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Abstract: Hexagonal boron nitride (h-BN) is one promising material class for applications in DUV
optoelectronics due to the layered structure and ultra-wide bandgap. The synthesis of h-BN with
smooth surface morphology and high quality on dielectric substrates is the key to construct efficient
functional devices thereon. In this study, we reported wafer-scale h-BN on c-plane sapphire substrates
by metal organic chemical vapor deposition utilizing the flow modulation epitaxy (FME) with growth
interruptions. The effect of the growth interruption location within FME on the surface morphology
and crystalline quality of h-BN films was systematically investigated. The interruption after the
TEB injection could promote the mobility of B adatoms, and the interruption after the NH3 injection
could further relieve the passivation of N terminal growth fronts and mitigate the parasitic gas-phase
reaction between growth precursors. By simultaneously employing interruptions after TEB and NH3

injections, the growth rate of h-BN increased significantly from 0.16 nm/min to 4.76 nm/min, and
the surface roughness of 2-nm-thick h-BN was reduced to 0.587 nm. In addition, h-BN grown with an
interruption solely after the NH3 injection presented the best crystallinity because the relatively slow
growth rate reduced the possibility of impurity incorporation.

Keywords: h-BN; MOCVD; FME; growth interruption

1. Introduction

Hexagonal boron nitride (h-BN) has attracted extensive attention in the fields of
photoelectronics and beyond in recent years. The B and N atoms are connected by sp2

hybridized covalent bonds within the c-plane to form a graphite-like honeycomb structure,
while the interlayers are bounded by weak van der Waals force [1–3]. Thanks to the special
2D layer structure and good chemical and thermal stability, van der Waals heterojunctions
such as h-BN/graphene [4] and TMD/h-BN [5] have been successfully exhibited to realize
atomically thin integrated circuitry [6,7]. In addition, the wide bandgap (~6 eV [8–10])
enables BN to be applied to deep-ultraviolet high-reflectivity distributed Bragg reflectors
(DBRs) [11], light emitting diodes [12,13], photon detectors [14–16] and single-photon
sources (SPS) [17,18].

Several deposition methods have been studied to prepare h-BN films with high crystal
quality and smooth surface morphology, mainly including chemical vapor deposition
(CVD), molecular beam epitaxy (MBE) [10], sputtering [19] and metal organic chemical
vapor deposition (MOCVD) [20]. Among them, MOCVD can be used to attain high-quality
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wafer-level h-BN with controllable thickness (1.5 nm–1.7 µm) [20–23]. Furthermore, it
makes the growth of h-BN compatible with other III-nitride semiconductors and simplifies
the epitaxial growth of III-nitride devices. Triethylboron (TEB) and ammonia (NH3) are
commonly used as the growth precursors. Under a conventional continuous MOCVD
growth mode, the growth rate of h-BN is quite limited due to the parasitic reactions
between the growth precursors and the self-terminating effect because of the Langmuir-
Hinshelwood mechanism [23,24]. To address the problems, flow modulation epitaxy
(FME) [25–27], that is, TEB and NH3 are alternately supplied to the sample surface, has
been developed. Kobayashi et al. reported that the growth rate of h-BN was improved
by 10 times using the FME mode [25]. Yang et al. studied the dependence of crystal
quality and surface morphology of h-BN layers on the precursor injection durations, and
found that the optimized FME condition was when just enough NH3 was supplied to fully
convert the TEB within one cycle [27]. Nonetheless, there are still parasitic reactions due to
intermix of TEB and NH3 at switching times; islands appear on the BN surface because
of the limited surface migration of B adatoms [25]. Jiang et al. claimed that introducing
growth interruptions within the FME process could mitigate parasitic gas phase reactions
and encourage adatoms to find equilibrium positions [28]. Kim et al. explored the role of
the carrier gas on the characteristics of h-BN films grown in such modified FME mode, and
proved that the crystallinity of h-BN was improved by using H2 carrier gas because of more
effective etching and regrowth processes [29]. Then they optimized the growth pressure,
and concluded that an appropriate pressure could reduce the generation of the defects
like nitrogen vacancies and grain boundaries [30]. However, the strategy to introduce
the interruption within FME was barely discussed. In this work, we tuned the growth
interruption location within FME and investigated the effects on the growth rate, the
surface morphology, and the crystal quality of h-BN. It was found that the growth rate
of h-BN was significantly enhanced by introducing a growth interruption after the TEB
injection due to the improved surface migration of B adatoms, and further employing a
growth interruption after the NH3 injection could obtain better surface smoothness thanks
to the effective remission of parasitic reactions. The h-BN film with best crystallinity was
achieved when solely introducing a growth interruption after the NH3 injection, which
was attributed to the low-concentration impurity incorporation.

