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Abstract: This manuscript reviews the current trends in the recovery of Platinum Group Metals
(PGMs) from end-of-life autocatalysts and the aims of the recently funded Marie Sklodowska-Curie
Project “Chemistry of Platinum Group Metals-CHemPGM” towards the greening of PGMs recovery
processes and the reusing of recovered PGMs for preparation of new catalysts. Together with the
analysis of the state of the art recovery of PGMs from spent autocatalysts through pyrometallur-
gical and hydrometallurgical routes and the recent trends in reducing their environmental impact,
also emerging sustainable and green technologies are analyzed. Particular focus is given on the
mechanochemical processing as a promising sustainable route not only for the pretreatment of waste
materials but also for direct PGMs leaching. The present review identifies also the trends in catalysts
for carbon neutrality and the few recent efforts in developing PGM-based catalysts starting directly
from the liquor of the leach solutions of spent catalysts envisaging therefore a possible key to close
PGMs loop in a more efficient and sustainable way.

Keywords: platinum group metals; PGMs recovery; PGMs reuse; mechanochemistry; PGM-based catalysts

1. Introduction
1.1. Platinum Group Metals

The Platinum group metals (PGMs) consists of six chemically similar elements, some-
times further classified into light (ruthenium (Ru), rhodium (Rh) and palladium (Pd)) and
heavy (iridium (Ir), osmium (Os) and platinum (Pt)). The chemistry of these elements is
similar being based on 4d electron shells (Ru, Rh, and Pd) or 5d shells (Os, Ir, and Pt) [1].
Most of the world’s PGMs are produced from two types of deposits: PGM-dominated
deposits where PGMs are the main product and Ni–Cu sulfide deposits where PGMs are
the by-product [2]. In the former case their production is concentrated in South Africa,
Zimbabwe and USA while in the latter case in Canada and Russia [3].

Since 2011, PGMs have been included in the list of critical raw materials for the
EU [4] because they represent metals which are strategic for the EU economy and at high
supply risk.

PGMs supply risk, however, is not only an EU concern. Recently, also the US has
been considering PGMs as critical for the energy sector recognizing their strategic role in
tomorrow’s decarbonized economy [5]. PGMs are in fact employed as catalysts in many
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decarbonization and energy technologies, including catalytic converters, fuel cells, thermal
catalytic reactors and electrolyzers [5,6].

Figure 1 reports the flow chart of PGMs prices over the last five years, expressed
in USD dollars/troy oz, where 1 troy oz equals 0.0311035 kg [7]. The Pd price increase,
starting in 2020, is attributable to the suspension of Nornickel’s Taimyrsky and Oktyabrsky
mines due to severe flooding [8], resulting in a 28% reduction in palladium output.
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Rh is the most expensive among PGMs and its price is nowadays about 8 times higher
than that of gold. Ru is instead the cheapest one. The high price of PGMs has pushed the
development of efficient recycling processes worldwide rendering secondary resources
such as spent automotive catalysts, electronic scraps and residues of primary production
as valid alternatives to the primary ones. Among secondary resources, spent automotive
catalysts (SACs) play a crucial role because they can deliver more than 57% of PGMs’
European supply [9]. Processing 2 mg of spent automobile catalysts to recover PGMs can
prevent the mining of 150 kg of their ores [10,11]. In addition, recovery of PGMs from
secondary sources minimizes also waste disposal, limits power consumption and reduces
environmental pollution: according to Fornalczyk and Saternus, 1 kg of platinum from
primary ores is obtained from processing 150 Mg of ores and generates 400 Mg waste,
whereas the same amount of platinum can be recovered from recycling 2 Mg of SACs [12].
According to Saidani et al., the estimated required amount of energy and greenhouse
gas emissions to produce 1 kg of platinum from primary ores in South African mines are
20 times higher than those used for recycling from secondary resources in European refining
plants [13].

About 80% of the PGMs demand is in catalytic converters [10] where Pt is used
both as an oxidation and as a reduction catalyst, Pd as an oxidation catalyst and Rh as a
reduction catalyst [14]. While Pt and Pd can be interchanged, they cannot substitute Rh
role in autocatalysts. PGMs are also used in light duty diesel engines. Pd substitution
by Pt, which is low-price and abundant relative to Pd, has been investigated recently by
many groups [15], especially because of Pd’s increased price and the increased fuel quality
(less sulfur).
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Despite their positive role in controlling exhaust emissions, PGMs are known to be
present in the urban environments together with the residual exhaust fumes, polluting
therefore biosphere, soil, vegetation, river and marine environments.

This review reports about the most notable research trends in PGM-based catalysts,
PGMs recycling from spent autocatalysts and reusing of recovered PGMs in new catalysts.
With respect to the many already published papers on the topic, a special focus is given
here on new emergent methods and especially on the application of mechanochemistry
not only as an efficient pretreatment process of waste materials, but also as a new and
green promising route for the leaching of spent autocatalysts. In addition, the few attempts
reported in the literature to synthesize PGM-based catalysts directly starting from the
liquor of the leach solutions are described. Both of the above mentioned issues are among
the scopes of the Marie Curie Project “Chemistry of Platinum Group Metals-CHemPGM”
whose efforts are devoted to secure and close the PGMs loop.

1.2. PGM-Based Catalysts

Catalysis is a key component in many industrial applications and PGMs play a funda-
mental role in many homogeneous and heterogeneous catalytic processes, as summarized
in the review from Huges et al. [1]. Homogeneous catalysts offer advantages in terms of
reactivity and stability due to their high solubility in reaction media, but they are difficult
to recover. On the other hand, heterogeneous catalysts are less efficient but more easily to
be recovered [16]. Table 1 reports the main precious metals (PMs) and supports used in
heterogeneous catalysts for a wide range of applications.

Table 1. Heterogeneous catalysts: support, precious metal (PM) load and applications [17–19].

Catalyst Type Support Application Precious Metals PM-Loading

Al2O3
Al2O3 zeolites
SiO2 zeolites

Al2O3 (SiO2, TiO2)

Oil-refining
Reforming

Isomerization
Hydrocraking

Gas to liquid (GTL)

Pt, Pt/Re, Pt/Ir
Pt, Pt/Pd

Pd,
Pt

Co+(Pt or Pd or Ru or
Re)

0.02–1%

Actives carbon
(powder)

Fine Chemicals
Hydrogenation

Oxidation
Debenzylation

Hydro-isomerisation
Reduction

Pt–Zn
Pt–Sn–In/Al2O3–Li

Pt/Ni
Pt–Cu
Pt/C

0.5–10%

Cordierite monolith
Ceramic pellet

Metallic monolith
SIC or cordierite

Automotive
Catalysts

Diesel
particulate filter

Pt/Rh
Pt/Pd/Rh

Pt
Pt/Pt

Pt (gauze catalyst)

0.1–0.5%

A broader and more detailed PGMs utilization in various catalytic applications is
reported in [1].

A modern three-way auto-catalyst contains a skeleton with a honeycomb structure
made of cordierite (2MgO•2Al2O3•5SiO2), which is coated with a thin layer of washcoat
(90% γ-Al2O3), catalytic metals (PGMs) and other additives (oxides of Ce, Zr, La, Ni, Fe
and alkaline earth metals) (Figure 2).

The proportion of PGMs in catalysts is dependent on several factors: the manufacturer,
the characteristics of the vehicle, including the engine power, the weight of the vehicle, the
type of fuel consumed by the vehicle (gasoline or diesel), as well as the required catalytic
functions [15].
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Through a series of oxidation reactions, Pt and Pd convert CO and HC to CO2 and
H2O, and the reduction of NO to N2 is accomplished by Rh [14,21]. The catalytic efficiency
of each element is influenced by several factors such as the engine temperatures, the type
of fuel used, the quality of the fuel and the durability of the autocatalyst washcoat [22].

A three-way automotive catalytic converter it is considered to have between 3–7 g Pt,
1.5–5.0 g Pd and 0.8–1.5 g Rh [23].

The automotive catalyst industry in Europe had a large growth both due to the
implementation of emission standards such as Euro 5 and Euro 6 and the adoption of a
regulation in 2017 in which more reliable emission tests have been implemented such as
Real driving Emissions (RDE) and World Harmonized Light Vehicle Test Procedure (WLTP)
for the light motor vehicles [24–26].

Also, an increase in the demand for catalysts is expected due to the strict emission
standards implemented by governments around the world. As an example, in China
the regulations regarding emission control limits implemented by the State Environmen-
tal Protection Administration (SEPA) have become recently more stringent to reduce
pollution [24].

Autocatalysts global market had a size of USD 12.45 billion in 2022 with a prevision of
USD 18.98 billion by 2030 at a compound annual growth rate (CAGR) of 5.4% [24].

Auto market is actually dominated by internal combustion engine vehicles (ICEs)
powered by fossil fuels, but to achieve carbon neutrality by 2050 there is the need of
substituting the conventional fossil fuels across the different segments of the economy. To
meet the goal of CO2-neutral by 2050, starting from 2035 in Europe all the new cars that
come on the market cannot emit any CO2. Given that the life span of a car is about 15 years,
we may predict that the source of PGMs from catalytic converters will last at least until
2050 for gasoline powered car. Catalytic converter, however, will continue to be on the
marked for application in plug-in hybrid cars and even if automotive industry will move
away from fossil fuels, the ICEs imprint will last still for decades.

To achieve carbon neutrality, and realize the so-called “double-carbon” goal, two strate-
gies to reach CO2 emissions reduction can be adopted. The excess CO2 may be removed
by the atmosphere and converted into reusable value-added chemicals through an effi-
cient transformation technology. The other strategy is to develop a clean and efficient
energy conversion technology to produce green and environmentally friendly renewable
energy, such as hydrogen, to effectively replace traditional fossil fuels and reduce CO2
emissions. A recent review from Whang et al. deals with the description of the challenges
and outlooks for future applications of single-atom catalysts in contributing toward carbon
neutrality [27].
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According to the International Energy Agency (IEA), about 6,6 million electric vehicles
(EVs) were sold in 2021, and the trend is expected to increase in the next years towards a
final transition from ICEs to EVs powered by batteries or H2 (fuel cells.)

The near future trend for light vehicles is mostly towards battery-electric vehicles,
because the total cost of ownership is lower than the hydrogen and e-fuels alternatives.
However, because batteries are heavy, ships, planes or heavy-duty vehicles cannot easily be
battery-powered and therefore hydrogen or e-fuels can be good alternative solutions [28].

Some EVs based on polymer electrolyte membrane fuel cells (PEMFC), phosphoric
acid fuel cells (PAFC), direct methanol fuel cells (DMFC) and alkaline fuel cells (AFC) rely
on the use of PGMs.

