
Citation: Chukhovskii, F.N.; Konarev,

P.V.; Volkov, V.V. Denoising of the

Poisson-Noise Statistics 2D Image

Patterns in the Computer X-ray

Diffraction Tomography. Crystals

2023, 13, 561. https://doi.org/

10.3390/cryst13040561

Academic Editor: Peter Moeck

Received: 21 February 2023

Revised: 13 March 2023

Accepted: 20 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Denoising of the Poisson-Noise Statistics 2D Image Patterns in
the Computer X-ray Diffraction Tomography
Felix N. Chukhovskii * , Petr V. Konarev and Vladimir V. Volkov

A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”,
Russian Academy of Sciences, 59, Leninsky Prospect, 119333 Moscow, Russia; peter_konarev@mail.ru (P.V.K.);
volkicras@mail.ru (V.V.V.)
* Correspondence: f_chukhov@yahoo.ca

Abstract: A central point of validity of computer X-ray diffraction micro tomography is to improve
the digital contrast and spatial resolution of the 3D-recovered nano-scaled objects in crystals. In
this respect, the denoising issue of the 2D image patterns data involved in the 3D high-resolution
recovery processing has been treated. The Poisson-noise simulation of 2D image patterns data was
performed; afterwards, it was employed for recovering nano-scaled crystal structures. By using the
statistical average and geometric means methods of the acquired 2D image frames, we showed that
the statistical average hypothesis works well, at least in the case of 2D Poisson-noise image data
related to the Coulomb-type point defect in a crystal Si(111). The validation of results related to the de-
noised 2D IPs data obtained was carried out by both the 3D recovery processing of the Coulomb-type
point defect in a crystal Si(111) and using the peak signal-to-noise ratio (PSNR) criterion.

Keywords: high-resolution X-ray diffraction microtomography; Coulomb-type point defects in a
crystal; statistical noise filtering; signal-to-noise ratio; χ2-target function; figure of merit

1. Introduction

Nowadays, progress in fabricating new semiconductor materials and 3D nano-scaled
structures is due to a certain extent to developing X-ray diffraction techniques, such as X-ray
reflectometry, X-ray reciprocal-space mapping [1–3] and high-resolution X-ray diffraction
tomography (XRDT) [4,5].

The last is based on using inclined 2D tomograms in direct space, i.e., 2D image
patterns (IPs), after which they are employed in decoding the reference 2D IPs data and the
subsequent recovery of the 3D nano-scaled crystal structures (see, e.g., [6,7]).

In [8,9], the computer recovery of the 3D elastic displacement field around the
Coulomb-type point defect in crystal Si(111) was carried out using the concept of decoding
the 2D Gaussian noise IPs data.

In a sense, computer XRDT provides the 3D recovering of some objects by using a set
of its 2D projections, well-known as the Radon transform problem. At the same time, from
the viewpoint of the physical reliability (accuracy) of such a transformation, the noisiness
of the 2D projections plays an important, if not the main, role [10–12]. The statistics of the
noise (random) component of the measured X-ray flux intensity (contrast) is described
with acceptable accuracy by the Poisson distribution. This is true in the range from very
low intensities [13] to very high intensities, for which the dead time of the detector, which
leads to a decrease of the registered signal, has to be taken into account [14]. So, in [10],
the authors suggested a novel, singular-value, decomposition-based denoising method in
the 4D computed tomography of the brain in stroke patients with a statistical evaluation.
In [11], the improved denoising method of structural vibration data employing bilateral
filtering was suggested.

In the recent work [12], the convolutional neural data networks method was applied,
and it manifested itself as a rather powerful tool for denoising the XRDT 2D IPs.
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In [15], the authors have undertook the endeavor of filtering the 2D noise IPs on the
example of the Coulomb-type point defect in crystal Si(111). As was shown there, in the
case of the Gaussian noise levels in the order of 3–10%, the governed filtering algorithm
provides the effective noise level reduction of the order of its value, yielding the substantial
figure of merit (FOM) in the processing of the reference 2D IPs data optimization.

It is noteworthy to mention that earlier in [16–18], to improve the signal-to-noise ratio,
the authors pointed out the capacity of the statistical filtering of the 1D digital signals and
the quantifying of the signal and noise components.

In [18], the authors demonstrated how the noise level reduction might be achieved
with an acquisition system and statistical evaluation of the Gaussian noise 2D IPs data (cf.
Schematics in Figure 1).
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Figure 1. Schematics of set-up for measuring 2D IPs in the multi-frames mode. A set of frames is
acquired for the crystal sample position fixed.