2. Materials and Methods

The h-BN films were grown on 2-in. c-plane sapphire substrates using a home-made
high-temperature vertical showerhead MOCVD system. Triethylboron (TEB), NH3 and H2
were used as the B precursor, N precursor, and the carrier gas, respectively. The supply
rates of TEB and NH3 were fixed at 30 sccm and 2000 sccm, respectively. The growth
pressure was 50 torr and the growth temperature was 1250 ◦C. Four FME modes with
different growth interruption locations were implemented. As shown in Figure 1a, the FME
mode without growth interruptions denoted as NH3/TEB consists of two steps: (1) NH3
injection for 4 s, (2) TEB injection for 2 s. Figure 1b–d illustrate the other three FME modes
with 1 s growth interruption after NH3 injection (NH3/Itrp/TEB), after TEB injection
(NH3/TEB/Itrp), and simultaneously after NH3 and TEB injections (NH3/Itrp/TEB/Itrp),
respectively. During the growth interruption period, only H2 was allowed into the reactor.

The surface morphology of h-BN films was investigated by scanning electron mi-
croscopy (SEM) (Hitachi, Tokyo, Japan; operated at 4.4 kV) and atomic force microscopy
(AFM) (D3100, Veeco, New York, NY, USA). The thickness was estimated using the spectro-
scopic ellipsometer (Horiba scientific, UVISEL PLUS, London, UK). The chemical identity
of h-BN films was analyzed according to the infrared reflectance spectra using Fourier
transform infrared spectroscopy (FTIR, PerkinElmer Frontier, Waltham, MA, USA) and
X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, Waltham,
MA, USA, using a monochromatic Al Kα X-ray source). The crystalline properties were
assessed by high resolution X-ray diffraction (HRXRD, Bede D1, Durham, UK) using Cu
Kα radiation (λ = 1.5406 Å) and Raman spectroscope using a 532-nm excitation source
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(Horiba, Kyoto, Japan). The optical properties were measured by UV-VIS transmission
spectrometry (TU-1901 Spectrophotometer, PURSEE, Beijing, China). The defect-related
trap states were characterized by photoluminescence with 325 nm laser source (Horiba,
Kyoto, Japan).
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Figure 1. The schematic diagrams of (a) NH3/TEB, (b) NH3/Itrp/TEB, (c) NH3/TEB/Itrp and
(d) NH3/Itrp/TEB/Itrp. (e) the thickness variations of h-BN thickness with growth loops under four
FME modes.

3. Results and Discussion

The variations of h-BN thicknesses with growth loops are summarized in Figure 1e.
The surface morphologies under four FME modes are given in Figures S1–S4 (Supplementary
Materials). Figure 2 presents the SEM images of h-BN samples grown with fixed 150 loops
for intuitive comparisons. For the NH3/TEB mode without any growth interruption,
the thickness of h-BN hardly changes with the growth loop. The growth rate is as low
as ~0.16 nm/min. Many small black pits exist on the surface, which result from the H2
etching of the sapphire substrate [26]. White BN flakes mainly nucleate around the pits.
A similar situation is found in the NH3/Itrp/TEB mode, but the growth rate slightly
increases to 0.26 nm/min. As shown in Figure 2a,b, the pit densities are estimated to
be 1.89 × 109 cm2 and 1.81 × 109 cm2 respectively for NH3/TEB and NH3/Itrp/TEB
modes. The similar pit densities imply that h-BN films are too thin to entirely cover
the surfaces of sapphire substrates. When introducing a growth interruption after the
TEB injection, the BN thickness increases significantly with prolonged growth loops. The
growth rates are calculated to be ~2.74 nm/min and 4.76 nm/min for samples grown
in NH3/TEB/Itrp and NH3/Itrp/TEB/Itrp modes, respectively. The clear honeycomb
wrinkled surface topographies indicate h-BN growth. The wrinkles are formed due to the
thermal compression energy release of h-BN during the cooling process [20]. For the h-BN
sample with the NH3/TEB/Itrp mode, lots of 3D BN islands appear on the wrinkles, which
should be attributed to the parasitic gas phase reactions [26]. The islands get larger and
become the dominant morphological features with increased growth loops, implying a
3D disordered growth. When introducing growth interruptions simultaneously after the
NH3 and TEB injections (with the NH3/Itrp/TEB/Itrp mode), the average size and the
density of 3D islands decrease notably compared to those with the NH3/TEB/Itrp mode.
Therefore, we speculate the interruption after the TEB injection could enhance the surface
migration of B adatoms, while the interruption after the NH3 injection could further reduce
the parasitic gas phase reactions between precursors and improve the growth rate.