Despite Pt and Pd are not key components in a battery, next-generation lithium-ion
battery technologies will probably need platinum and palladium to enhance overall battery
performance [1,19,27,29]. Instead, the technologies for the production of green hydrogen by
using water electrolysis powered by renewable energy sources, at present the most promis-
ing way to produce green hydrogen potentially free of greenhouse gas emissions, mainly
rely on PGMs. Presently, there are two low-temperature water electrolysis technologies
commercially available, the alkaline water electrolysis (AWE) and the proton exchange
membrane water electrolysis (PEMWE) [30], while up-scaling of the high temperature solid
oxide electrolysis (SOE) technology is hindered presently by the high degradation and the
thermal variations that cause thermomechanical stress in the cell.

AWE is a mature technology with low investment costs, but its major limitations
lie in the low operational current density and low conversion energy efficiency. AWE
does not rely necessary on PGMs, being able to utilize non-noble-metal electrodes and,
despite the low efficiency, it has been established as the technology closest to large-scale
industrial realization [31–33]. On the other hand, PEMWE relies on Pt, Ir and Ru supply as a
catalyst to promote the cathodic hydrogen evolution reaction (HER) and the anodic oxygen
evolution reaction (OER). According to the study from Minke et al. [34] two necessary
preconditions have been identified to meet the immense future iridium demand: first,
the dramatic reduction of iridium catalyst loading in PEM electrolysis cells and second,
the development of an efficient recycling infrastructure for iridium catalysts. The global
availability of the mainly South African supplied iridium is, in fact, insufficient to meet the
targets of the EU Commission, which has a strategy demanding for 40 GW of electrolyser
capacity by 2030, if conventional Ir based catalysts are used [35].

Both commercial PEMFCs and AFCs use Pt-based catalysts. Despite the advantages
of fast response, low operating temperature, high energy conversion efficiency and high
power density, PEMFCs have as drawback the low catalytic activity and the low stability.
Improving the catalytic activity and the stability of the electrodes by using Pt nanoparticles
with particular morphologies and reducing the Pt loading by alloying with other metals,
together with the search of innovative catalysts supports are the current strategies to
improve the PEMFCs performances [36].

DMFCs are a subcategory of PEMFCs in which methanol rather than hydrogen is
consumed in the fuel cells. Instead of hydrogen oxidation reaction (HOR), the methanol
oxidation reaction (MOR) occurs at the anode material. DMFCs use mainly Pt-Ru or
Pt-Co or Pt-Ni based catalysts. DMFC is considered one of the most likely fuel cells to
be commercialized due to its advantages of low operating temperature and high energy
density, but still has the disadvantages of stability and the methanol crossover through the
Nafion membrane [37].

According to the recent study about DMFCs from Zuo et al. [38], more than 97%
research works are concerning on precious-metal-based catalysts, of which Pt- and Pd-
based electrocatalysts mainly, while only about 3% refer to nonprecious metal catalysts for
sustainable energy applications.

Recently, PGM-doped lanthanum ferrites have been proposed as a viable solution
for intermediate temperature solid oxide fuel cells (IT-SOFCs) electrodes in substitution
of Co-based ferrites, due to the increase in Co cost. Pt was found to increase the number
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of oxygen vacancies, thus promoting the oxygen reduction reaction (ORR) and reducing
the lanthanum strontium ferrite (LSF) polarization resistance by 12.9%, while Ru was
found to improve LSF stability in reducing conditions promoting the exsolution of metal
nanoparticles [39]. The same authors have also investigated the effect of a small Pd doping
on the properties of a lanthanum strontium ferrite in a IT-SOFC. Pd was found to positively
affect the oxidation properties toward H2 and CH4 oxidation. In addition, the potential
presence of PdO on the perovskite surface was found to promote the ORR [40].

Pt-based catalysts are also quite demanding for CO2 capture and valorization. For
CO2 utilization, various transformative catalytic or non-catalytic reactions have been
developed [41].

As an example, CH4 and CO2 may be used as feedstock in the production of syngas, a
mixture of H2 and CO known as a building block to produce value-added compounds like
alcohols and olefins through the Fischer-Tropsch process [42,43]. The main players in the
dry reforming of methane (DRM) (Equation (1) and Figure 3) are Ni-supported catalysts
which suffer from both coking and sintering. PGMs are very active for DRM because
they limit the deactivation of Ni catalysts by carbon residues thus preserving the catalysts
stability over time. Many studies have reported on the superior catalytic properties of Ni
when promoted by PGMs such as Pt, Rh, Ru, or Pd, both because of the increased activity
and coke resistance compared to the non-promoted Ni catalysts [44–46]. Different types of
supported metal catalysts such as Pt, Rh, Ir, Ni and Co-based have displayed promising
catalytic properties in the DRM process [42,47,48]:

CH4 + CO2 → 2CO + 2H2 ∆H = +247 kJ mol−1 (1)
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From what above mentioned, it is therefore clear that the recovery of PGMs from spent
catalysts is not only an actual urgent demand, but will continue to be essential also in the
future to meet the growing PGMs demand and close the PGMs loop until PGMs-free green
power technologies will be consolidated.

2. Recycling of PGMs

According to data provided by Johnson Matthey’s PGM market report [49] and repre-
sented in Figures 4a, 5a and 6a, the Southern African region holds the largest market share
for PGMs, with almost half of the global supply.

For platinum main applications are those related to automotive and jewelry (Figure 4b).
In the case of palladium, the automotive sector and that of electronics are applications that
represent a major share of the total consumption (Figure 5b).
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Palladium, platinum and rhodium are widely used in the automotive sector, more
precisely for catalytic converters because these elements do not form volatile oxides like
the other PGM elements [50,51]. The automotive sector is the most important in the case of
rhodium (Figure 6b).

For ruthenium, the main markets are represented by the electrical & electronics and
chemical sectors (Figure 7a), while for iridium, the main markets are the electrochemical
and electrical & electronics sectors (Figure 7b).
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In recent years there has been an increasing interest in recycling PGMs from secondary
sources such as spent catalysts, electronic scrap and membrane electrode assemblies, used
equipment and jewelry [52,53].

In 2022, the recycling of platinum from the automotive field contributed with 43.21%
of the demand for the same field; recycling from the electrical and electronic field with
17.78% of the platinum demand for the same field; recycling from the jewelry field with
24.66% for recycling from the same field (Figure 4e).

Regarding palladium, in 2022, recycling from the automotive field contributed to the
demand for the same field by 32.49%, for the electrical & electronics field with 73%, and
for jewelry with 10.71% (Figure 5e). The recycling of rhodium from the automotive field
contributed to the demand for the same field with 36.45% (Figure 6d).
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The primary production of PGMs must be intertwined with the recycling of PGMs to
support sustainable development, reducing the environmental footprint of PGMs production.

With the data reported so far, in 2022 the recycling of PGMs was approximately 160 Mg.
The largest contribution to the global demand for elements from the PGM group was Rh
with 36.45% of the global demand for Rh, followed by Pd with 31.65% of the global demand
for Pd and Pt with 23.91% of the global demand for Pt, as shown in Figure 8.
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Figure 8. Contribution of PGM recycling to global demand for PGMs in 2022 (According to data
from [49]).

As the main end-use sector of PGMs, the automotive industry, i.e., spent automo-
tive catalysts, represents the major recycling potential. It should be noted that a SAC
contains a higher amount of PGMs than natural ores, 2000–15,000 g/Mg compared to
2–10 g/Mg [9,54–56]. Moreover, spent catalysts contain as critical elements also rare earth
oxides (REOs).

Article 7 of the End-of Life Vehicles (ELVs) Directive 2000/53/EC targets for each
country the reuse and recovery of ELVs (95% by an average weight per vehicle and year).
These targets were due to be met by the Member States by 1 January 2015. According to
data in 2017, 15 of the 28 Member States had met the minimum reuse and recovery target
of 95% by an average weight per vehicle and year. The average reuse and recovery rate for
the EU28 as a whole was 94%, just below the target [57,58].

PGMs recovery consists of several steps as follows: pretreatment, PGMs enrichment,
PGMs extraction, PGMs separation and purification and reduction to metal products [56,59,60].
In Figure 9 the overall process for recovering PGMs is presented.
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Regardless of the PGMs recovery route adopted, generally a pretreatment stage is
necessary. This stage involves mechanical treatment (collection, decanning of the PGMs
ceramic monolith carrier, which is crushed and cleaned to remove residues), calcination and
chemical treatment aimed at particle size reduction, removal of impurities or activation [61].

The enrichment of PGMs can be carried out by pyrometallurgical, hydrometallurgical
or biometallurgical processes.

Table 2 reports about characteristics of the above mentioned processes.

Table 2. Characteristics of metallurgical extraction methods.

Type of Process Advantages Disadvantages

Recovery PGM

Recovery Yield of
the PGMs Conditions Ref.

Pyrometallurgical
processes

used for upscaling recovery
of PGMs,

offers promising
recovery yields

[9].

special equipment,
high temperatures,

high energy consumption,
cost of continuous
furnace operation,

production of significant
waste (e.g., volatile waste,

slag) [9,62]

99% Pt,
99% Pd,
97% Rh.

T = 950 ◦C,
T = 75 min,

addition of 3 times flux (0.72 wt/wt,
B2O3/Na2O) of spent catalytic

converters and 10 g of FeS2 with a
corresponding enrichment factor of

around 6.0.

[63]

98.59% Pt,
97.91% Pd,
97.16% Rh.

T = 1250 ◦C,
t = 2 h,

and N2 atmosphere
(microwave smelting), using nickel
matte as collector and sodium salts

as fluxes.

[64]

>97% Pd

T = 1350 ◦C
adding 15 wt% CuO, 5 wt% C, 2 of
SiO2/CaO, 2.2 of SiO2/Al2O3 and

heating time t = 2 h.

[65]

Hydrometallurgical
processes

milder process temperatures
than pyrometallurgy,

process control,
high selectivity,
minimal energy

consumption,
ability to be used at both

small and large scale [9,61].

attention to waste
management (liquid

waste, gas emissions),
process duration,
cost and nature of

reagents [9,61]

90–98% Pt,
99% Pd,

70–96% Rh.

11.6 mol L−1 HCl, 1%vol H2O2,
T = 60 ◦C,

L/S = 2 L kg−1 and t = 3 h
[61]

>89% Pt,
100% Pd.

5 M HCl, 1.96 M H2O2, 1.67 M
of C2H4O2,

250 rpm of stirring for 3 h, room
temperature; 10% of solid

concentration.

[66]

90% Pt
94% Pd

3 vol% H2O2 with 8.0 mol/L HCl
solution, T = 55 ◦C and leach time

t =180 min.
[67]

97% Pt,
97% Pd,
97% Rh.

Substrate dissolution: NaOH
roasting with mole ratio 1:17,

T = 600 ◦C, t = 60 min and
dissolution in 1.0 M H2SO4,

T = 90 ◦C, t = 1 h
Cementation: Al0-powder 0.5 g/L

at T = 90 ◦C, t = 15 min
Oxidation leaching: 6.0 M HCl,

2.0 M NaClO3, T = 90 ◦C,
t = 2 h.

[68]

95.1% Pt,
94.9% Pd,
95.2% Rh.