In general, all the noise-filtering approaches, except the last four, damage the true
reference signal in an uncontrolled way, which in turn leads to the uncontrolled accuracy
of the reference 2D IPs data in the post-processing recovery stage.

Thus, one can argue that even the interference image damage factors during the image
signal recording, its acquisition and its transmission, in particular, such as the crystal
sample vibrating, the intrinsic detector noises and etc., can be removed and/or, exactly
speaking, minimized. However, the problem of reducing the Poisson-noise still remains to
be opened.

In our study, to avoid some confusion, the term ‘denoising of the 2D IPs data’ means
their digital noise filtering. As a result, presumably, it has to improve the 2D signal-to-
noise ratio.

Before proceeding further, one needs to make the following remark. There is the
noise-filtering problem of the reference 1D and 2D IPs data collected by the different
X-ray techniques, for instance, in the 1D small-angle X-ray scattering [19], the 1D X-ray
spectrometry and the 2D X-ray fluorescence computed tomography [20–22].

As it refers to the intrinsic noise in the X-ray detectors, certainly, blurring of the signal
affects the signal-to-noise ratio, but does not change the Poisson-noise signal component.
As is known from the literature [23], the average noise signal (constant dark current) of the
high-speed 2D perovskite and silicon-drift detectors is significantly small (about 0.5%) in
comparison with the pth pixel signal produced by the X-ray diffraction from the crystal
sample. This means that in the further investigation, one treats the noise problem of
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the reference 2D IPs data as renormalized on the constant dark current of the detector
registration system.

As it follows from the above in the computer XRDT, the main aim of study is to what
extent, how and whether the cutting-edge issue of denoising the 2D Poisson-noise IPs data
can be solved.

Following up to [24], one makes the Poisson-noise on the regular 2D IPs. Physically,
the 2D Poisson-noise IPs are folded into a mosaic of the 2D detector pixel imaging. For this,
in each imaging pixel, the X-ray quanta signal X is recorded corresponding to the Poisson
distribution function:

P(X = K, N) =
NK

K!
e−N (1)

with integer number N as the expected value Mean[X]=E(X)≡Var(X).
The Mean Absolute Deviation E(|X − N|) around the Mean[X]=N is equal to:

E(|X− N|) = 2NN+1

N!
e−N (2)

Accordingly, in Stirling’s approximation, when N→ ∞, the Mean Absolute Deviation
(2) was evaluated as:

E(|X− N|) = 2N1/2
√

2π
(3)

It is interesting that the second moment of the Poisson distribution is equal to the
Mean[X]=N.

In the present study, denoising the 2D Poisson-noise IPs data is the object of inves-
tigation in the case of a spherical inclusion incorporated within a crystal Si(111). The
diffraction vector h =

[
220
]

is an incident linear-polarized X-ray radiation with wavelength
λ = 0.0709 nm, the Bragg angle θB = 10.65◦ and the X-ray extinction length Λ = 36.287 µm.
The elastic 3D displacement field function fCtpd(r− r0) around the spherical inclusion
located at point r = r0 is approximated by the Coulomb-types function (cf. [9]).

fCtpd(r− r0) =
F

4π

h(x− x0)∣∣∣((x− x0))
2 + (y− y0)

2 + (z− z0)
2
∣∣∣ν + ε

, ν =
3
2

, F = const, ε→ +0

Hereafter, the crystal Si(111) thickness T is assumed to be equal to Λ. Each of
the 2D imaging frames is simulated with a square dimension 2Λ × 2Λ and contains
61 × 61 imaging pixels. Accordingly, the linear size of each imaging pixel is about 0.6 µm.

Notice that for the 20 keV X-ray synchrotron radiation in the ESRF-Grenoble and/or
DESY-Hamburg synchrotron facilities, the effective resolution of the CCD hybrid detectors
employed at the X-ray diffraction tomography stations is about 1µm under the X-ray flux,
being about 103 per pixel, and the exposure time is equal to about 0.1 s per frame.

Once more, a goal of our study is the denoising of the 2D Poisson-noise IPs data
frames, with an aim to improve the computer recovery of the 3D function fCtpd(r− r0); the
latter was controlled by the FOM parameter (cf. [9]).

