ_4 of metallocycles.

As can be observed, while the β -L-Pt-P angles are almost constant, the α -L-Pt-L angles are slowly increase with the membered metallocycles in the following sequence: 5+5- < 5+6- < 6+5- <6+6-. The distortion of the square-planar geometry about Pt(II) atoms decreases in the same sequence, as indicated by parameter τ_4 (0.062 (5+5) > 0.040 (5+6) > 0.024 (6+5) > 0.023 (6+6)).

The coexistence of two or more species that differ only by the degree of distortion of the M-L bond distance and L-M-L bond angles is typical of the general class of distortion isomerism [43]. Over 160 platinum complexes exist following the analysis and classification of isomers [44]. This includes distortion (65%), cis-trans (30%), mixed isomers (cis-trans and distortion), and ligand isomerism.

The complex [Pt(η^3 -C₁₅H₁₁N₃–N¹,N²,N³)(PPh₃)].2SO₃CF₃ [31] contains two crystallographically independent molecules within the same crystals (Table 4). These molecules differ by the degree of distortion of Pt-L and L-Pt-L, with the values of parameter τ_4 of 0.070 and 0.082, respectively. Below is a classic example of distortion isomers [43].

As part of the X-ray analysis, $[Pt(\eta^3-C_{14}H_{10}N_3-N^1,N^2,C^1)(PPh_3)]$.ClO₄ was measured at 173 K and 193 K [32], and 295 K [33] (Table 4). It was found that the temperature had an influence on the structural parameters. When the temperature drops₇ the distortion grows, as indicated by parameter τ_4 in the following order: 0.065 (at 173 K) < 0.068 (at 193 K) < 0.079 (at 295 K). These molecules, as well as independent molecules, are classical distortion isomers [43].

During the collection and organization of the data, it has become evident that some original papers are lacking important information such as atom coordinates and the analysis of intermolecular distances. Because of these limitations, we believe that a review such as this can continue to serve a useful function by centralizing the available material and delineating areas worthy of further investigation.

Author Contributions:. Conceptualization, M.M. and P.M.; methodology M.M and P.M.; writing– original draft preparation, M.M. and P.M.; data curation, M.M.; writing–review and editing, V.M.; supervision, M.M. and P.M.; funding acquisition, P.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the projects VEGA 1/0514/22, KEGA 027UK-4/2020, and APVV-15-0585.

Data Availability Statement: Data supporting reported results can be found at author M.M.

Acknowledgments: This work was supported by Faculty of Pharmacy, Comenius University Bratislava.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

C8H8N3OS	(salicylaldehyde thiosemicarbazone)
C9H9N3S	(2-(((amino(sulfido)methylene)hydrazono)methyl)-5-methylphenyl)
C10H8N2Te3	(1,1'-tellanyl)bis(5-pyridine-2-tellurolate)
C10H11N3S	(4-methylacetophenone thisemicarbazone)
C11H3F6N7	(2,6-bis(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl)pyridinate)
$C_{11}H_{11}N$	(2,2 -(pyridine-2,6-diyl)diphenyl)
C12H24S3	(2,12-Diisopropyl-3,7,11-trithiadecane)
C12H6F6N7O	(4-methoxy-2,6-bis(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl)) pyridinate)