Pre-reduction: 15 vol% HCOOH,
pulp density 10%,

T = 60 ◦C,
t = 1 h,

Post-leaching: 2.0 M HCl,
2M NaClO3,

T = 90 ◦C, t = 2 h

[69]

99.6% Pt, 65% Rh.
Leaching using electro-generated

Cl2 in 8.0 M HCl, T = 80 ◦C,
pulp density 100 g/L, t = 4 h.

[70]

Biotechnological
processes

lower carbon footprint,
low energy consumption,
the use of more ecological

solvents than in
hydrometallurgy,

the absence of dangerous
gases [9].

extensive PGM extraction
methodology

>95% Pt,
>95% Pd.

biogenic cyanide produced by
Chromobacterium violaceum

2 h under 150 ◦C and 14 bar,
[71]

58% Pt,
65%Pd,
97% Rh.

Pseudomonas fluorescens (that
produce cyanide as a secondary

metabolite)
0.5% (w/v) pulp density and initial

pH 10.

[72]

38% Pt,
44% Pd,
91% Rh.

Pseudomonas fluorescens were used
to bioleach PGMs from pretreated
SAC (by Ultrasound-assisted nitric

acid), pulp density of 1% (w/v)
at pH 9.

[73]

92.1% Pt
99.5% Pd
96.5% Rh

1000 mg/L biogenic cyanide
solution, T = 150 ◦C. [74]
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In the pyrometallurgical process, PGMs are separated from the nonmetal fractions by
smelting, fluxes and reductants [65,75]. In hydrometallurgical processes, oxidizing leaching
systems (e.g., hydrogen peroxide and ferric iron) acid (e.g., hydrochloric acid, sulfuric
acid, nitric acid) and/or bases (e.g., sodium hydroxide and sodium hypochlorite), and
complexing agents (e.g., cyanide and thiosulfate) are used to extract PGMs [76]. In the case
of biohydrometallurgy, the same similar principles apply, but the leachates are biological
products. The leaching rates of biohydrometallurgical processes are slower than those of
hydrometallurgical ones, however, they are more environmentally friendly and have a low
cost [77].

Table 3 lists some major PGM recycling companies in the world.

Table 3. Companies involved in PGM recycling.

Company Waste Type Process Ref.

Umicore

large variety of complex, precious
metals containing materials (E-scrap,

spent automotive catalysts, spent
industrial catalysts)

smelter, the copper leaching and
electrowinning plant and the

precious metals refinery.
[78]

BASF Spent catalyst process of smelting and refining [79]

Multimetco spent automotive and
industrial catalyst. process of smelting and refining [80]

Johnson Matthey
spent process catalysts, autocatalysts,

fuel cell catalysts, secondary mine
residues and jewellery or scrap metal.

pyrometallurgy, advanced
hydrometallurgy processing [81]

Hensel recycling catalytic converters, e-scrap or other
materials containing precious metals smelting [82]

As can be seen, the existing industry for the recycling of PGMs is based on pyromet-
allurgical processing operations. Although the hydrometallurgical route represents an
innovative and promising method for PGMs recycling, its adoption in the industry is
rather slow.

2.1. Pyrometallurgical Processes

Pyrometallurgical processes are used to recover PGMs from both SACs and electronic
waste. These techniques involve the physical or chemical transformation of PGMs at
high temperatures with or without additives (collectors and fluxes) and include smelting,
chlorination, metal vapor treatment, and heating-quenching processes, sintering and then
recovery through refining technologies [83].

2.1.1. Smelting

Classic smelting refers to the mixing of catalytic converter powder with flux, collector
and reducing agent and then melted in a furnace (e.g., plasma, plasma arc and induc-
tion) and maintained at approximately 1500–2000 ◦C. The extraction of PGMs is done
in the alloy phase, with the collector (e.g., iron, copper, lead and nickel). The flux agent
(e.g., cryolite, borax, lime, and soda ash) has the role of dissolving the impurities in the
catalytic converters to generate slag that will easily separate from the metallic phase due to
density differences. The PGM alloy undergoes chemical treatment to dissolve and separate
the PGMs [18,84].

The most important parameters of the capture process are the choice of collector and
flow agent. For example, several factors such as melting point, crystal structure, density,
mutual solubility and chemical reactivity will be considered when choosing the collector.

The flow agent must ensure a low viscosity. The oldest collector used to recover PGMs
from spent autocatalysts is lead. Although its use is associated with a number of advantages
such as simplicity of operation, low melting temperature, easy oxidation to separate lead
from PGMs, this process presents environmental problems due to the formation of toxic
lead oxide. Besides, Rh recovery is 70–80%, considered to be relatively low [85].
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With a lower environmental impact and a higher recovery rate, iron and copper
capture technologies have been applied industrially following various studies [14].

When recovering PGMs using copper as a collector, an electric arc furnace is used in
which temperatures reach 1450–1600 ◦C, in which the raw material is introduced accompa-
nied by flows of e.g., SiO2 or CaO, Cu collector (CuO, CuCO3) and reductants [86].

Due to the chemical affinity with PGMs to form solid solutions and to the low cost,
iron is one of the most promising collectors used. PGM-based waste is crushed and mixed
with iron or iron oxide, reductant and fluxes (CaO) in order to melt at a temperature of
approximately 1500–2000 ◦C, thus forming a PGM-Fe alloy.

This alloy is easily separated from the slag due to the large difference in density,
6.0–7.0 g/cm3 versus 3.0–3.5 g/cm3 [87,88].

Chuan Liu et al. [89] have recently proposed a new technology for the extraction of
PGMs from SACs. By using the vitrification process combined with the melting-collecting
process, they obtained a recovery rate of over 99% of PGMs. They mixed SAC waste with
cyanide tailings (CT) and subjected it to the thermal carbon reduction-melting process with
the addition of CaO flux and Na2B4O7. The Fe-PGM alloy was formed by attaching the
PGMs from SAC to Fe from CT. Addition of 30 wt% CT resulted in over 99% recovery
of PGMs. The residual slag produced by vitrification could efficiently immobilize heavy
metals such as Pb, Cr, Zn and As. Their proposed method of simultaneous treatment of
hazardous waste by SAC and CT offers a practical strategy for the recovery of PGMs and
Fe from hazardous waste, with a process cost lower than the costs of traditional processes.

2.1.2. Chlorination

The chlorination method, also called the carbochlorination process, is the process
involving the volatilization of PGMs under high temperature conditions with the aim of
forming chlorine salts in the gas phase, followed by condensation at lower temperatures to
allow separation from the carrier, achieving the enrichment of PGMs [90,91].

Kim et al. [90] recovered approximately 95.9% platinum and 92.9% rhodium from
unroasted spent autocatalyst samples using a mixture of chlorine and carbon monoxide, at
a temperature of 550 ◦C. However, this technique is still approached at the laboratory level,
due to the fact that it presents a series of disadvantages such as high temperature, strong
corrosion, high equipment requirements and toxic gases (CO, Cl2) [18].

The chlorination reactions of PGMs are expressed by the following equations:

Pt + Cl2 → PtCl2 (2)

Pd + Cl2 → PdCl2 (3)

2/3 Rh + Cl2 → 2/3RhCl3 (4)

2.1.3. Metal Vapor Treatment

Metal vapor treatment involves the reaction between PGMs and vapors of active metals
at a high temperature, in order to form a metal-PGM alloy, which facilitates dissolution in
the acidic environment.

Several studies have addressed Mg and Ca vapor treatment [92–94] to extract Pt and
Rh from spent autocatalysts.

Yu-ki Taninouchi et al. [95] studied the physical concentration method involving
treatment with FeCl2 vapor at about 1200 K (927 ◦C), followed by magnetic separation. It
resulted in an efficient alloying of PGMs (Pt, Pd and Rh) with Fe, the major components
of the catalyst (cordierite and alumina) remaining unreacted, while the CeO2 and La2O3
species were transformed into oxychlorides. Thus, FeCl2 vapor treatment can potentially
improve the efficiency and throughput of existing PGMs recycling processes when used
during the pretreatment step.

Sasaki and Maeda [96] examined the effect of Zn vapor treatment prior to acid leaching
for PGM recovery from catalytic converters. They demonstrated that the studied treatment
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improved the dissolution of PGMs during leaching in aqua regia, also improving the
extractions of PGMs in hydrochloric acid at a high temperature. In the case of Pt and
Pd, treatment with Zn vapors was effective, while for Rh a considerable improvement
was observed.

2.2. Hydrometallurgical Processes

Hydrometallurgical processes involve the recovery of PGMs by dissolving waste
containing PGMs in a suitable solvent/leaching agent, followed by separation and purifica-
tion [97]. These processes present a number of advantages over pyrometallurgical recycling:
use of lower process temperatures, higher purification yields, reduced energy consumption,
co-metal extraction potential and better process control. However, the duration of the
process, the nature of the reagents, the costs and the management of liquid waste and
gaseous emissions must be taken into account [9].

A hydrometallurgical process involves several stages: the leaching stage in which
PGM complexes are formed, followed by the separation of dissolved precursors and the
purification of PGMs from the leach solution.

Leaching efficiency is influenced by several factors: the concentration of leaching
reagents, pH value of the leachate, leaching time, leaching temperature and stirring
conditions [98].

Pretreatment processes are used with the aim of increasing the leaching efficiency
of PGMs by improving the dissolution rate, kinetics and reducing the cost of the process.
Pretreatment also helps to avoid the use of solvents with high acidity. The basic methods in
pretreatment are: oxidative roasting, reduction roasting, alloying and mechanochemical
activation [59].

Recently, highly efficient recovery of PGMs (100%, 92% and 61% for Pt, Pd and Rh,
respectively) from spent autocatalysts has been demonstrated also without pretreatment.
The proposed leaching system was a HCl–H2O2–NaCl medium under mild conditions
(70 ◦C, 2 h), while the high solid per liquid ratio (S/L 70%), provides very promising
ground for upscaling in industrial conditions [10].

There are several hydrometallurgical techniques for the recovery of PGMs: hydrochlo-
ric acid leaching, cyanide leaching, halogen leaching, microwave assisted leaching and
thiosystem leaching.

2.2.1. Chloride Leaching

Chloride leaching is a process in which PGMs are leached in a chloride-based envi-
ronment under acidic conditions and in the presence of an oxidant (Cl2, HNO3, NaClO,
NaClO2, NaClO3, H2O2) [9,54,68,99–101]

The oxidation potential of oxidizing agents influences the degree of leaching of PGMs.
A higher potential is needed for Pt leaching, while Pd and Rh need a lower potential.