2. Results
2.1. Simulating the 2D Poisson-Noise IPs Data Frames

Let us consider the multi-frame registration of the 2D IPs data, according to the
schematics set-up presented in Figure 1, when several dozens of the 2D IPs frames are
acquired for the crystal sample position fixed.

Notice that in general, such a scheme has several advantages. First, this allows one to
acquire the high-counting statistics of IPs data without a risk of the radiation damaging the
atomic structure of the sample. Second, and most importantly, a possibility to improve the
signal-to-noise ratio arises by acquiring the 2D IPs frames measured in such a way.



Crystals 2023, 13, 561 4 of 12

Keeping in mind the de-noised processing according to the Schematics in Figure 1, a
number of the 2D noise-contaminated IPs frames with a noise level of 2–4% were simulated
by using the Poisson random value generator [24] at the {−20◦, 20◦} interval of the crystal
rotation angles {Φ}.

According to [24], based on the numerical inversion of the Poisson distribution
formalism (1)–(3), the computer generator algorithm searched the Poisson values by using
the uniform random distribution of the values of the Poisson distribution function (1).

In such a way, the integer number U = 102 of the Poisson-noise 61 × 61 imaging pixels
frames (correspondingly, the Poisson-noise events Ũ = 3721× 102) was generated.

Respectively, in the first 2 columns of Figures 2 and 3, the {0, 2% and 4%}-Poisson-noise
levels frames for the rotation angle set Φ = {−20◦, 0◦, 20◦} are depicted. Note that the 2D
zero-noise imaging frames were calculated with the true 3D function fCtpd(r− r0), with the
values r0=(x0 = 0, y0 = 0, z0 = Λ/2) and F = 0.064 µm3.
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Correspondingly, the 3D function fCtpd(r− r0) is characterized by the vector
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2.2. Statistical Denoising the 2D IPs Data Frames

To be specific, in Figures 2 and 3, the third columns, the 2D IPs frames obtained by
the statistical averaging of the number U = 102 of the 2D noise-contaminated frames, are
presented.

As it follows from Figures 2 and 3, the statistical-averaged IPs frames look much better
in comparison with the no-noise 2D IPs frames and, in practice, do not differ from the
no-noise IPs ones (cf. the first columns in Figures 2 and 3).
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It is worth emphasizing that the key idea of the direct statistical averaging of the 2D
Poisson-noise IPs frames is due to the Poisson-noise distribution nature (see the fundamen-
tals (1)–(3)). Namely, in each pth pixel of the statistically averaged IPs frame of the total
U-number ones, the pth signal is equal to:

1
U ∑U

u=1

(
Np + E

(∣∣Xp,u − Np
∣∣)× Random[−1, 1]

)
(4)

where the function Random[−1, 1] is the uniform random distribution, noting that
Np=Mean[Xp], Np >> 1.

When the number U is large enough and even, the number U/2 occurs as a large
integer, as well. Accordingly, taking into account the estimate (3) for Np >> 1, the relative

noise component
(

E(|Xp,u−Np|)
Np

× Random[−1, 1]
)

is proportional to (Np)−1/2 and enters
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equally likely with opposite signs (cf. [25]). This means that one could immediately assert
that the statistical processing in (4) reduces the Poisson-noise level on the resultant 2D
IP frame.

Thus, it allows one to infer that evaluations based on the statistical averaging of the
2D Poisson-noisy IPs frames could be an effective tool for the denoising of the reference 2D
IPs data in the high-resolution XRDT, which is reasonable from the physical viewpoint.

To be direct, in order to prove that the statistical mean in (4) is effective and works, the
recovery processing of the true 3D displacement function fCtpd(r− r0) was launched in the
proper way.

Following up to [9], the quasi-Newton—Levenberg–Marquardt—Simulated Annealing
(qNLMSA) algorithm to minimize the XRDT χ2-target function in the case of the 2D noise-
filtering IPs was employed to find out the recovery solution of the inverse XRDT issue
(Radon’s issue).

The detailed description of the computer script involved for the image reconstruction
process is given in Appendix A.

Optimizing the XRDT χ2-target function F{
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} was launched with F{
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}, defined as
(cf. [9]):

F{
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i=1 ∑{X(T),Y(T)}

(
Ire f [X(T), Y(T); Φi]− Imod[X(T), Y(T); Φi, {
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}]
)2

(Ih,re f [X(T), Y(T); Φi])
2 = Min (5)

where the following assumptions and notations are introduced.
Namely, Ire f [X(T), Y(T); Φi] is the 2D noise frame related to rotation angle Φi.

