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Abstract: Tremendous efforts have been devoted to facilitating the commercialization of perovskite
solar cells (PSCs) in the past decade. However, the influence of solvent vapor atmosphere on PSC
device performance during its fabrication still lacks related investigations. Here, by using three
commonly employed solvent vapors during the perovskite annealing process, i.e., isopropanol,
chlorobenzene and dimethylformamide, we reveal the effects of atmosphere on related perovskite
film properties and device performance. The results indicate that perovskite films prepared under
these external solvent vapors exhibit distinct crystalline phases, morphologies and optical properties
from films under normal conditions (nitrogen gas), resulting in a significant drop in power conversion
efficiency from the initial 20.01% to the lowest of only ~15%. Our work highlights the importance of
atmospheric effects in preparing efficient PSCs for scalable fabrication and commercialization.

Keywords: solvent vapor; atmospheric effects; hybrid perovskites; film crystallizations; solar cells

1. Introduction

The urgent demands for carbon neutrality require the development and utilization of
renewable energy resources such as solar energy [1]. Perovskite solar cells (PSCs) have been
recognized as one of the most promising candidates for the next generation of photovoltaics
(PV). Benefiting from distinguished advantages [2–5], including low exciton binding energy,
high defect tolerance and long diffusion length, the power conversion efficiency (PCE) of
PSCs has reached 25.7% within decades, rivaling already the conventional silicon (Si) cells
(~26.7%) [6].

It is vital to optimize the crystallization process of the perovskite layer to achieve
highly efficient PSCs, as it could directly influence the obtained film morphology and,
thus, the device efficiency [7,8]. It has been suggested that perovskites with high crys-
tallinity and uniform morphology tend to exhibit better PV performance [9]. In fact, the
crystallization process of perovskites can be affected by various factors, such as solvent
types [10–12], external environmental conditions [13,14], precursor compositions [15–18],
etc. For example, Seok et al. employed toluene as an antisolvent to retard the crystallization
rates of perovskite formation, resulting in enlarged grain sizes and improved PCE [10].
Moreover, other factors such as light [14] and lead anion types [15] were also found to
strongly influent the film crystallization kinetics and the obtained film morphology.
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In addition to the above efforts, the atmosphere during film fabrication, such as
humidity and oxygen, may also affect the perovskite structure and related device perfor-
mance [19–22]. Currently, most PSCs are fabricated via solution-processed methods, where
large amounts of solvents (e.g., isopropanol, dimethylformamide, etc.) need to be used [10].
This will change atmospheric environments that are surrounded by the perovskite film
during its preparation. While the essential function of solvents is to dissolve solid precur-
sors, they may also influent the perovskite crystallization process and, thus, the device
performance [23–25]. Several previous works in the literature investigated the solvent
vapor annealing process in pure MAPbI3-based PSCs [23,26,27]. However, for the most
employed FA-based perovskites with the highest PCE, such solvent vapor atmospheric
effects have not been unraveled thus far.

It is, therefore, the purpose of the current work to investigate the influence of solvent
vapor atmospheres on FA-based perovskite film properties and related device perfor-
mance. Three commonly employed solvents in PSC investigations, namely isopropanol
(IPA), chlorobenzene (CB) and dimethylformamide (DMF), were applied during the
film formation process, and their impacts on the film structure, morphology and opti-
cal properties were studied and unraveled. To better compare, perovskite films were
crystallized in the as-demonstrated atmosphere-controlled apparatus (Figure 1). The
results indicate the detrimental effects of such solvent vapors on the perovskite film
morphologies and properties, which result in a significant drop of device PCE from
20.01% (control) down to only ~15% (DMF-treated). Our work highlights the importance
and necessity of controlling the solvent vapor atmosphere during device fabrication to
acquire PSCs with high efficiency.
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Figure 1. Schematic illustration of the atmosphere-controlled apparatus during perovskite film annealing.

2. Materials and Methods
2.1. Materials

All the commercial materials were used as received without further purification,
including ethanol (AR Beijing Chemical Works, Beijing, China), chlorobenzene (99.9%,
Sigma-Aldrich, St. Louis, MO, USA), isopropanol (IPA, 99.99%, Sigma-Aldrich, St. Louis,
MO, USA), N,N-dimethylformamide (DMF, 99.99%, Sigma-Aldrich, St. Louis, MO, USA),
Dimethyl sulfoxide (DMSO, 99.9%, Sigma-Aldrich, St. Louis, MO, USA), Toluene (TL,
99.98%, Sigma-Aldrich, St. Louis, MO, USA), Poly (triarylamine) (PTAA, Xi’an Polymer
Light Technology Corp., Xi’an, China), [6,6]-Phenyl C61 butyric acid methyl ester (PC61BM,
Xi’an Polymer Light Technology Corp., Xi’an, China), PbI2 (99.999%, Xi’an Polymer Light
Technology Corp., Xi’an, China), CsI (99.90%, Sigma-Aldrich, St. Louis, MO, USA), For-
mamidinium iodide (FAI, Xi’an Polymer Light Technology Corp., Xi’an, China).