The equations below show standard electrode potentials of the PGM-chloro
complexes [54]:

[PtCl6]
2− + 4e− ↔ Pt + 6Cl− E

◦
= 0.74 V (5)

[PdCl4]
2− + 2e− ↔ Pd + 4Cl− E

◦
= 0.62 V (6)

[RhCl6]
3− + 3e− ↔ Rh + 6Cl− E

◦
= 0.44 V (7)

If the oxidizing agent has an electron potential higher than that of the PGM, then the
complete dissolution of the PGM is kinetically favorable.

Actually, the chloride-based system is one of the most consolidated leaching sys-
tems, where PGMs chloro-complexes are quite stable into chloride acid solutions. The
most stable chloro-complexes are [PtCl6]

2−,[PdCl4]
2− and [RhCl6]

3−, and their formation
is strongly dependent on chlorine media concentration, where chlorine acid and additional
Cl− sources could be used in balance [9]. PGMs dissolution is enhanced with higher chlo-
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ride concentration, because an increase in the [Cl−] concentration decreases the equilibrium
potential [102].

In the formation of Pt and Pd complexes, the oxidation valence of palladium and
platinum are mainly divalent and tetravalent and the coordination number of their corre-
sponding chlorine complexes are 4 and 6, respectively. The most stable oxidation valence of
rhodium is trivalent, and the complex formed when the coordination number is 6 is more
stable. The exploitation of the coordination chemistry of precious metal ions is critical in
deriving successful separations and the reactivity of the PGMs depends on the oxidation
state of the metal ion as well as the nature of the extracting ligands [103].

Table 4 reports the primary PGM-chlorine complexes that form in leaching system
with hydrochloric acidic solutions at various concentration values. Specifically, PGMs
chloro-complexes form starting from molar concentration values of ≥0.1 for Pd, ≥3 for
Pt, and ≥6 for Rh. In particular, for dilute systems, various chloro-complexes species are
presents involving solvation water and part of them interchanges their oxidation state.

Table 4. PGM species found as chloro-complexes in aqueous chloride media at different concentra-
tion values.

Noble Metals. Species Concentration Ref.

Pt (II)
Pt (IV)

[PtCl4]2−

[PtCl6]2−
CHCl ≥ 1 M
CHCl ≥ 3 M

[104,105]
[104,105]

Pd (II) [PdCl4]2 CHCl ≥ 0.1 M [104]
Pd (IV) [PdCl6]2− - -

Rh (III)

Rh (IV)

[RhCl6]3−

RhCl5(H2O)]2−

[RhCl4(H2O)]2−

[RhCl6]2−

[RhCl5]2−

CHCl ≥ 6 M
*
*
-

CHCl ≥ 0.4 M

[104,106,107]
[104,106]

-
-

[104,107]
* Species present in diluted acid systems.

Ana Paula Paiva’s and colleagues’ study aimed at maximizing the recovery of PGMs
with a high concentration of them in the leachates and minimizing the co-dissolution of
aluminum by approaching the leaching process with concentrated HCl solutions (with
H2O2 as oxidant) and low liquid/solid ratios. The optimized conditions found were
11.6 mol L−1 HCl, 1%vol H2O2, 60 ◦C, L/S = 2 L kg−1 and 3 h, leading to PGM yields
of 90–98% Pt, 99% Pd and 70–96% Rh, and leachate compositions of 0.41–0.78 g L−1 Pt,
1.6 g L−1 Pd, 0.062–0.066 g L−1 Rh, depending on the catalyst sample [97].

Viet Nhan Hoa Nguyen et al. [108] investigated the separation of Pd and Pt from
a mixture of these metals by the simultaneous use of leaching and solvent extraction
system with concentrated HCl, commercial extractants and oxidizing agents. The selective
dissolution of Pd over Pt metal was possible by the leaching process followed by extraction,
which used a mixture of concentrated HCl, TBP (tributyl phosphat) in kerosene and
H2O2. Complete extraction of Pt was possible by replacement of H2O2 and kerosen with
NaClO3 as an oxidizing agent and MIBK (methyl isobutyl ketone) as a polar diluent in the
solvent mixture.

The simultaneous leaching and extraction systems were found to be more efficient
than the aqueous HCl and H2O2 system in terms of selectivity and leaching capacity for Pd.
The Pd (II) and Pt (IV) ions from the charged TBP phases were thus completely stripped by
a mixture of HCl and thiourea. The purity of these metal ions in the respective stripping
solutions was greater than 99.9%.

Inela Birloaga and colleagues [66] presented an innovative hydrometallurgical method-
ology for the recovery of precious metals from various waste streams, consisting of a single
leaching system (HCl, H2O2 and C2H4O2) of all elements and then selective recovery of
elements from solution by chemical reduction/processes. For the leaching of Pd and Pt
from spent autocatalysts, the influence of hydrochloric acid concentration and process
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time was evaluated. A recovery of 100% for Pd and over 89% for Pt was obtained using:
5 M HCl; 1.96 M H2O2; 1.67 M of C2H4O2; 250 rpm of stirring for 3 h; room temperature;
10% of solid concentration.

Paolo Trucillo and collaborators [109] proposed a hydrometallurgical process for the
recovery of platinum from diesel catalysts, which has as a first step leaching with aqueous
solutions of H2O2 (up to 0.2 M) and light concentrations of HCl (0.4 M), followed by a
refinery where the platinum is deposited over a granular activated carbon. The results
revealed that a low concentration of HCl results in longer leaching times but the process
conditions can be adjusted to achieve complete recovery of platinum with negligible
extraction of other metals from the catalyst, minimizing the subsequent adsorption process.
Optimum conditions were observed in leaching at 20 ◦C with a 0.13 MH2O2 0.4 M HCl
solution followed by the adsorption step at 20 ◦C using an activated carbon with a high
BET surface area and a high content of reducing surface groups.

2.2.2. Leaching in Cyanide Solution

At an industrial level, cyanide leaching is used to leach precious metals from ores [110].
Regarding the leaching of PGM from SACs, sodium cyanide is an important leaching
agent. This fact is due to its capacity to form stable metal complexes at high pressure and
temperature. The following equations show the chemical reactions in cyanide leaching
of PGM

2Pt + 8NaCN + 2H2O + O2 ↔ 2Na2 [Pt(CN)4] + 4NaOH (8)

2Pd + 8NaCN + 2H2O + O2 ↔ 2Na2 [Pd(CN)4] + 4NaOH (9)

4Rh + 24NaCN + 6H2O + 3O2 ↔ 4Na3 [Rh(CN)6] + 12NaOH (10)

The dissolution of PGMs in cyanide follows the order Pd > Pt > Rh, given by their
melting points ((Pd (1552 ◦C) < Pt (1772 ◦C) < Rh (1966 ◦C))) and is independent of other
parameters such as the initial concentration of NaCN, the oxygen pressure and the reaction
temperature [111].

2.2.3. Leaching with Halogens

As an alternative to cyanides for PGMs leaching, halogens are used (F2, Cl2, Br2 and
I2). Of these, iodine forms the most stable complexes with PGMs.

For example, standard redox potentials of [PtI6]2− (0.40 V) is lower if compared to
[PtCl6]2− (0.74 V) and [PtBr6]2− (0.65 V), therefore the dissolution of Pt using iodine/iodide
solutions is more promising than the other halogen systems [56].

The following equations show the dissolution reactions of PGMs in iodine solution.

Pt + 2I−3 → [PtI6]
2− (11)

Pd + I−3 + I− → [PdI4]
2− (12)

2Rh + 3I−3 + 3I− → 2[RhI6]
3− (13)

2.2.4. Leaching with Thiosystems (Thiosulfate, Thiocyanate, Thiourea)

Thiosystem leaching (thiosulphate, thiocyanate and thiourea) is still under-investigation
for the leaching of PGMs and precious metals from spent catalysts [111]. However, PGMs
form stable complexes with thiosystem ions, being more stable than their chloro/bromo/iodo
counterparts [112].

Thiosulfate leaching S2O2−
3 was reported as early as 1880 for gold extraction [113]. It

was shown that by increasing the concentration of (S2O2−
3 )

6−
4 the dissolved concentration

of Pt also increases [114].
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Several studies have shown that Pt and Pd form stable complexes with thiocyanate
that can be leached under acidic conditions [115,116]. The stability of Pt and Pd complexes
with the hydrophobic thiocyanate ligand (SCN−) has also been reported [116,117].

[PtCl6]
2− + 6(SCN−)↔ Pt(SCN)6

2− + 6Cl− (14)

[PdCl4]
2− + 4(SCN−)↔ Pd(SCN)4]

2− + 4Cl− (15)

Thiourea ((NH2)2CS) also forms extra-stable complexes with Pt and Pd [118,119]. The
use of thiourea over cyanide has a number of advantages such as higher metal recovery
and lower sensitivity for base metals [120,121].

2.2.5. Leaching Media: Efficiency, Environmental Impact, Recent Trends

Figure 10 presents detailed evaluations of different leaching methods from the point of
view of environmental impact, economic feasibility and reliability. It is found that leaching
with aqua regia and cyanide are the most reliable methods, but they have a high impact on
the environment, being toxic and corrosive. Halogen leaching presents high recovery rates
and a moderate toxicity, but has problems in terms of corrosion and technological reliability.
Leaching with thiourea and thiosulfate has the advantage of having a moderate impact on
the environment, but it is not feasible from an economic point of view and moreover the
technologies are less reliable compared to the other methods of leaching.
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Recent efforts in PGMs recovery aim to the search of techniques which minimize the
energy consumption and use milder reagents in order to minimize the residual waste.

Parameters for eco- and cost- effective leaching are summarized in the review from
Yakoumis et al. [9], where the different leaching solutions are widely discussed.

In further work carried out by Yakoumis et al. [10], a HCl–H2O2–NaCl medium under
mild conditions (70 ◦C, 2 h) leaching system was proposed, without SAC pretreatment,
leading to high solid per liquid ratio (S/L 70%), thus demonstrating very promising ground
for upscaling in industrial conditions.

Lanaridi et al. [122] proposed benign deep eutectic solvents (DESs) in addition with
a small amount of oxidizing agent (HNO3) as leaching media for the extraction of PGMs.
DESs are characterized by low toxicity and low vapor pressure, which render them suitable
to replace commonly used organic solvents and, in addition, they are cheap and biodegrad-
able. In another study, Lanaridi et al. have proposed a novel separation approach for PGMs
leached in hydrochloric acid by employing supported (polymerized)-ionic liquid phases
(polySILPs) [123].
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Ionic liquid was used also by Van den Bossche et al. for selective palladium leach-
ing from SACs [124] and phosphonium ionic liquids have been used for the separation
of palladium (II), platinum (IV), rhodium (III) and ruthenium (III) from their multi-
component model mixtures of composition based on real solutions after leaching of PGM-
containing wastes [125]. A review of Ils used in solvent extraction of PGMs is reported by
Fyrmansyah et al. [126], while Lee et al. reviewed the ion exchange separation techniques
for PGMs in different leaching systems [127].