Imod[X(T), Y(T); Φi, {
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}] is the model frame with the same value of Φi.
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= {ν, Z0, G} in a search, with ν characterizing the power-law dependence of the
function fCtpd(r− r0), the defect location at r0 = (0, 0, Z0) and the parameter G being the
defect power. N is the number of 2D frames involved, according to the rotation angle
{Φi , i=1, 2, . . . , N. Here above, the true vector
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(true)=(ν, Z0, G) is chosen, with the
dimensionless parameters as
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(true)=(1.5, 0.5, 1.8), respectively.
It is interesting that for the sample rotation angle Φ = 0◦, the de-noised images in

Figures 2 and 3 are more reddish than the corresponding no-noised ones. It is purely the
color-imaging increase effect due to the shift in the “mean value” within 0.1%. In addition,
it does not affect the subsequent 3D recovery processing in any way.

To estimate the validity assessment of the denoising processing, the recovery process-
ing of the XRDT χ2-target function F{
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} was launched according to (5), and the crystal
bulk was chosen as the rectangular prism measured in the dimensionless coordinates
(X,Y,Z) in the units of Λ/π, respectively, 0 ≤ Z ≤ T, −T ≤ X(T) ≤ T, −T ≤ Y(T) ≤ T, T = Λ.

While the F{
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For the validity assessment of the de-noised 2D IPs data, one may apply the peak 
signal-to-noise ratio (PSNR) criterion to be effective, as well [26]. For the sample rotation 

k = ∑Φ ∑{X(T),Y(T)}

∣∣∣∣Ih,true[X(T), Y(T); Φ]
1
2 − Ih,calc

[
X(T), Y(T); ,

{
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The results of the evaluations are listed in Table 1. Additionally, in Table 1, there
are the evaluated results of the 2D noise-contaminated IPs frames related to the
{Φi}={−20◦, . . . , 0◦, . . . , 20◦}, i = 1, 2, 3, . . . , N, where N=3 and N=101.
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Table 1. The Coulomb-type point defect in crystal Si(111). The sample rotation angles Φi are in
the range (−20◦, 20◦). The true vector
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(true) = {1.50, 0.50, 1.80} is chosen for the Coulomb-type
point defect. The start iteration vector
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(start) = {1.70, 0.55, 1.40}. Total grid crystal sizes along the
dimensionless coordinates (X, Y, Z) are equal to 61×61×21. The case of the Poisson-noise with the
levels of 2% and 4% are considered. Note bene: Data in the two lines marked with asterisk (*) relate to
the XRDT recovery processing by means of using the geometric means of the single 2D Poisson-noise
IPs data frames.

Noise Level,
%

Number of 2D IPs Frames,
N

Number of
Noise-Averaged

Frames per One IP, U
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2.2. Statistical Denoising the 2D IPs Data Frames 
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the statistical averaging of the number U = 102 of the 2D noise-contaminated frames, are 
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As it follows from Figures 2 and 3, the statistical-averaged IPs frames look much bet-
ter in comparison with the no-noise 2D IPs frames and, in practice, do not differ from the 
no-noise IPs ones (cf. the first columns in Figures 2 and 3). 

It is worth emphasizing that the key idea of the direct statistical averaging of the 2D 
Poisson-noise IPs frames is due to the Poisson-noise distribution nature (see the funda-
mentals (1)–(3)). Namely, in each pth pixel of the statistically averaged IPs frame of the 
total U-number ones, the pth signal is equal to: 

1
𝑈𝑈
∑ �𝑁𝑁𝐶𝐶 + 𝐸𝐸�|𝑋𝑋𝐶𝐶,𝑡𝑡 − 𝑁𝑁𝐶𝐶|� × 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅[−1, 1]�𝑈𝑈
𝑡𝑡=1   (4) 

where the function 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅[−1, 1]  is the uniform random distribution, noting that 
Np=Mean[Xp], Np >> 1. 