2.2. Device Fabrication

To prepare the solar cell devices, the ITO substrate was first sequentially washed with
distilled water and ethanol twice each. After drying under an electric thermostatic drying oven,
the substrates were treated with oxygen plasma treated for 120 s to generate the hydrophilic
surface. Then, 2 mg mL−1 of PTAA solution (dissolved in toluene) was spin-coated onto ITO
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substrates at 5000 rpm for 20 s, followed by annealing at 110 ◦C for 10 min in a glove box with a
Nitrogen atmosphere. After cooling to room temperature, 80 µL perovskite precursor solution
(1.05 M FA0.85Cs0.15PbI3 dissolved in 800 µL DMF and 200 µL DMSO) was spin-coated on the
PTAA substrates with a spin speed of 1000 rpm for 8 s, and 5000 rpm for the 30 s, 20 s into the
5000 rpm process, 100 µL of CB was deposited onto the substrate, then annealed at 100 ◦C
for 30 min. For solvent vapor-treated samples, a top-sealed glass cylinder was applied to
control the surrounding atmosphere during perovskite film annealing (Figure 1). The solvent
annealing time is 30 min. To generate solvent vapor, 30 µL of the selected solvent (e.g., IPA,
CB, DMF) was pre-added in the cylinder, with the temperature at around 100 °C. After cooling
down, 20 mg mL−1 of PC61BM solution (dissolved in chlorobenzene) was deposited via spin
coating at 2000 rpm for the 30 s onto the perovskite film. Finally, the devices were transferred
into a vacuum chamber for the deposition of Ag (100 nm) electrode under a base pressure of
4.0 × 10−4 Pa. The size of the perovskite photoactive layer is 1.5 cm × 1.5 cm. The effective
area of each cell was 0.102 cm2, defined by masks for all PSCs discussed in this work.

2.3. Characterizations

XRD was carried out by an X-ray diffractometer (PANalytical X’pertPRO) equipped with
Cu-Kα X-ray tube. Scanning electron microscope (SEM) images were measured on a field
emission scanning electron microscope (JEOL-7401). Absorption thin films were recorded
on an HP 8453 spectrophotometer. Steady-state photoluminescence (PL) and time-resolved
photoluminescence (TRPL) were obtained by using an FLS920 (Edinburgh Instruments Ltd.,
Edinburgh, Scotland) with an excitation wavelength at 475 nm and 365 nm, respectively. Current
density–voltage (J-V) curves were measured by using a 2400 Series Source Meter (Keithley
Instruments, Solon, OH, USA) measure unit (Newport, Oriel AM 1.5G, 100 mW cm−2); the
accuracy was calibrated by an NREL standard Si cell. The measurements were carried out
with the scanned voltage of 1.2 V to −0.2 V (reverse). Incident photon-to-electron conversion
efficiencies (IPCE) were determined on a solar cell QE/IPCE measurement system provided by
Zolix Co., Ltd., Beijing, China.

3. Results and Discussion

First, we conducted XRD measurements to unravel the structure of perovskite films
annealed under different atmospheres, and the results are illustrated in Figure 2. In this
work, excessive amounts of PbI2 were introduced to enhance the device efficiency [28],
corresponding to the diffraction peak at ~12.4◦. However, such a peak almost disappears
in the IPA- and CB-treated films, suggesting the removal of the residue PbI2. Moreover, an
additional peak that occurred at 11.4◦ further suggests the formation of δ-phase perovskite
with a high bandgap in IPA film [29], which is detrimental to achieving highly efficient
PSCs. The DMF-treated film shows a much different diffraction pattern than others, with no
obvious peak occurring before 25◦, which indicates the low crystallinity of the perovskite.
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Next, to investigate the impacts of different atmospheres on the perovskite film mor-
phology, we measured their planar SEM images (Figure 3). As expected, the controlled
film exhibits dense-grain uniform morphology, as well as the largest average grain size,
which is consistent with other works [29,30]. Both IPA- and CB-treated films show similar
morphologies with smaller grain sizes than the controlled sample, due possibly to the
fast evaporation of precursor solvents during the film annealing [12], which will increase
the nucleation sites. In contrast, the film fabricated under the DMF atmosphere shows
much-increased pinholes/voids at grain boundaries (red circles), which may induce ad-
ditional shunt paths to increase leakage current losses. Such phenomenon is attributed
to the presence of DMF [31], which could re-dissolve the formed perovskites during the
film annealing process, resulting in decreased nuclei number and poor film morphology.
Furthermore, the cross-section of SEM images for these perovskites was also measured. As
shown in Figure S1, the DMF-treated sample exhibited the poorest morphology, which is
consistent with planar SEM results.
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Figure 3. Planar SEM images of perovskites annealed under different atmospheres, with a scale bar of
2 µm. Inset: zoom-in picture, scale bar: 500 nm. All perovskite films were prepared on PTAA-coated
ITO glass.