$C_{12}H_{10}N_2Te_3$	(1,1 -tellanyl)bis(3-methyl-1 λ 5-pyridine-2-tellurolate)
$C_{12}H_{11}N_4$	(2-(2-amino)phenyl diazenyl)anilinate)
C12H16N2O4Se2	diethyl-3,3 -(diazone-1,2-diyl-N)bis(2-(hydroseleno)but-2-enoatato)
C12H19Cl2N3O2S3	(2-(1-((amino(sulfido)methylene)hydrazono)ethyl)-4,5-dichlorophenyl)
C13H9NO2	$N(\alpha, \alpha - dioxobenzylidene)$ anilinate
$C_{14}H_{10}N_2O_3$	(2-1(2 -carboxylatophenylazo)-4-methylphenolate)
$C_{14}H_{10}N_3$	(2-(6-(3-1H-pyrazolyl)-2-pyridyl)phenyl)
C15H11N3	(2,2 .6 2 -terpyridine)
C16H13N3O3S2	(4-nitrobenzyl(1-(2-oxidophenyl)ethylidene)carbonodithiohyrazonate)
$C_{16}H_{14}N_2OS_2$	(benzyl(1-(2-oxidophenyl)ethylidene)carbodithiohydrazonate)
C17H9F2N	(2,6-(4-fluorophenyl)pyridine)
C17H11N	(2,2 -(pyridine-2,6-diyl) diphenyl)
C17H12N2O	(1-((5-methyl-2-oxodiphenyl)diazinyl)-2-naphtyl)
C17H21N7	(2,6-bis(3-t-butyl-1H-1,2,4-triazol-5-yl))pyridinate)
$C_{18}H_{11}F_2N$	(5-fluoro-2-{6-(4-fluorobenzene-2-diyl}-3-methylbenzenide)
C18H12N2O	(1-(((oxidanidyl)(phenyl)methylene)amino)imino)methyl-2-2-naphtyl)
$C_{18}H_{16}N_2OS_2$	(benzyl (4-oxido-4-phenyl but-3 en-2-yl idene) carbonod it hio hydrazonate)
C18H23N7O	(2,6-bis(3-t-butyl-1H-1,2,4-triazol-5-yl)-4-methoxypyridinate)
C20H15NO2	(2,6-bis(o-phenylene)-4-ethoxycarbonylpyridine)
C22H15N7O	(4-methoxy-2,6-bis(3-phenyl-1H-1,2,4-triazol-5-yl)pyridinate)
$C_{24}H_{20}N_3$	(2-(4-(4-dimethylaminophenyl)-2,2 -bipyridin-6-yl)phenyl)
C25H19N5	(2,6-bis(3-(4-methyl)-1H-pyrazol-5yl)pyridinate)
C28H23N2	(3-(4-t-butyl-8-(isoquinolin-3-yl)pyridine-2-yl)-2-naphtyl)
C28H24N4S2	PhSNC(MeC ₆ H ₄)N-NC(MeC ₆ H ₄)NSPh
C28H24N4Se2	PhSeNC(MeC ₆ H ₄)N-NC(MeC ₆ H ₄)NSePh
C29H33N7	(2,6-bis(3-(adamantam-1-yl)-1H-1,2,4-triazol-5-yl)pyridinate)
C30H35N5	(2,6-bis(3-(adamantam-1-yl)-1H-pyrazol-5-yl) pyridinate)
P(C14H19O5)(Ph)2	(benzo-15-crown [5] diphenylphosphine
P(CH ₂ Et) ₃	tri-n-propylphosphine
P(CH2Ph)3	tribenzylphsphine
P(CH3)Ph2	methyldiphenylphosphine
PMe ₃	trimethylphosphine
P(tolyl)3	tris(2-methylphenyl)phosphine
Рсуз	tricyclohexylphosphine
PPh ₃	triphenylphosphine
tfh	tetrahydrofuran