When the number 𝑈𝑈 is large enough and even, the number 𝑈𝑈 ∕ 2 occurs as a large 
integer, as well. Accordingly, taking into account the estimate (3) for Np >> 1, the relative 

(end)
(k) }

×105
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The results of the evaluations are listed in Table 1. Additionally, in Table 1, there are 
the evaluated results of the 2D noise-contaminated IPs frames related to the {Φi}={−20°,…, 
0°,…, 20°}, i = 1, 2, 3,…, N, where N=3 and N=101. 
To complete the investigation of filtering the 2D Poisson-noise IPs data frames, the evalu-
ations below using the geometric Means of the U-number of the 2D Poisson-noise Ips data 

frames were carried out, and the resultant recovery cross-sections of the 3D function 
𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒓𝒓 − 𝒓𝒓0) are shown in Figure 4. 
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𝑈𝑈   (7) 

For the validity assessment of the de-noised 2D IPs data, one may apply the peak 
signal-to-noise ratio (PSNR) criterion to be effective, as well [26]. For the sample rotation 

k
(end)

zero 3 1 (1.50;0.50;1.80) 2.2 × 10−3 4.3 × 10−5

zero 101 1 (1.50;0.50;1.80) 1.7 × 10−3 2.9 × 10−5

2 3 1 (1.59;0.49;1.66) 0.5 0.11

2 101 1 (1.48;0.50;1.79) 0.2 0.03

2 3 100 (1.51;0.50;1.81) 0.1 0.01

2 (*) 3 (*) 100 (*) (1.48;0.50;1.77) (*) 0.4 (*) 0.08 (*)

4 3 1 (2.04;0.51;2.18) 1.1 0.23

4 101 1 (1.59;0.50;1.86) 0.4 0.09

4 3 100 (1.54;0.50;1.83) 0.3 0.04

4 (*) 3 (*) 100 (*) (1.45;0.50;1.84) (*) 0.7 (*) 0.16 (*)

To complete the investigation of filtering the 2D Poisson-noise IPs data frames, the
evaluations below using the geometric Means of the U-number of the 2D Poisson-noise Ips
data frames were carried out, and the resultant recovery cross-sections of the 3D function
fCtpd(r− r0) are shown in Figure 4.

U
√

∏U
i=1

(
Np + E

(∣∣Xp,u − Np
∣∣)× Random[−1, 1]

)
(7)
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Figure 4. The 2D IPs frames: the 4%-noise level (left) and the de-noised ones. The number U of the
frames under the average (de-noised) and geometric (de-noised(*)) Means processing is equal to 100.
The sample rotation angle Φ = 0◦.

For the validity assessment of the de-noised 2D IPs data, one may apply the peak
signal-to-noise ratio (PSNR) criterion to be effective, as well [26]. For the sample rotation
angle Φ = 0◦, the corresponding evaluations yield the following levels of the PSNRs for the
2%- and 4%-noise 61×61 IPs and maximum imaging signal in the vicinity of the defect (the
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coordinates x=1, y=0 in Figures 2 and 3) , respectively: (a) no-averaged case — 37.76 and
32.99; (b) averaged case — 49.07 and 48.04; (c) geometric averaged case — 45.88 and 43.52.

As it follows from all the massive calculations (Figure 5), they definitely show a solid
trend of decreasing the FOM values
includegraphics[scale = 1]De f initions/crystals− 2266176− i002.pd f k

(end) with the increas-
ing of the number of the 2D IPs frames involved, in particular, those involved in the average
and geometric Means processing of the 2D Poisson-noise IPs frames. Thus, they clearly
demonstrate the improvement of the accuracy of the recovery XRDT issue solution.
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Figure 5. Cross-sections of the true function fCtpd(r− r0) (left). Cross-sections of the function
fCtpd(r− r0) : the Poisson-noise (middle) and noise-average (right) ones. The total number of the
2D Poisson-noise IPs frames U=100. The residual cross-section functions ∆ fCtpd(r− r0) obtained by
subtraction of the true fCtpd(r− r0) from the recovered ones are shown, as well.
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On the other hand, it is worth mentioning that the numerical FOM values
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For the validity assessment of the de-noised 2D IPs data, one may apply the peak 
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k
(end)

depend on different realizations of the 2D Poisson-noise IPs frames. To be specific, when
the Poisson-noise strongly damages the 2D IPs frames near the point defect core, the
plausible quality of the 3D function fCtpd(r− r0) recovery could become impossible. This
means that one needs to have a set of various realizations of the 2D Poisson-noise IPs
frames and then choose the realization that provides the best one related to the minimum
FOM values
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k
(end).