The review from Zheng et al. analyzed the new technologies for the separation and
purification of PGMs, including solvent extraction, membranes separation, supercritical
fluids, solid-phase extraction, photoreduction, and electrochemical methods, with focus on
challenges and perspectives for their commercial exploitation [94].

2.2.6. Assisted Leaching Methodologies

Hydrometallurgical processes can be improved by heating with microwaves and
ultrasounds [128,129].

Microwaves provide an environmental friendly way of heat transfer, which is fast,
direct, selective, and volumetric [85,130].

Suoranta et al. have demonstrated that microwave-assisted leaching in hydrochloric
acid (37–38%) can be as effective as concentrated aqua regia to extract ≥90% PGMs at a
temperature of 150 ◦C and a liquid-to-solid ratio ≥10 [131]. A local superheating mecha-
nism was proposed to explain the better performance of microwave-assisted leaching. In
addition, PGM particles could be selectively heated [130].

Another recent study [132] compares the performances of microwave-assisted leaching
of PGMs in 6 M HCl at 150 ◦C with those in 6 M HCl + 10 vol% H2O2, with the aim of
investigating how the leachability is influenced by the addition of the oxidation agent.

Wang et al. have used the microwave-assisted roasting of SACs using sodium chlorate
and sodium bisulfate at 300–330 W and 500 ◦C followed by water leaching, obtaining in
60 min a recovery of 99.74% for Pd and of 94.79% for Rh, which was higher and faster than
in absence of MW (120 min, <90% recovery) [133].

Microwave assisted leaching was also recently tested at pre-industrial pilot scale and
it was demonstrated that the optimization of the leaching process resulted in the reduction
of HCl acid concentration from 12 to 6 M [134], thanks to fast and homogeneous volumetric
MW heating able to enhance the leaching efficiency.

Ultrasound-assisted nitric acid pretreatment was used by Karim and Ting [73] in
a bioleaching process which uses the cyanogenic bacteria Pseudomonas fluorescens and
Bacillus megaterium for improving recovery rate of PGMs from SACs.

2.3. Biometallurgical Process

Biotechnological processes integrated with hydrometallurgy and electrometallurgy
are considered emerging sustainable and clean technologies for metal recovery [135–137].
These processes use microorganisms (bacteria, fungi, archaea, or a combination of them)
and enzymes to transform metals into soluble form, by proton generation (formation
of organic or inorganic acids), by oxidation and reduction reactions and by complexing
agents [138–142].

Recovery methods from biometallurgy have a number of advantages such as the
fact that they use more environmentally friendly solvents, selective recovery of metals,
lower energy consumption, lower carbon footprint and no hazardous gases. However, the
variation of several parameters such as oxygen, pH, leaching temperatures, concentration
of sorbent and sorbate, constitutes a challenge, playing a crucial role in leaching but also in
the extraction of PGMs [9].

In the mobilization of metals, microbes play the role of a catalyst [143]. Microorganisms
mobilize the metal from the solid matrix in an environment with a pH between 1.5 and 3.0,
step followed by the production of organic and/or inorganic acids [142,144,145].

The main known bioleaching mechanisms are acidolysis, redoxolysis and complexolysis.
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Acidosis and redoxolysis are produced by autotrophic prokaryotes, which include
acidophilic chemolithoautotrophic microbes, and complexolysis is predominantly produced
by heterotrophic cyanogenic bacteria [137].

Currently, literature data regarding bioleaching of PGMs is limited. PGM recovery by
biohydrometallurgical processes is difficult due to the complex nature of SACs. Biological
cyanidation involves the production of cyanide by bacteria as a secondary metabolite from
glycine by oxidative decarboxylation [73,74].

PGMs form stable chemical complexes with the cyanide ion.

2Pt + 8 CN− + 2H2O + O2 ↔ 2[Pt(CN)4]
2− + 4OH− (16)

2Pd + 8 CN− + 2H2O + O2 ↔ 2[Pd(CN)4]
2− + 4OH− (17)

4Rh + 24 CN− + 6H2O + 3O2 ↔ 4[Rh(CN)6]
3− + 12OH− (18)

One of the first studies regarding the biometallurgical recovery of Pt from SACs, using
P. Plecoglossicida, resulted in a value of 0.2% Pt. This is due to the resistant nature of Pt and
the fact that biogenic cyanide has a low yield in the presence of solid waste [146].

Another study examined the role of biogenic cyanide for PGMs extraction from SACs,
reporting a higher yield [74].

Recently, it has been shown that ultrasound-assisted nitric acid pretreatment with the
role of removing interfering metals present in SACs, leads to a higher rate of bioleaching of
PGMs by producing more cyanide [73].

Biosorption involves a number of retention mechanisms such as ion exchange, adsorp-
tion, complexation, chelation, reduction and precipitation [147].

Microbial cells are considered biological adsorbents (biosorbents) for the retention of
metal cations, except alkali metals [148,149].

Biosorption presents advantages such as increased selectivity at very low metal con-
centrations in solution, good energy efficiency and the possibility of regenerating some
biosorbents [150].

The adsorption capacity is given by the existing chemical groups on the extracellular
surfaces of the microbial cells (phosphoryl, hydroxyl, carboxyl, sulfhydryl, phosphate,
carbonyl, sulfate, amino, thioether, amide, phenol).

The performance of the mechanism is determined by a series of factors such as:
metal characteristics (chemical, molecular weight, ionic radius, oxidation state), process
parameters (temperature, pH, concentration of sorbent and sorbate), biosorbent properties
(structure, nature) and binding sites (type, availability) [147].

2.4. Mechanochemical Processing

Nowadays, the evolution of the circular economy concept is focused not only on
higher PGM recovery rates, but also on higher economic and environmental standards
by following green principle rules [130,151–154]. Currently, the research and innovation
efforts are focused on greening and optimization of conventional PGM recovery methods
toward decrease of their acid dependence, energy consumption and the increase of the
efficiency of simultaneous recovery of target metals [9,130,153–155]. One of the emerging
recycling technologies is based on mechanochemical treatment [156–160] as numerous
advantages of the method are beneficial for recycling secondary PGMs resources with
high recovery yields in a sustainable, environmentally friendly and technoeconomically
feasible processing.

2.4.1. Mechanochemical Method—Advantages for PGM Recycling

Mechanochemistry is a branch of chemistry, where chemical reactions are initiated
or triggered by mechanical means such as compression, shear, or friction [161–165]. The
mechanical forces provide the energy required for the activation of chemical reactions in
mechanochemistry as the heat, light, or electrical potential providing the energy in the
thermo-, photo-, or electrochemistry, respectively [156–159,162,166–168]. Mechanochemical
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reactions can lead to preparation of compounds, phases, and microstructures that are
completely different from the products of the regular chemical reactions [161,162,165,166].
It was registered that large batches of energy, well above kT, can be locally released during
mechanochemical treatment. This is considered as a key reason to obtain the proceeding of
reactions that cannot occur thermally as it was found for photochemical reactions induced
by the energy of photons [161,165,166]. Macroscopic deformation affects simultaneously
many defect sites of the solid, which makes the mechanism of mechanochemical reaction
additionally complicated. In this regard, the selection of treatment parameters is of critical
importance to improve a chemical reaction of interest as effectiveness, selectivity, co-
products formation, etc.

Selection of an appropriate milling device is the first issue for practical implementation
of mechanochemistry both in laboratory and on industrial scale. The type of ball mill and
the working regimes influence the thermodynamics, kinetics and the final result of the
mechanochemical processing. Milling devices have been used to induce comminution with
application of the lowest amount of energy, or to induce mechanochemical interactions
introducing a maximum amount of energy into the reagents. Current developments of
mechanochemical devices and characterization techniques made it feasible to better control
mechanochemical processing toward extraction of metals of interest [156,160,165].

Several milling parameters determine the energy transfer to the reactants: milling
speed, ball-to-powder weight ratio, milling media and filling extent of the milling reactor.
These parameters are highly interlinked to each other and are especially important for
mechanochemical output [161,162,165]. Significant modification to the reaction products
can be reached by the addition of small amount (1–5 wt%) of liquid or solid in the milling
vessel, so called liquid- or solid-assisted milling [156,157,165,168]. Selected milling pa-
rameters determine the secondary effects that occur during the treatment and the specific
phenomena related to the mechanochemical reaction. One of them is the temperature
increase and the huge difference between the reached local and bulk temperatures during
treatment [168]. In case of high energy milling, as a result of collision of the milling ma-
terial, the local temperature peaks can be higher than 103 ◦C for a very short time period
(≈10−9 s). In parallel, the impacts of the milling balls and milling vessel in a planetary ball
mill, lead to increase of the bulk temperature, but it’s value is about ten times less than
the local temperature, typically ≈ 200 ◦C [168]. Thus, the mechanochemical processes are
complex and involve multiple length and time scales. They are system specific and take
place under a broad variety of conditions. The main variables that determine the output of
a mechanochemical reaction are the milling device, the dynamic milling conditions, as well
as characteristics of the processed material.

2.4.2. Mechanical Pre-Treatment

The effect of fine grinding on metal extraction is one of the early subjects of
mechanochemistry and it is still widely used at the industrial level. Nowadays, the po-
tential of application of mechanochemistry as a pre-treatment step or as a main stage in
extraction of metals of interest significantly increases (Figure 11) [156–162].

Mechanical pre-treatment aims to increase the reactivity of target substances and to
promote the subsequent leaching process with additional purification by precipitation
or selective metal extraction [156]. Mechanical milling of SACs is largely utilized as pre-
treatment step in PGMs recovery process (Figure 9), which induces comminution and
significant morphological and/or phase changes [156–161]. As a result, better contact and
penetration of the leaching agent to the treated material, as well as faster dissolution of the
product layer can be reached. On the other hand, PGMs leaching is dramatically hindered
even in concentrated acid solution, due to their high chemical stability. In addition, usually
the PGMs in SACs are agglomerated and can be also encapsulated into the inner layer of the
monolith after long-term operation at high temperature [169]. SEM images of SACs clearly
demonstrate high non-uniformity of auto-catalysts waste. Some of PGMs are scattered
around the monolith carrier in the form of agglomerated metals or metal oxides, and
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some PGMs are attached or wrapped in the carrier. Such a serious sintering reactions
and PGM wrapping further increase the hardness and insolubility of the SAC waste. The
high inertness of PGMs and extremely strong stability of cordierite support, significantly
hinder a complete recycling of PGMs from spent automotive catalyst [169]. So, the PGMs
leaching efficiency in the traditional metallurgical recovery process is critically reduced. In
this regard, the specific characteristics of mechanochemistry and especially the increase
of the reactivity of treated materials opens new possibilities to maximize the recycling
efficiency [156,158–160,170]. The initiation of mechanically induced solid-state reaction is
essential for effective metal recovery.
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2.4.3. Mechanochemical Leaching

The main processes occurring during the mechanochemical treatment have been iden-
tified as reduction of particle size, increase of specific surface area, dramatical evolution of
crystalline structure and/or amorphization, fresh surface formation, bond breakage and
generation of defects or other metastable forms. However, these effects are not stable and
have different relaxation times (from 10−10 to more than 106 s). So, the separation of me-
chanical activation from the leaching process leads to a loss of some of these highly excited
states due to their decay before leaching [156,159,162,165]. Thus, when the mechanical acti-
vation is a pre-treatment step, the subsequent chemical recovery reaction deals only with
the long-lived slowly relaxing states. Integration of mechanical activation and chemical
extraction into a common process (mechanochemical leaching) will utilize all the excitation
states. Thus, the leaching agent serves both as a grinding additive which improves grinding
performance, as well as contributes to higher extraction rates. During simultaneous milling
and leaching, the activation energy required for PGM leaching decreases and reaction
activity increases. Repeated fracturing and cold welding of reacting particles occurs during
the collisions when the respective wastes are treated with appropriate chemicals in a milling
device. Thus, solid-state reactions that cannot occur normally can be performed across the
welded interfaces when several ingredients are milled together.