References

- 1. Holloway, C.E.; McInik, M. Structural Aspects of Platinum Coordination Compounds: Part III. Monomeric square-planar (PtA2XY and PtABXY) and trigonal bipyramidal Pt(II) coordination compounds. *Rev. Inorg. Chem.* 2004, 24, 135–299. https://doi.org/10.1515/revic.2004.24.3.135.
- 2. Melník, M.; Mikuš, P. Organophosphines in organoplatinum complexes: Structural aspects of PtP3C derivatives. *J. Organomet. Chem.* 2017, 830, 62–66. https://doi.org/10.1016/j.jorganchem.2016.12.011.
- 3. Melník, M.; Mikuš, P. Organomonophosphines in Pt(II) Coordination Complexes. Part I. Monomeric Square Planar (PtP₄, PtP₃X and PtP₂X₂). *Phosphorus Sulfur Silicon Relat. Elem.* **2015**, *190*, 1764–1780. https://doi.org/10.1080/10426507.2015.1024310.
- Dahm, G.; Borré, E.; Fu, C.; Bellemin-Laponnaz, S.; Mauro, M. Tridentate Complexes of Palladium(II) and Platinum(II) Bearingbis-Aryloxide Triazole Ligands: A Joint Experimental and Theoretical Investigation. *Chem. Asian J.* 2015, 10, 2368–2379. https://doi.org/10.1002/asia.201500600.
- 5. Halder, S.; Drew, M.G.B.; Bhattacharya, S. Palladium and platinum complexes of 2-(2'-carboxyphenylazo)-4-methylphenol: Synthesis, structure and spectral properties. *J. Chem. Sci.* **2008**, *120*, 441–446.
- Loeb, S.; Mansfield, J.R. Platinum(II) complexes of the tridentate thioether ligands RS(CH2)3S(CH2)3S(CH2)3SR (R = Et, iPr, Ph). Structures of [PtCl(iPrS(CH2)3S(CH2) 3SiPr)][BF4], [Ptl(PhS(CH2)3S(CH 2)2SPh)][BF4], and [Pt(PPh3)(iPrS (CH2)3. *Can. J. Chem.* 1996, 74, 1377–1390. https://doi.org/10.1139/v96-156.
- Maia, P.I.D.S.; Fernandes, A.G.D.A.; Silva, J.J.N.; Andricopulo, A.D.; Lemos, S.S.; Lang, E.S.; Abram, U.; Deflon, V.M. Dithiocarbazate complexes with the [M(PPh3)]2+ (M=Pd or Pt) moiety: Synthesis, characterization and anti-Tripanosoma cruzi activity. J. Inorg. Biochem. 2010, 104, 1276–1282. https://doi.org/10.1016/j.jinorgbio.2010.08.009.