As follows from our calculations, sometimes, the direct recovery processing of some
large number of the 2D non-averaged Poisson-noise IPs frames yields the self-consistent
decreasing of the FOM values
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(end). Such a fact itself is interesting and might be a good

topic for further work.
Noteworthy is the fact that the calculated results listed in Table 1 allow one to conclude

that the Poisson-noise filtering of the 2D IPs frames with statistical evaluations, particularly,
the use of the average and geometric means processing, is a good tool anyway to improve
the signal-to-noise ratio in computer XRDT.

3. Discussion

In the present study, we have pursued an aim to noise-filter the 2D Poisson-noise IPs
data frames in order to obtain high-accuracy information about the nano-scaled crystal
structures in the XRDT.

According to Devroye’s algorithm [24], numerically simulating the 2D Poisson-noise
IPs data frames was carried out and employed for generating 2D Poisson-noise IPs frames
with the counting noise levels of 2–4%. The de-noised processing with statistical evaluations
using the average and geometric means techniques was proposed and realized. By applying
the qNLMSA algorithm [9] to prove the denoising effect, the recovery XRDT problem was
solved in the case of the Coulomb-type point defect in crystal Si(111). The latter allowed us
to make a solid inference that the noised-filtering procedure of the 2D Poisson-noise IPs of
the noise level counting of the order of 2–4% secures unambiguously plausible information
about nano-scaled crystal structures with good accuracy.

It is important to notice that statistical averaging of some number of the 2D Poisson-
noised frames provides high-quality improvement of the recovery XRDT solution, whereas
geometric Mean processing yields a lower gain factor in comparison with using a set of the
non-averaged IPs data frames, as follows from Table 1 (and Figure 4, as well). Apparently,
the last circumstance is connected with the non-linear character of the statistical geometric
Mean operation.

Noteworthy is the fact to be considered by a question of whether the ease-of-access of
a number of the separate 2D IPs data frames is actual. Processing some number of the 2D
IPs frames with a rather short time exposure has some advantages. Particularly, it allows
one to avoid the incipient radiation sample damage and other parasitic systematic errors of
the 2D IPs reference data with a long-time exposure. Moreover, the de-noised processing
of the 2D IPs frames, along with using statistical evaluations, makes it possible to reveal
the low-intensity 2D IP frame details masked by the Poisson-noise in the X-ray hybrid
pixel detectors.

At present, the 2D IP framerate of the area CCD hybrid pixel detectors is quite high,
and it can be altered within a wide range from one kHz to tens of MHz, only governed by
the reasons of the sufficient X-ray intensity per pixel [27].

Assuming the exposure time to be about 0.1 s for the typical 2D IP frame, one might
design a set of 100 frames at least, if each of them contains at least 103 ph/s, per the detector
pixel in the notional and functional picture parts of the 2D IPs.

It is worthy to notice that a recent development in the field of CCD digital detector
technology permanently decreases the limits of the achievable spatial resolution of X-ray
diffraction imaging. CCD digital detectors with the resolution level of several microns have
been used to be the domain of the synchrotron facilities for a long time.
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Such a pixel resolution is now routinely achievable in laboratory X-ray diffracted imag-
ing systems. Using microfocus X-ray sources, it is possible to reach the spatial resolution
even deeply below one µm [28], not to mention the suitable optics, such as the Fresnel zone
plates (FZP). X-ray microscopes equipped with FZP have been successfully used for the
imaging of separate cells with a spatial resolution of 30 nm [29]. The single 2D IPs framerate
count in such detectors usually exceeds the tens of kHz, and the intrinsic noise does not
exceed several count units during a few seconds per pixel. Such detector characteristics are
sufficient for 2D multi-frames imaging in high-resolution computer XRDT.

As to the influence of the vibrations of the sample relative to the source and the
detector, such a question is missed for the following reasons. First, it is about the computer
XRDT setups, for which the vibration amplitudes are negligibly small. The latter can be
achieved by obvious methods: the elements of the setup device are placed on a rigid base
(a plate or an optical bench placed on the vibration protection supports; otherwise, the
XRDT images with a submicron resolution in the literature would be significantly blurred).

Frame-by-frame image processing makes it possible to recognize and even estimate the
influence of instrumental vibrations by comparing the successive frames with each other
and matching them in the registration panel with the least squares method. The acquisition
system shown in Figure 1 transfers information about the amplitude and direction of
vibrations and makes corrections of the signal shift into the 2D IPs frames.

In our paper, we assumed that the Poisson-noise of the 2D IPs does not exceed the
2–4% level. Thus, such a noise level of the 2D Poisson random IP component corresponds
to the average image counting of about 625–103 ph/pixel.