Recently published review studies on the applications of mechanochemistry for metal
recycling from wastes discussed in depth the reaction mechanisms, equipment used, treat-
ment procedures, and optimized processing parameters, as well as detailed approaches for
improvement of the recycling process [156–160,165]. The method was successfully applied
for recycling metals from wastes in a technically feasible and efficient way for some specific
wastes, such as e-waste and low-grade tailings where significant recycling efficiency was
registered. The main problems to be addressed and future perspectives on the develop-
ment of mechanochemistry applied for metal recycling are also presented. Numerous
key characteristics of mechanochemistry make the method greener and advantageous in
comparison to traditional ones. Mechanochemistry promotes leaching reactions using
solvent-free conditions (dry milling) or significantly smaller amounts of liquid (wet milling
or liquid-assisted grinding), in comparison to the conventional chemical treatment, where
the solvent is a medium for energy dispersion, dissolution/solvation and transportation
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of reagents. Disadvantage of mechanochemical leaching is that the milling pots and balls
should be made of materials inert to produced aqueous slurry or solution of activated
materials [156,159]. The continuous mixing process under ball milling offers an efficient
way for mass and energy transport, enabling the reactions for effective dissolution of PGMs
by using different additives (as halide or sulphur compounds, small amount of solvent
and/or oxidizing agent, etc.) in recovery process. Additionally, the continuous mixing and
formation of fresh surface during treatment is highly beneficial for liberation of PGMs from
aluminosilicate carriers in SACs processing.

One of the major drawbacks in the PGMs recovery from SAC waste, comes from the
nature of car catalysts [169]. Spent catalytic monoliths have different surface morphology,
impurities and contamination. SACs contain PGMs with very low and various concentra-
tions. The PGM-bearing phases have also diverse composition, particle size, morphology
and distribution on the carrier surface and bulk, that significantly hinders leaching proce-
dure. On the other hand, shoot and unburned hydrocarbons’ deposition makes the catalyst
surface to be inert to chemical treatment [169].

A significant advance in a high-rate PGM extraction efficiency was observed in recent
investigations based on the mechanochemical leaching or mechanical activation of materials
in combination with post-treatment processing (hydro- or pyrometallurgy) [156,158–160,170].
These reports revealed numerous potential benefits for PGMs recovery from waste, but
there is a lot to be done to reveal the power of mechanochemistry in recycling of PGM from
different primary ores, low-grade tailings and end-of-life materials, as well as from SACs.

Mechanochemical process was suggested to recover valuable metals from e-waste
scraps by co-milling with different reagents [156,158–160,170,171]. After dry co-milling
with a mixture of K2S2O8 and NaCl, high metal recovery rates of 95.5% of Pd were obtained
by processing with 0.5 mol/L diluted HCl in 15 min. The mechanism of mechanochemically
induced solid-state reactions during ball milling was proposed offering the advantages of
high recovery rate and quick leaching speed [171].

X. Wei et al. (2019) [172] suggest a pretreatment method of mechanochemical activation
with the hydrochloric acid leaching system with a total PGMs leaching rate of 93.42%.
The article analyzed the physio-chemical characteristics of the spent automotive catalyst
composite, which contains mostly aluminosilicate carriers with less than 0.1% PGMs. The
high leaching rates of 77.2%, 62.1% and 97.4% for Pt, Rh and Pd, respectively, were obtained
in a greener and optimized way [172].

One-pot mechanochemical conversion of the metals, including spent catalysts, to
simple water-soluble salts, or to metal-organic catalysts was demonstrated in [173]. Green
and direct noble metal activation and recycling of elementary palladium and gold was
obtained by mild, clean, solvent-free and room-temperature chemistry. The exact conditions
were established for mechanochemical activation of metal Pd and Au in a form of powder,
pellets, or wire with a mild oxidant Oxone® and readily available inexpensive halide
salts (NH4Cl, KCl). The study reports a new sustainable and eco-friendly approach for
solvent-free recycling of noble metals avoiding harsh oxidative or complexation reagents,
which proceeds at room temperature. Suggested material processing generates sulphate
by-products of Oxone reduction, however it allows replacement of aggressive HNO3, aqua
regia, molten salts or cyanides.

Therefore, mechanochemistry offers a high potential to replace classical extractive met-
allurgy decreasing the number of technological stages with possibility for one-pot and one-
step SACs processing, together with high efficiency (higher leaching yields and selectivity),
significantly lower environmental footprint (solvent-free processing, dramatic reduction of
chemical’s consumption, very low toxic emissions and wastes) [156–160,170–173]. Crush-
ing and grinding the PGMs scrap together with additives give rise to sufficient release of the
precious metal from the aluminosilicate carrier, and this can greatly reduce the dissolution
time and simultaneously improve the leaching efficiency toward PGMs recovery.
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3. Secondary Sources of PGMs for the Synthesis of Catalysts

To close the PGMs loop it is important not only to recover PGMs efficiently and in a
sustainable way from secondary sources but also to reuse them. The reuse of PGMs from
spent autocatalysts was already achieved in the frame of the EU project PLATIRUS [174]
through the development of an innovative and cost-efficient process to recover PGMs
from secondary source materials to brand new automotive catalysts with the recycled
materials [21]. Among the aims of the already mentioned CHemPGM project, is to close
the PGMs loop not only by fabricating autocatalysts starting from recovered PGMs, but
also by fabricating other types of catalysts for carbon neutrality, possibly starting directly
from the pregnant leach solutions of SACs. Efforts will be devoted to investigate if the
leaching systems of our hydrometallurgical and/or mechanochemical treatments of SACs
may be valuable precursors for the synthesis of new catalysts, which will allow us to
eliminate the PGMs separation and the costly purification steps of the recovering process.
Challenge will be to separate already in the leach liquor the PGM precursor/s of interest
for the fabrication of PGMs based nanoparticles or catalysts. A deep understanding of the
multimetallic catalyst composites for catalytic activity improvement would be desirable in
order to use as catalysts precursors the PGMs complexes contained in the leach liquor. In
addition, besides of PGMs leaching also the leaching of cerium will be pursued. Cerium is
a valuable and critical element contained in high quantities in the leaching systems and
used in catalysts for CO oxidation, water–gas shift reaction and HC conversion. Increased
activity, by cerium spillover onto Pt may be facilitated by atomic-level mixing of Pt and Ce
in the alloy precursor [175].

As already stated previously, the most consolidated recovery methods of PGMs from
the leach solutions are precipitation, liquid-liquid extraction (or solvent extraction) and ion
exchange, while the new emerging ones use deep eutectic solvents (DESs), ionic liquids
(Ils) and electrowinning [127]. The recovery of individual PGMs by single-stage separation
from leach liquors of spent autocatalysts has been rarely investigated. Moreover, as far as
we know, only a few examples are found in the literature about the synthesis of PGM NPs
or PGM-based catalysts directly obtained starting from the leach liquors of SACs. A recent
work on the leaching of a Pt-Rh SAC [62] demonstrated for the first time that after pH
correction strongly acidic solutions (pH < 0.5) obtained after hydro-metallurgical treatment
of the SAC may be a valuable secondary source of PGMs nanoparticles to be employed
in TiO2–based catalysts. According to this study, and as predictable, the difficulty in NPs
formation from the leach solution lies in the high acidity of this solutions (pH < 0.5) and
the presence of accompanying/contaminating ions of non-precious metals, as shown in
Table 5 where the composition of the leach solution is shown. The PGMs precipitation
strongly depended on the solution pH: the yield of the precipitated PGM NPs increased
considerably from 40% to almost 100% when the pH was adjusted to 7–8.

Table 5. Metal ion concentrations after leaching with HCl/H2O2/H2SO4 (S/L = 1/100 g/cm3, 3 h,
70 ◦C, 300 rpm) [62].

Chemical Element Concentration of Metal Ions
in Leach Solution (mg/dm3)

Pt(IV) 22.79
Rh(III) 2.03
Fe ions 2.27
Mg(II) 24.87
Cu(II) 0.14
Zn(II) 0.67

In another recent study [176], a cheap process based on hydrometallurgy is described
to directly recycle PGMs from Pd-Rh SACs to synthesize carbon supported PGMs based
catalysts. SACs were firstly leached by a HCl+H2O2 system, resulting in Pd and Rd
chloro-complexes. The optimized leaching rates of Pd and Rh were 97.99 ± 2.64% and
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87.70 ± 1.23%, respectively. Then Pd precursor was separated from the leach solution
by precipitation, to remove most impurities. The Pd precursor or Pd chloro-complexes
solution was used to synthesize carbon supported catalysts directly via an ethylene glycol
(EG) reduction method. To synthesize carbon-based catalysts, in fact, EG reduction method
is a common way starting from the PGM chloro-complex solution [176,177].

In another work by Racles et al. [178] a SAC was treated with HCl+H2O2 in very mild
conditions to extract approximately half of its PGMs content, mainly as chlorides. The
noble metals were subsequently charged into functionalized mesoporous silica by complex-
ation with mercapto groups to synthetize a heterogeneous catalyst for hydrosilylation and
oxidation reactions. In addition, also the cordierite scrap after PGMs leaching was tested
for potential use in the primary purification of wastewaters.

Therefore, it can be emphasized that it may be possible to directly synthesize PGM-
based catalysts from the PGMs leach solution through the hydrochloric acid and oxidant
systems. For PGM catalysts, the main raw materials are thus PGMs chlorides and PGMs
chlorates [176].

Chloro-complexes contain a wide variety of PGMs anionic species (Table 4) with
low molecular weight and two oxidation state for species, exhibiting stable anions as ion
pairs counterpart. These ions may be coupled with counter ions from different organic
ligands [179–181] that generate stable ion pairs with low charge density and different
selectivity. As first-ligand generation we cite ammonium chloride, butanedione oxime, zinc
and magnesium powders which are only a few examples of counter ions which may be
coupled with generic noble metal charges. However, these ligands present some stability
problems thus requiring the search for new innovative ligands.