- Lobana, T.S.; Bawa, G.; Hundal, G.; Zeller, M. The Influence of Substituents at C2 Carbon Atom of Thiosemicarbazones {R(H)C2=N3-N2(H)-C1(=S)-N1H2} on their Dentacy in PtII/PdII Complexes: Synthesis, Spectroscopy, and Crystal Structures. Z. Anorg. Allg. Chem. 2008, 634, 931–937. https://doi.org/10.1002/zaac.200700538.
- Halder, S.; Butcher, R.J.; Bhattacharya, S. Synthesis, structure and spectroscopic properties of some thiosemicarbazone complexes of platinum. *Polyhedron* 2007, 26, 2741–2748. https://doi.org/10.1016/j.poly.2007.01.048.
- Mandal, P.; Lin, C.-H.; Brandão, P.; Mal, D.; Felix, V.; Pratihar, J.L. Synthesis, characterization, structure and catalytic activity of (NNN) tridentate azo-imine nickel(II), palladium(II) and platinum(II) complexes. *Polyhedron* 2016, 106, 171–177. https://doi.org/10.1016/j.poly.2015.12.050.
- Motschi, H.; Nussbaumer, C.; Pregosin, P.S.; Bachechi, F.; Mura, P.; Zambonelli, L. Thetrans-Influence in Platinum (II) Complexes.1H- and13C-NMR. and X-ray structural studies of tridentateSchiff's base complexes of platinum (II). *Helv. Chim. Acta* 1980, 63, 2071–2086. https://doi.org/10.1002/hlca.19800630734.
- 12. Arsenyan, P.; Oberte, K.; Rubina, K.; Belyakov, S. Synthesis and application of a new selenoplatinum catalyst. *Tetrahedron Lett.* **2005**, *46*, 1001–1003. https://doi.org/10.1016/j.tetlet.2004.12.039.
- 13. Kano, N.; Kusaka, S.; Kawashima, T. Insertion of platinum and palladium into a sulfur(IV)–sulfur(II) bond of a sulfur-substituted sulfurane. *Dalton Trans.* **2010**, *39*, 456–460. https://doi.org/10.1039/b911566h.
- Monot, J.; Merceron-Saffon, N.; Martin-Vaca, B.; Bourissou, D. SCS indenediide pincer complexes: Zr to Pd and Pt transmetallation. J. Organomet. Chem. 2017, 829, 37–41. https://doi.org/10.1016/j.jorganchem.2016.10.031.
- Chauhan, R.S.; Kedarnath, G.; Wadawale, A.; Muñoz-Castro, A.; Arratia-Perez, R.; Jain, V.K.; Kaim, W. Tellurium(0) as a Ligand: Synthesis and Characterization of 2-Pyridyltellurolates of Platinum(II) and Structures of [Pt{2-Te-3-(R)C₅H₃N}₂Te(PR'₃)] (R = H or Me). *Inorg. Chem.* 2010, 49, 4179–4185. https://doi.org/10.1021/ic902347s.
- Zech, A.; Haddow, M.F.; Othman, H.; Owen, G.R. Utilizing the 8-Methoxycyclooct-4-en-1-ide Unit As a Hydrogen Atom Acceptor en Route to "Metal–Borane Pincers". Organometallics 2012, 31, 6753–6760. https://doi.org/10.1021/om300482m.
- Owen, G.R.; Gould, P.H.; Hamilton, A.; Tsoureas, N. Unexpected pincer-type coordination (κ³-SBS) within a zerovalent platinum metallaboratrane complex. *Dalton Trans.* 2010, *39*, 49–52. https://doi.org/10.1039/b917733g.
- Chivers, T.; McGregor, K.; Parvez, M. Preparation and X-ray Structures of Platinum and Palladium Complexes of the Chalcogen-Substituted Diazenes trans-[PhEN(4-CH3C6H4)CN=NC(4-CH3C6H4)NEPh] (E = S, Se). *Inorg. Chem.* 1994, 33, 2364–2369. https://doi.org/10.1021/ic00089a010.
- Chivers, T.; McGregor, K.; Parvez, M. Preparation and X-ray structures of tridentate (N,N,S) complexes of the diazene trarts-[PhSNC(4-MeC6H4)NNC(4-MeC6H4)NSPh] with platinum and palladium. *J. Chem. Soc. Chem. Commun.* 1993, 12, 1021–1023. https://doi.org/10.1039/c39930001021.