Noteworthy is the fact that the validation of the results related to the de-noised 2D IPs
data obtained is carried out by both the 3D recovery processing of the Coulomb-type point
defect in a crystal Si(111) and using the peak signal-to-noise ratio (PSNR) criterion.

It should once more be stated in conclusion that both the feasibility and good skill
of the 2D de-noised IPs data frames tested for the XRDT model spherical inclusion could
further facilitate the development of the computer XRDT technique, which is of great
interest. By improving the experimental XRDT counting statistics and simultaneously
solving some theoretical issues, the nano-resolving XRDT method could be favorably
applied to structure investigations of low-quality organic single crystals or dilute solid
solutions, which is a good topic for future work.

4. Conclusions

The conducted study in the paper allows one to conclude that computer XRDT with
statistical evaluations can be an effective tool for quantitatively investigating nano-sized
defects in semiconductor crystals, such as various clusters, small dislocation loops, quantum
wells, quantum wires and so on.

As is demonstrated in the paper, denoising of the 2D IPs data proposed matches the
real-world measurements in the computer XRDT techniques.

A question of how are mathematical fundamentals elaborated for solving the computer
XRDT issue will work in the case of any kind of defects and remains a good topic for future
work. In addition to the denoising validation (cf. the FOM values
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The results of the evaluations are listed in Table 1. Additionally, in Table 1, there are 
the evaluated results of the 2D noise-contaminated IPs frames related to the {Φi}={−20°,…, 
0°,…, 20°}, i = 1, 2, 3,…, N, where N=3 and N=101. 
To complete the investigation of filtering the 2D Poisson-noise IPs data frames, the evalu-
ations below using the geometric Means of the U-number of the 2D Poisson-noise Ips data 

frames were carried out, and the resultant recovery cross-sections of the 3D function 
𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒓𝒓 − 𝒓𝒓0) are shown in Figure 4. 
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𝑈𝑈   (7) 

For the validity assessment of the de-noised 2D IPs data, one may apply the peak 
signal-to-noise ratio (PSNR) criterion to be effective, as well [26]. For the sample rotation 

k
(end) in the last column

of Table 1 and the calculated PSNR values), the noise simulation results require testing to
capture the real XRDT measurements.

Nevertheless, remaining in the scope of the study carried out, one could conclude
that the statistical denoising of the 2D Poisson-noise IPs works well and facilitates pushing
further the recovery XRDT processing technique.
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Appendix A

According to a general concept of the inverse XRDT problem solution by using the
joint qNLMSA algorithm code described in [9], the flow procedure equation of the search
process of optimizing the target function F{
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} (Equation (5)) can be written as follows:

Do

[− Assign the initial vector
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LM for the activated qNLM algorithm, 1 ≤ k ≤ K.

the qNLM algorithm is applied until the criterion
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(k)
} < 10−10 for the SA

switch number m = 0.
− Evaluate the figure of merit (FOM)
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where the following assumptions and notations are introduced. 
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vector, 𝓟𝓟={ν, Z0, G} in a search, with ν characterizing the power-law dependence of the 
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parameters as 𝓟𝓟(𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡)=(1.5, 0.5, 1.8), respectively. 

It is interesting that for the sample rotation angle 𝛷𝛷 = 0°, the de-noised images in 
Figures 2 and 3 are more reddish than the corresponding no-noised ones. It is purely the 
color-imaging increase effect due to the shift in the “mean value” within 0.1%. In addition, 
it does not affect the subsequent 3D recovery processing in any way. 

To estimate the validity assessment of the denoising processing, the recovery pro-
cessing of the XRDT χ2-target function ℱ{𝓟𝓟} was launched according to (5), and the crys-
tal bulk was chosen as the rectangular prism measured in the dimensionless coordinates 
(X,Y,Z) in the units of Λ/π, respectively, 0 ≤ Z ≤ T, −T ≤ X(T) ≤ T, −T ≤ Y(T) ≤ T, T=Λ. 