Quaternary ammonium and sulphoxide derivatives salts are an example of tunable
and stable complexes of new compounds. Stable and complex chlorine solution systems
which contain ion pairs mixture of PGMs are highly desirable. These stable systems can be
perturbed by using the common ion effect technique (salting out) in order to obtain selective
catalytic precursors by focused separations. The salting out effect not only influences the
selective separation of catalysts by providing catalytic precursors, but it also affects the
recovered quantities.

In another approach, the chlorine complex solution may be coupled with organic
ligands [182,183] as a counter ion pair and, by imposing supersaturated condition, catalyst
nanoparticles with a high specific surface area may be obtained for application as catalysts.

In CHemPGM project, hydrometallurgical leaching of SACs will be carried out in-
volving already consolidated low acid solutions (namely HCL-H2O2-NaCl as oxidant)
with low liquid/solid ratios and novel ones aiming at maximizing PGMs recovery thus
guaranteeing high PGMs concentration in leachates. PGMs chloro-complexes in acid so-
lution are therefore our starting precursors for catalysts in case of the hyrometallurgical
process. The composition of leach solution in case of mechanochemical process is still under
investigation by X-ray fluorescence (XRF) analysis, and will be published in a future work.

Conventional and novel techniques [184] will be considered in the synthesis of sup-
ported PGM-based catalysts, always being inspired to green and sustainable principles.

4. Conclusions

The rapid growth demand of critical raw materials for the EU industry and the need
to close CRMs loop has pushed the development of environmentally-friendly recycling
processes of end-of-life devices. This paper presents an overview about the current trends
in PGMs recycling from spent automotive catalysts, and focuses on the study of a new
emerging green technologies. In addition, analysis of the pregnant leach solution from
consolidated hydrometallurgical routes in chloride media is carried out, aiming at finding
the way to obtain direct precursors for the synthesis of novel catalytic materials, thus
reducing the separation and purification recovery steps. These research activities ladder
up to the goals of the “Chemistry of Platinum Group Metals-CHemPGM” project whose
main objective is to provide a deep insight into the chemistry and mechanisms associated
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with the recovery of PGMs from secondary sources and reuse of the recovered PGMs
for the synthesis of new catalysts in order to secure the PGMs value chain and achieve
carbon neutrality.
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52. Işıldar, A.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N. Electronic waste as a secondary source of critical metals: Management and

recovery technologies. Resour. Conserv. Recycl. 2018, 135, 296–312. [CrossRef]
53. Sandig-Predzymirska, L.; Barreiros, T.V.; Thiere, A.; Weigelt, A.; Vogt, D.; Stelter, M.; Charitos, A. Recycling Strategy for the

Extraction of PGMs from Spent PEM Electrodes. Available online: https://recycalyse.eu/wp-content/uploads/Paper-Sandig-Pr
edzymirska-Lesia.pdf (accessed on 17 March 2023).

54. de Aberasturi, D.J.; Pinedo, R.; de Larramendi, I.R.; Rojo, T. Recovery by hydrometallurgical extraction of the platinum-group
metals from car catalytic converters. Miner. Eng. 2011, 24, 505–513. [CrossRef]

55. Steinlechner, S.; Antrekowitsch, J. PGM Recycling from Catalysts in a Closed Hydrometallurgical Loop with an Optional Cerium
Recovery. TMS Annu. Meet. 2013, 361–369. [CrossRef]

56. Jha, M.K.; Lee, J.-C.; Kim, M.-S.; Jeong, J.; Kim, B.-S.; Kumar, V. Hydrometallurgical recovery/recycling of platinum by the
leaching of spent catalysts: A review. Hydrometallurgy 2013, 133, 23–32. [CrossRef]

57. EUR-Lex—52021SC0060—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:
52021SC0060#footnote47 (accessed on 25 February 2023).

58. EUR-Lex—52020DC0033—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%
3A52020DC0033 (accessed on 25 February 2023).

59. Sun, S.; Jin, C.; He, W.; Li, G.; Zhu, H.; Huang, J. A review on management of waste three-way catalysts and strategies for recovery
of platinum group metals from them. J. Environ. Manag. 2022, 305, 114383. [CrossRef] [PubMed]

60. Padamata, S.K.; Yasinskiy, A.S.; Polyakov, P.V.; Pavlov, E.A.; Varyukhin, D.Y. Recovery of Noble Metals from Spent Catalysts: A
Review. Met. Mater. Trans. B 2020, 51, 2413–2435. [CrossRef]

61. Saguru, C.; Ndlovu, S.; Moropeng, D. A review of recent studies into hydrometallurgical methods for recovering PGMs from
used catalytic converters. Hydrometallurgy 2018, 182, 44–56. [CrossRef]

62. Wiecka, Z.; Cota, I.; Tylkowski, B.; Regel-Rosocka, M. Recovery of platinum group metals from spent automotive converters and
their conversion into efficient recyclable nanocatalysts. Environ. Sci. Pollut. Res. 2022, 1–12. [CrossRef]

63. Morcali, M.H. A new approach to recover platinum-group metals from spent catalytic converters via iron matte. Resour. Conserv.
Recycl. 2020, 159, 104891. [CrossRef]

64. Tang, H.; Peng, Z.; Tian, R.; Ye, L.; Zhang, J.; Rao, M.; Li, G. Recycling of platinum-group metals from spent automotive catalysts
by smelting. J. Environ. Chem. Eng. 2022, 10, 108709. [CrossRef]

65. Zhang, L.; Song, Q.; Liu, Y.; Xu, Z. Novel approach for recovery of palladium in spent catalyst from automobile by a capture
technology of eutectic copper. J. Clean. Prod. 2019, 239, 118093. [CrossRef]

66. Birloaga, I.; Vegliò, F. An innovative hybrid hydrometallurgical approach for precious metals recovery from secondary resources.
J. Environ. Manag. 2022, 307, 114567. [CrossRef]

67. Ilyas, S.; Srivastava, R.R.; Kim, H.; Cheema, H.A. Hydrometallurgical recycling of palladium and platinum from exhausted diesel
oxidation catalysts. Sep. Purif. Technol. 2020, 248, 117029. [CrossRef]

68. Trinh, H.B.; Lee, J.-C.; Srivastava, R.R.; Kim, S. Total recycling of all the components from spent auto-catalyst by NaOH
roasting-assisted hydrometallurgical route. J. Hazard. Mater. 2019, 379, 120772. [CrossRef] [PubMed]

69. Trinh, H.B.; Lee, J.-C.; Srivastava, R.R.; Kim, S.; Ilyas, S. Eco-threat Minimization in HCl Leaching of PGMs from Spent Automobile
Catalysts by Formic Acid Prereduction. ACS Sustain. Chem. Eng. 2017, 5, 7302–7309. [CrossRef]

70. Kim, M.-S.; Park, S.-W.; Lee, J.-C.; Choubey, P.K. A novel zero emission concept for electrogenerated chlorine leaching and its
application to extraction of platinum group metals from spent automotive catalyst. Hydrometallurgy 2016, 159, 19–27. [CrossRef]

71. Ilyas, S.; Srivastava, R.R.; Kim, H. Mobilization of platinum and palladium from exhausted catalytic converters using bio-cyanide
and an ionic-liquid as mass transport carriers. Green Chem. 2022, 24, 5204–5218. [CrossRef]

http://doi.org/10.1016/S0920-5861(00)00456-9
http://doi.org/10.3390/nano12193400
http://doi.org/10.1023/A:1025746211314
http://doi.org/10.1016/j.apcata.2007.02.017
http://doi.org/10.1007/s13399-019-00417-1
http://doi.org/10.1039/C3CS60395D
http://www.ncbi.nlm.nih.gov/pubmed/24504089
https://matthey.com/documents/161599/509428/PGM-market-report-May-2022.pdf/542bcada-f4ac-a673-5f95-ad1bbfca5106?t=1655877358676
https://matthey.com/documents/161599/509428/PGM-market-report-May-2022.pdf/542bcada-f4ac-a673-5f95-ad1bbfca5106?t=1655877358676
http://doi.org/10.1016/S0021-9517(02)00067-2
http://doi.org/10.1016/S0920-5861(00)00407-7
http://doi.org/10.1016/j.resconrec.2017.07.031
https://recycalyse.eu/wp-content/uploads/Paper-Sandig-Predzymirska-Lesia.pdf
https://recycalyse.eu/wp-content/uploads/Paper-Sandig-Predzymirska-Lesia.pdf
http://doi.org/10.1016/j.mineng.2010.12.009
http://doi.org/10.1007/978-3-319-48763-2_39/COVER
http://doi.org/10.1016/j.hydromet.2012.11.012
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52021SC0060#footnote47
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52021SC0060#footnote47
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0033
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0033
http://doi.org/10.1016/j.jenvman.2021.114383
http://www.ncbi.nlm.nih.gov/pubmed/34968938
http://doi.org/10.1007/s11663-020-01913-w
http://doi.org/10.1016/j.hydromet.2018.10.012
http://doi.org/10.1007/s11356-022-24593-2
http://doi.org/10.1016/j.resconrec.2020.104891
http://doi.org/10.1016/j.jece.2022.108709
http://doi.org/10.1016/j.jclepro.2019.118093
http://doi.org/10.1016/j.jenvman.2022.114567
http://doi.org/10.1016/j.seppur.2020.117029
http://doi.org/10.1016/j.jhazmat.2019.120772
http://www.ncbi.nlm.nih.gov/pubmed/31254787
http://doi.org/10.1021/acssuschemeng.7b01538
http://doi.org/10.1016/j.hydromet.2015.10.030
http://doi.org/10.1039/D2GC00874B


Crystals 2023, 13, 550 27 of 30

72. Karim, S.; Ting, Y.-P. Bioleaching of platinum, palladium, and rhodium from spent automotive catalyst using bacterial cyanogene-
sis. Bioresour. Technol. Rep. 2022, 18, 101069. [CrossRef]

73. Karim, S.; Ting, Y.-P. Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent
automotive catalyst. J. Clean. Prod. 2020, 255, 120199. [CrossRef]

74. Shin, D.; Park, J.; Jeong, J.; Kim, B.-S. A biological cyanide production and accumulation system and the recovery of platinum-
group metals from spent automotive catalysts by biogenic cyanide. Hydrometallurgy 2015, 158, 10–18. [CrossRef]

75. Liu, Y.; Zhang, L.; Song, Q.; Xu, Z. Recovery of palladium and silver from waste multilayer ceramic capacitors by eutectic capture
process of copper and mechanism analysis. J. Hazard. Mater. 2019, 388, 122008. [CrossRef]

76. Ding, Y.; Zheng, H.; Li, J.; Zhang, S.; Liu, B.; Ekberg, C. An Efficient Leaching of Palladium from Spent Catalysts through
Oxidation with Fe(III). Materials 2019, 12, 1205. [CrossRef]

77. Ilyas, S.; Lee, J.C. Bioprocessing of Electronic Scraps. Microbiol. Miner. Met. Mater. Environ. 2015, 307–328.
78. Umicore|Precious Metals Refining|Umicore. Available online: https://pmr.umicore.com/en/ (accessed on 3 November 2022).
79. Recycling of PGMs (Platinum Group Metals). Available online: https://www.basf.com/global/en/who-we-are/sustainability/we-

drive-sustainable-solutions/sustainable-solution-steering/examples/recycling-of-pgms.html (accessed on 3 November 2022).
80. Multimetco, Inc. PGM Refining & Recovery Experts. Available online: https://www.multimetco.com/ (accessed on 3 November 2022).
81. PGMs and Specialist Metallurgy|Johnson Matthey. Available online: https://matthey.com/science-and-innovation/core-capabi

lities/pgms-and-specialist-metallurgy (accessed on 3 November 2022).
82. Hensel Recycling—Ihr Partner im Edelmetallrecycling. Available online: https://hensel-recycling.com/en/ (accessed on

3 November 2022).
83. Akcil, A.; Vegliò, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A. A review of metal recovery from spent petroleum catalysts and ash.