- Biswas, A.N.; Das, P.; Bagchi, V.; Choudhury, A.; Bandyopadhyay, P. Regiospecific C(naphthyl)–H Bond Activation by Platinum(II)–Isolation, Characterization, Reactivity and TD-DFT Study of the Cycloplatinate Complexes. *Eur. J. Inorg. Chem.* 2011, 2011, 3739–3748. https://doi.org/10.1002/ejic.201100468.
- Halder, S.; Paul, P.; Peng, S.-M.; Lee, G.-H.; Mukherjee, A.; Dutta, S.; Sanyal, U.; Bhattacharya, S. Benzaldehyde thiosemicarbazone complexes of platinum: Syntheses, structures and cytotoxic properties. *Polyhedron* 2012, 45, 177–184. https://doi.org/10.1016/j.poly.2012.07.037.
- Vázquez-Garc´a, D.; Fernández, A.; Fernández, J.J.; López-Torres, M.; Suárez, A.; Ortigueira, J.M.; Vila, J.M.; Adams, H. New cyclometallated platinum(II) compounds with thiosemicarbazones: Crystal and molecular structure of [Pt{4-MeC6H3C(Me) NN C(S)NH2}(PPh3)]. J. Organomet. Chem. 2000, 595, 199–207. https://doi.org/10.1016/s0022-328x(99)00624-5.
- Chellan, P.; Land, K.M.; Shokar, A.; Au, A.; An, S.H.; Clavel, C.M.; Dyson, P.J.; de Kock, C.; Smith, P.J.; Chibale, K.; et al. Exploring the Versatility of Cycloplatinated Thiosemicarbazones as Antitumor and Antiparasitic Agents. *Organometallics* 2012, *31*, 5791–5799. https://doi.org/10.1021/om300334z.
- Matesanz, A.I.; Perles, J.; Souza, P. New palladium and platinum complexes with bioactive 3,5-diacetyl-1,2,4-triazol bis(4-cy-clohexyl thiosemicarbazone) ligand: Chemistry, antiproliferative activity and preliminary toxicity studies. *Dalton Trans.* 2012, 41, 12538–12547. https://doi.org/10.1039/c2dt31199b.
- Rao, A.B.; Pal, S. Mono- and dinuclear platinum(II) complexes via single and double cycloplatinations of N'-(arylidene)benzohydrazides. J. Organomet. Chem. 2015, 797, 96–100. https://doi.org/10.1016/j.jorganchem.2015.08.003.
- Wieczorek, B.; Snelders, D.J.M.; Dijkstra, H.P.; Versluis, K.; Lutz, M.; Spek, A.L.; Egmond, M.R.; Gebbink, R.J.M.K.; van Koten, G. Coordination Chemistry in Water of a Free and a Lipase-Embedded Cationic NCN-Pincer Platinum Center with Neutral and Ionic Triarylphosphines. *Organometallics* 2012, *31*, 2810–2820. https://doi.org/10.1021/om2010832.
- Sanning, D.-C.J.; Ewen, M.S.P.R.; Stegemann, M.S.L.; Schmidt, J.; Daniliuc, C.G.; Koch, B.S.T.; Doltsinis, N.L.; Wegner, D.; Strassert, C.A. Scanning-Tunneling-Spectroscopy-Directed Design of Tailored Deep-Blue Emitters. *Angew. Chem. Int. Ed.* 2015, 54, 786–791. https://doi.org/10.1002/anie.201407439.
- Stegemann, L.; Sanning, J.; Daniliuc, C.G.; Strassert, C.A. Influence of the monodentate ancillary ligand on the photophysical properties of Pt(II) complexes bearing a symmetric dianionic tridentate luminophore. *Z. Naturforscung B Chem. Sci.* 2016, 71, 1087–1093. https://doi.org/10.1515/znb-2016-0142.
- Yam, V.W.-W.; Tang, R.P.-L.; Wong, K.M.-C.; Lu, X.-X.; Cheung, K.-K.; Zhu, N. Synthesis, electronic absorption, emission, and ion-binding studies of platinum(II) C empty set N empty set C and terpyridyl complexes containing crown ether pendants. *Chem. Eur. J.* 2002, *8*, 4066–4076. https://doi.org/10.1002/1521-3765(20020902)8:17<4066::AID-CHEM4066>3.0.CO;2-O.