The optical properties of films prepared under different atmospheres were also studied.
The absorption results are presented in Figure 4a. Both IPA- and DMF-treated perovskite
films show deteriorated absorption between 450 nm and 600 nm, which could be ascribed
to the formation of unwanted δ-phase perovskite in IPA-treated film, as well as the poor
DMF-treated film coverage on the substrate. In addition, all films exhibit the same absorp-
tion onset at ~800 nm, which indicates atmosphere would not affect the bandgap of the
perovskite material. This was further confirmed by our steady-state photoluminescence
(PL) results (Figure 4b), where four films all show an emission peak at around 795 nm.

Time-resolved photoluminescence (TRPL) measurements were also conducted to
investigate charge carrier lifetimes. As illustrated in Figure 4c, the PL decay curves are fitted
via the bi-exponential decay model [32]: y = A1e−x1/τ1 + A2e−x2/τ2 + B. As summarized
in Table 1, average charge carrier lifetimes are calculated to be 21.47 ns, 10.14 ns, 13.93 ns
and 4.74 ns for the controlled IPA-, CB- and DMF-treated films, respectively. The longest
carrier lifetime of the controlled film suggests reduced non-radiative recombination losses,
presumably due to the self-passivation effect of PbI2 [33].
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Table 1. The data for fitted TRPL curves.

A1 τ1 (ns) A2 τ2 (ns) τave (ns)

Control 118.15 23.66 192.52 1.60 21.47
IPA 338.22 1.34 108.59 12.97 10.14
CB 163.85 15.79 231.53 1.70 13.93

DMF 101.67 6.69 354.66 1.00 4.74

To further evaluate the effects of the atmosphere on the PSC’s photovoltaic perfor-
mance, we fabricated a series of solar cells employing the configuration of ITO/PTAA/
perovskite/PCBM/Ag. Table 2 shows the distribution results of different PV parameters
for devices annealed under various atmospheres. As can be observed, the controlled
devices exhibit the highest average PCE, open circuit voltage (VOC) and fill factor (FF) of
19.42%, 1.08 V and 0.78, respectively. Interestingly, the CB-treated PSCs show the best
average short circuit current density (JSC) of over 24.29 mA/cm2. However, the low VOC
(~0.99 V) strongly limits their efficiency. Both IPA- and DMF-treated solar cells exhibit
deteriorated PV performance due to the existence of unwanted yellow phases and high
defect densities, as suggested by the above XRD and TRPL results.

Table 2. Photovoltaic parameters of the controlled, IPA-, CB- and DMF-treated PSCs under one
sun illumination.

VOC (V) FF JSC (mA/cm2) PCE (Best) (%) PCE (Average) (%)

Control 1.08 78.01 23.62 20.01 19.42
IPA 1.05 78.58 22.82 18.91 18.46
CB 1.02 78.61 24.32 19.40 18.77

DMF 1.00 76.75 20.77 16.00 15.05

The best JV curves of cells prepared under four different atmospheres are illustrated in
Figure 5. The controlled cell exhibits the champion efficiency of 20.01%, with VOC, JSC and
FF of 1.08 V, 23.62 mA/cm2 and 0.78, respectively. A large number of pinholes/voids that
existed in DMF-treated devices dramatically decreased the shunt resistance, resulting in the
lowest photocurrent density (JSC = 20.77 mA/cm2) and efficiency. The best CB-treated PSC,
on the other hand, shows an unsatisfied VOC of 1.02 V, which might be ascribed to the lack
of self-passivated PbI2 and higher defect density, significantly dropping the photovoltage
and efficiency [28]. In previous work, IPA was employed to enhance the crystallinity of
MAPbI3 films [23]. However, in FA-based perovskite, it was found that IPA could trigger
the undesirable α-to-δ phase transition, which increases the pristine material’s bandgap
and lowing the charge carrier mobility [34], resulting in deteriorated device PCE. The IPCE
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curves for these PSCs were also measured (Figure 5b), where CB- and DMF-treated samples
exhibited the highest and lowest current, respectively, corresponding well to the JV results.
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4. Conclusions

In summary, the effects of three commonly employed solvent vapors, including IPA,
CB and DMF, on the perovskite film properties and related device performance were
investigated. It was found that CB could alter the self-passivated perovskite structure by
removing its residue PbI2, thus dropping the device photovoltage. Additionally, annealing
the film under IPA induced undesirable δ-perovskite, which will deteriorate the film
morphology and optical properties. Notably, the DMF-treated film exhibits the poorest
crystallinity and film quality, which might increase the leakage current loss. As a result,
PSCs fabricated under normal conditions (control) show the best photovoltaic performance
with a PCE of 20.01%. This work highlights the significance of controlling solvent vapor
atmosphere during perovskite annealing, in particular for volatile solvents. Hopefully,
these discoveries will be able to provide essential guidance for achieving efficient and
stable PSCs.
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