Waste Manag. 2015, 45, 420–433. [CrossRef]
84. Fornalczyk, A.; Saternus, M. Vapour treatment method against other pyro- and hydrometallurgical processes applied to recover

platinum form used auto catalytic converters. Acta Met. Sin. 2013, 26, 247–256. [CrossRef]
85. Trinh, H.B.; Lee, J.-C.; Suh, Y.-J.; Lee, J. A review on the recycling processes of spent auto-catalysts: Towards the development of

sustainable metallurgy. Waste Manag. 2020, 114, 148–165. [CrossRef] [PubMed]
86. Peng, Z.; Li, Z.; Lin, X.; Tang, H.; Ye, L.; Ma, Y.; Rao, M.; Zhang, Y.; Li, G.; Jiang, T. Pyrometallurgical Recovery of Platinum Group

Metals from Spent Catalysts. JOM 2017, 69, 1553–1562. [CrossRef]
87. Liu, C.; Sun, S.; Zhu, X.; Tu, G. Feasibility of platinum recovery from waste automotive catalyst with different carriers via

cooperative smelting-collection process. J. Mater. Cycles Waste Manag. 2021, 23, 581–590. [CrossRef]
88. Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.-C.; Ekberg, C. Recovery of precious metals from electronic waste and spent

catalysts: A review. Resour. Conserv. Recycl. 2018, 141, 284–298. [CrossRef]
89. Liu, C.; Sun, S.; Tu, G.; Xiao, F. Co-treatment of spent automotive catalyst and cyanide tailing via vitrification and smelting-

collection process for platinum group metals recovery. J. Environ. Chem. Eng. 2021, 9, 105823. [CrossRef]
90. Kim, C.-H.; Woo, S.I.; Jeon, S.H. Recovery of Platinum-Group Metals from Recycled Automotive Catalytic Converters by

Carbochlorination. Ind. Eng. Chem. Res. 2000, 39, 1185–1192. [CrossRef]
91. Horike, C.; Morita, K.; Okabe, T.H. Effective Dissolution of Platinum by Using Chloride Salts in Recovery Process. Met. Mater.

Trans. B 2012, 43, 1300–1307. [CrossRef]
92. Okabe, T.H.; Yamamoto, S.; Kayanuma, Y.; Maedaaff, M. Recovery of platinum using magnesium vapor. J. Mater. Res. 2003, 18,

1960–1967. [CrossRef]
93. Okabe, T.H.; Kayanuma, Y.; Yamamoto, S.; Maeda, M. Platinum Recovery Using Calcium Vapor Treatment. Mater. Trans. 2003, 44,

1386–1393. [CrossRef]
94. Kayanuma, Y.; Okabe, T.H.; Mitsuda, Y.; Maeda, M. New recovery process for rhodium using metal vapor. J. Alloys Compd. 2004,

365, 211–220. [CrossRef]
95. Taninouchi, Y.-K.; Okabe, T.H. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment.

Met. Mater. Trans. B 2018, 49, 1781–1793. [CrossRef]
96. Sasaki, H.; Maeda, M. Zn-vapor pretreatment for acid leaching of platinum group metals from automotive catalytic converters.

Hydrometallurgy 2014, 147–148, 59–67. [CrossRef]
97. Paiva, A.P.; Piedras, F.V.; Rodrigues, P.G.; Nogueira, C.A. Hydrometallurgical recovery of platinum-group metals from spent

auto-catalysts—Focus on leaching and solvent extraction. Sep. Purif. Technol. 2022, 286, 120474. [CrossRef]
98. Resource Recovery and Recycling from Metallurgical Wastes—S.R. Ramachandra Rao—Google Books. Available online:

https://books.google.ro/books?hl=en&lr=&id=0m-JuMpFZPAC&oi=fnd&pg=PP1&ots=wih3D97nl4&sig=Ne4hPx2b8hdqH
8wg5Y2pUG37Svk&redir_esc=y#v=onepage&q&f=false (accessed on 5 November 2022).

99. Upadhyay, A.K.; Lee, J.-C.; Kim, E.-Y.; Kim, M.-S.; Kim, B.-S.; Kumar, V. Leaching of platinum group metals (PGMs) from spent
automotive catalyst using electro-generated chlorine in HCl solution. J. Chem. Technol. Biotechnol. 2013, 88, 1991–1999. [CrossRef]

100. Kriek, R.J. Leaching of Selected PGMs: A Thermodynamic and Electrochemical Study Employing Less Aggressive Lixiviants.
Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2008.

101. Puvvada, G.V.K.; Sridhar, R.; Lakshmanan, V.I. Chloride metallurgy: PGM recovery and titanium dioxide production. JOM 2003,
55, 38–41. [CrossRef]

http://doi.org/10.1016/j.biteb.2022.101069
http://doi.org/10.1016/j.jclepro.2020.120199
http://doi.org/10.1016/j.hydromet.2015.09.021
http://doi.org/10.1016/j.jhazmat.2019.122008
http://doi.org/10.3390/ma12081205
https://pmr.umicore.com/en/
https://www.basf.com/global/en/who-we-are/sustainability/we-drive-sustainable-solutions/sustainable-solution-steering/examples/recycling-of-pgms.html
https://www.basf.com/global/en/who-we-are/sustainability/we-drive-sustainable-solutions/sustainable-solution-steering/examples/recycling-of-pgms.html
https://www.multimetco.com/
https://matthey.com/science-and-innovation/core-capabilities/pgms-and-specialist-metallurgy
https://matthey.com/science-and-innovation/core-capabilities/pgms-and-specialist-metallurgy
https://hensel-recycling.com/en/
http://doi.org/10.1016/j.wasman.2015.07.007
http://doi.org/10.1007/s40195-012-0125-1
http://doi.org/10.1016/j.wasman.2020.06.030
http://www.ncbi.nlm.nih.gov/pubmed/32673979
http://doi.org/10.1007/s11837-017-2450-3
http://doi.org/10.1007/s10163-020-01143-x
http://doi.org/10.1016/j.resconrec.2018.10.041
http://doi.org/10.1016/j.jece.2021.105823
http://doi.org/10.1021/ie9905355
http://doi.org/10.1007/s11663-012-9746-z
http://doi.org/10.1557/JMR.2003.0272
http://doi.org/10.2320/matertrans.44.1386
http://doi.org/10.1016/S0925-8388(03)00666-2
http://doi.org/10.1007/s11663-018-1269-9
http://doi.org/10.1016/j.hydromet.2014.04.019
http://doi.org/10.1016/j.seppur.2022.120474
https://books.google.ro/books?hl=en&lr=&id=0m-JuMpFZPAC&oi=fnd&pg=PP1&ots=wih3D97nl4&sig=Ne4hPx2b8hdqH8wg5Y2pUG37Svk&redir_esc=y#v=onepage&q&f=false
https://books.google.ro/books?hl=en&lr=&id=0m-JuMpFZPAC&oi=fnd&pg=PP1&ots=wih3D97nl4&sig=Ne4hPx2b8hdqH8wg5Y2pUG37Svk&redir_esc=y#v=onepage&q&f=false
http://doi.org/10.1002/jctb.4057
http://doi.org/10.1007/s11837-003-0103-1


Crystals 2023, 13, 550 28 of 30

102. Nogueira, C.A.; Paiva, A.P.; Costa, M.C.; da Costa, A.M.R. Leaching efficiency and kinetics of the recovery of palladium and
rhodium from a spent auto-catalyst in HCl/CuCl2 media. Environ. Technol. 2019, 41, 2293–2304. [CrossRef]

103. Moleko-Boyce, P.; Makelane, H.; Ngayeka, M.Z.; Tshentu, Z.R. Recovery of Platinum Group Metals from Leach Solutions of Spent
Catalytic Converters Using Custom-Made Resins. Minerals 2022, 12, 361. [CrossRef]

104. Nikoloski, A.N.; Ang, K.-L. Review of the Application of Ion Exchange Resins for the Recovery of Platinum-Group Metals from
Hydrochloric Acid Solutions. Miner. Process. Extr. Met. Rev. 2013, 35, 369–389. [CrossRef]

105. Kudrev, A.G. Application of the Matrix Method for Calculating Internal Equilibrium Constants and Complex Formation
Microconstants. Russ. J. Gen. Chem. 2019, 89, 1115–1128. [CrossRef]

106. Matsumoto, K.; Yamakawa, S.; Sezaki, Y.; Katagiri, H.; Jikei, M. Preferential Precipitation and Selective Separation of Rh(III) from
Pd(II) and Pt(IV) Using 4-Alkylanilines as Precipitants. ACS Omega 2019, 4, 1868–1873. [CrossRef] [PubMed]

107. Le, M.N.; Lee, M.S.; Senanayake, G. A Short Review of the Separation of Iridium and Rhodium from Hydrochloric Acid Solutions
by Solvent Extraction. J. Solut. Chem. 2018, 47, 1373–1394. [CrossRef]

108. Nguyen, V.N.H.; Song, S.J.; Lee, M.S. Separation of palladium and platinum metals by selective and simultaneous leaching and
extraction with aqueous/non-aqueous solutions. Hydrometallurgy 2022, 208, 105814. [CrossRef]

109. Trucillo, P.; Lancia, A.; Di Natale, F. Recovery of platinum from diesel catalysts by combined use of H2O2/HCl leaching and
adsorption. J. Environ. Chem. Eng. 2022, 10, 107730. [CrossRef]

110. Zhang, K.; Schnoor, J.L.; Zeng, E.Y. E-Waste Recycling: Where Does It Go from Here? Environ. Sci. Technol. 2012, 46, 10861–10867.
[CrossRef]

111. Karim, S.; Ting, Y.-P. Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional
approaches and bio-processes. Resour. Conserv. Recycl. 2021, 170, 105588. [CrossRef]
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