- Galstyan, A.; Naziruddin, A.R.; Cebrián, C.; Iordache, A.; Daniliuc, C.G.; De Cola, L.; Strassert, C.A. Correlating the Structural and Photophysical Features of Pincer Luminophores and Monodentate Ancillary Ligands in Pt II Phosphors. *Eur. J. Inorg. Chem.* 2015, 2015, 5822–5831. https://doi.org/10.1002/ejic.201500949.
- Pappenfus, T.M.; Burney, J.R.; McGee, K.A.; Lee, G.G.; Jarvis, L.R.; Ekerholm, D.P.; Farah, M.; Smith, L.I.; Hinkle, L.M.; Mann, K.R. Alternative syntheses and reactivity of platinum(II) terpyridyl acetonitrile complexes. *Inorg. Chim. Acta* 2010, 363, 3214– 3221. https://doi.org/10.1016/j.ica.2010.05.060.
- Ho, Y.-M.; Koo, C.-K.; Wong, K.-L.; Kong, H.-K.; Chan, C.T.-L.; Kwok, W.-M.; Chow, C.-F.; Lam, M.H.-W.; Wong, W.-Y. The synthesis and photophysical studies of cyclometalated Pt(ii) complexes with C,N,N-ligands containing imidazolyl donors. *Dal*ton Trans. 2012, 41, 1792–1800. https://doi.org/10.1039/c1dt11037c.
- Koo, C.-K.; Ho, Y.-M.; Chow, C.-F.; Lam, M.H.-W.; Lau, T.-C.; Wong, W.-Y. Synthesis and Spectroscopic Studies of Cyclometalated Pt(II) Complexes Containing a Functionalized Cyclometalating Ligand, 2-Phenyl-6-(1*H*-pyrazol-3-yl)-pyridine. *Inorg. Chem.* 2007, 46, 3603–3612. https://doi.org/10.1021/ic062439j.
- Xu, Q.-Q.; Wang, D.-H.; Chi, S.-M.; Gan, X.; Fu, W.-F. Synthesis, structures and spectroscopic properties of platinum(II), copper(I) and zinc(II) complexes bearing 4-(p-dimethylaminophenyl)-6-phenyl-2,2'-bipyridine ligand. *Inorg. Chim. Acta* 2009, 362, 2529–2536. https://doi.org/10.1016/j.ica.2008.11.020.
- 35. Kui, S.C.F.; Sham, I.H.T.; Cheung, C.C.C.; Ma, C.-W.; Yan, B.; Zhu, N.; Che, C.-M.; Fu, W.-F. Platinum(II) Complexes with π-Conjugated, Naphthyl-Substituted, Cyclometalated Ligands (RC^N^N): Structures and Photo- and Electroluminescence. *Chem. A Eur. J.* 2007, 13, 417–435. https://doi.org/10.1002/chem.200600686.
- Shaw, P.A.; Clarkson, G.J.; Rourke, J.P. Oxidation of an o-tolyl phosphine complex of platinum: C-H activation and transcyclometallation. J. Organomet. Chem. 2017, 851, 115–121. https://doi.org/10.1016/j.jorganchem.2017.09.026.
- Shaw, P.A.; Clarkson, G.J.; Rourke, J.P. Long-Lived Five-Coordinate Platinum(IV) Intermediates: Regiospecific C–C Coupling. Organometallics 2016, 35, 3751–3762. https://doi.org/10.1021/acs.organomet.6b00697.
- Fuertes, S.; Brayshaw, S.K.; Raithby, P.R.; Schiffers, S.; Warren, M.R. New C^NC Bis-Cyclometalated Platinum(II) Complexes: Synthesis, Structures, and Photophysical Properties. *Organometallics* 2012, *31*, 105–119. https://doi.org/10.1021/om200589q.
- 39. Shaw, P.A.; Clarkson, G.J.; Rourke, J.P. Reversible C–C bond formation at a triply cyclometallated platinum(iv) centre. *Chem. Sci.* **2017**, *8*, 5547–5558. https://doi.org/10.1039/c7sc01361b.
- Shaw, P.A.; Phillips, J.M.; Newman, C.P.; Clarkson, G.J.; Rourke, J.P. Intramolecular transcyclometallation: The exchange of an aryl–Pt bond for an alkyl–Pt bond via an agostic intermediate. *Chem. Commun.* 2015, 51, 8365–8368. https://doi.org/10.1039/c5cc02355f.
- 41. Baya, M.; Belío, U.; Fernández, I.; Fuertes, S.; Martín, A. Unusual Metal-Metal Bonding in a Dinuclear Pt-Au Complex: Snapshot of a Transmetalation Process. *Angew. Chem. Int. Ed.* **2016**, *55*, 6978–6982. https://doi.org/10.1002/anie.201602081.
- 42. Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ₄. *Dalton Trans.* **2007**, *9*, 955–964. https://doi.org/10.1039/b617136b.
- 43. Melník, M. Structural isomerism of copper(II) compounds. Coord. Chem. Rev. 1982, 47, 239–261. https://doi.org/10.1016/0010-8545(82)85033-9.
- 44. Melnik, M.; Holloway, C.E. Stereochemistry of platinum coordination compounds. *Coord. Chem. Rev.* 2006, 250, 2261–2270. https://doi.org/10.1016/j.ccr.2006.02.020.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.