While the ℱ{𝓟𝓟} fitting was in action, the FOM value Ɽ𝒌𝒌 was evaluated at each kth-
step-iteration of the current vector 𝓟𝓟(k) as: 

 Ɽ𝑘𝑘 = ∑ ∑ �𝐼𝐼ℎ,𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡[𝑋𝑋(𝑇𝑇),𝑌𝑌(𝑇𝑇);𝛷𝛷]
1
2−𝐼𝐼ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑋𝑋(𝑇𝑇),𝑌𝑌(𝑇𝑇);Φ, �𝒫𝒫(𝑘𝑘)��

1
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The results of the evaluations are listed in Table 1. Additionally, in Table 1, there are 
the evaluated results of the 2D noise-contaminated IPs frames related to the {Φi}={−20°,…, 
0°,…, 20°}, i = 1, 2, 3,…, N, where N=3 and N=101. 
To complete the investigation of filtering the 2D Poisson-noise IPs data frames, the evalu-
ations below using the geometric Means of the U-number of the 2D Poisson-noise Ips data 

frames were carried out, and the resultant recovery cross-sections of the 3D function 
𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒓𝒓 − 𝒓𝒓0) are shown in Figure 4. 

�∏ �𝑁𝑁𝐶𝐶 + 𝐸𝐸�|𝑋𝑋𝐶𝐶,𝑡𝑡 − 𝑁𝑁𝐶𝐶|� × 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅[−1, 1]�𝑈𝑈
𝑖𝑖=1

𝑈𝑈   (7) 

For the validity assessment of the de-noised 2D IPs data, one may apply the peak 
signal-to-noise ratio (PSNR) criterion to be effective, as well [26]. For the sample rotation 

k (see Equation (6)).

− Terminate the minimization procedure of the target function F
{
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(K∗)
}

when it becomes

less than 10−10 and/or the FOM value
includegraphics[scale = 1]De f initions/crystals− 2266176− i002.pd f K∗ becomes less than
10−6 for k=K*, and the switch number m=0, respectively.]
End Do.

The processing to recover the 3D function fCtpd(r− r0) was performed using the flow
procedure equation above-mentioned for the no-noised, noised and de-noised 2D-IPs data
frames. The program code was implemented in Fortran. The program input requires the
number of 2D IPs frames equal to N; the array of sample rotation angles {Φi}, i = 1, . . . , N;
the value of the relative noise level for the reference 2D IPs frames that relate to the true
vector

Crystals 2023, 13, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 3. The 2D IPs: no-noise level (left), 4%-noise level (middle) and de-noised (right). The number 
of non-averaged IPs data frames is equal to 100. The sample rotation angles Φ are equal to {−20°, 0°, 
20°}, respectively. 

Correspondingly, the 3D function 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒓𝒓 − 𝒓𝒓0)  is characterized by the vector 
𝓟𝓟(𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡) = (3/2,Λ/2,0.064) during the XRDT recovery processing. 

2.2. Statistical Denoising the 2D IPs Data Frames 
To be specific, in Figures 2 and 3, the third columns, the 2D IPs frames obtained by 

the statistical averaging of the number U = 102 of the 2D noise-contaminated frames, are 
presented. 

As it follows from Figures 2 and 3, the statistical-averaged IPs frames look much bet-
ter in comparison with the no-noise 2D IPs frames and, in practice, do not differ from the 
no-noise IPs ones (cf. the first columns in Figures 2 and 3). 

It is worth emphasizing that the key idea of the direct statistical averaging of the 2D 
Poisson-noise IPs frames is due to the Poisson-noise distribution nature (see the funda-
mentals (1)–(3)). Namely, in each pth pixel of the statistically averaged IPs frame of the 
total U-number ones, the pth signal is equal to: 

1
𝑈𝑈
∑ �𝑁𝑁𝐶𝐶 + 𝐸𝐸�|𝑋𝑋𝐶𝐶,𝑡𝑡 − 𝑁𝑁𝐶𝐶|� × 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅[−1, 1]�𝑈𝑈
𝑡𝑡=1   (4) 

where the function 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅[−1, 1]  is the uniform random distribution, noting that 
Np=Mean[Xp], Np >> 1. 

When the number 𝑈𝑈 is large enough and even, the number 𝑈𝑈 ∕ 2 occurs as a large 
integer, as well. Accordingly, taking into account the estimate (3) for Np >> 1, the relative 

(true); and the start-valued vector in search =
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{ν, Z0, G}. For each pixel of 2D
IPs frames, the Poisson-noise was added according to Devroye’s algorithm [24]. On the
terminate stage, the program yields the optimized vector
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(k)
(end)={ν, Z0, G}, for which

the corresponding 3D function fCtpd(r− r0) is the best one connected with the reference
2D-IPs frames.
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