The wrinkle wavelength is usually adopted to describe the size of wrinkled domains,
which is estimated by measuring the average length of two crossed line segments across
each domain as shown in Figure 2c,d [31]. The BN film with 150 growth loops in the
NH3/TEB/Itrp mode has a wrinkle wavelength of 153 nm. As for h-BN grown with
150 growth loops in the NH3/Itrp/TEB/Itrp mode, the wrinkle wavelength increases to
273 nm. As the growth loop (i.e., the film thickness) increases, the wrinkle wavelength
monotonically increases, and the density of islands remains at a low level. The results
imply that h-BN with the NH3/Itrp/TEB/Itrp mode grows in a layer-by-layer fashion.
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Figure 2. The SEM images of BN films with fixed 150 growth loops under four FME modes: (a) NH3/TEB,
(b) NH3/Itrp/TEB, (c) NH3/TEB/Itrp, (d) NH3/Itrp/TEB/Itrp. White crossed line segments within
wrinkled domains in (c,d) are used to estimate the wrinkle wavelength.

The bonding patterns of B and N atoms were investigated by FTIR. As depicted in
Figure 3a, the FTIR spectrums of all samples with fixed 150 growth loops have obvious
reflection peaks around 1372 cm−1, which is corresponding to the in-plane B-N transverse
optical modes (E1u mode) of the sp2-bonded h-BN [32]. Weak reflection peaks locating at
1243 cm−1 are also observed, which are contributed by the C–N bonds [33]. The uninten-
tional incorporation of carbon might occur during the growth process and/or the inevitable
surface absorption during the FTIR measurement. Figure 3b shows the XRD 2θ-ω scanning
curves to analyze the structural properties of h-BN films. There are no obvious BN-related
diffraction peaks in the films with NH3/TEB and NH3/Itrp/TEB growth modes because
the BN films are too thin. For samples grown in NH3/TEB/Itrp and NH3/Itrp/TEB/Itrp
modes, the (002)-plane diffraction peaks of h-BN are at 25.97◦ (with a FWHM of 1.6◦)
and 26.15◦ (with a FWHM of 1.4◦), respectively. The corresponding c-lattice constants are
estimated to be 6.86 Å and 6.80 Å, respectively. The deviation from the reported value of
bulk h-BN (6.66 Å) may be attributed to weakly ordered turbostratic BN inclusions [34].
The h-BN film grown in the NH3/Itrp/TEB/Itrp mode has a smaller FWHM value and
c-lattice constant closer to that of the bulk crystal, demonstrating that further introducing
an interruption after the NH3 injection can enhance the phase purity. Besides, a broad and
weak diffraction peak around 36.0◦ is found in four samples, which should be derived from
the (002)-plane w-AlN formed during the nitridation of sapphire substrates [35].
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Figure 3. (a) FTIR spectra and (b) XRD 2theta-omega scans of the h-BN films with fixed 150 growth
loops under four FME modes. The inset is magnified spectra in the red circle in (a).

The surface chemical states of h-BN under different modes were investigated using
XPS. High-resolution scans were performed on peaks of B-1s, N-1s, O-1s, C-1s and Al-2p.
All peaks were peak-differentiated and imitated using a linear combination of Gaussian
and Lorentzian line shapes, commonly referred as Pearson VII function. Results are shown
in Figures 4, S5 and S6. The main peaks at a binding energy around 190.6 eV for the B 1s and
398.2 eV for the N 1s are in good agreement with the reported values of B-N bonding [35,36].
In Figure 4c,d, sp3 B-O [37] and sp2 B-C [38] bonds are found in the samples with a growth
interruption after TEB injection. During the growth process, TEB is first decomposed into
solid B and C atoms [39,40], followed by reaction with NH3 to form sp2-BN and CH4. The
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growth interruption after the TEB injection might result in insufficient supply of NH3,
which hiders the second half of the reaction. Therefore, the C impurity is incorporated as
sp2-BC [39,41–43]. The oxygen impurity should come from the degradation of sapphire
substrates at high temperature [44]. Neither sp3 B-O and sp3 N-O bond are observed in the
sample without any interruption. It is attributed to the severe passivation of N-terminal
growth front and the rapid migration rate of O atoms. The integral intensity of B-O bond
in Figure 4c is relatively higher in the h-BN film with the NH3/TEB/Itrp mode, while the
integral intensities of B-C bond in Figure 4d and C-B bond in Figure 4l are higher in the
h-BN film with the NH3/Itrp/TEB/Itrp mode. This is because the faster growth rate in
the NH3/Itrp/TEB/Itrp mode leads to more C impurities incorporated into the film. The
B/N atomic ratios of h-BN films under NH3/TEB/Itrp and NH3/Itrp/TEB/Itrp modes
are estimated to be 1.41 and 1.45 respectively, indicating of B-rich growth environment.
The B/N atomic ratios of h-BN films under NH3/TEB and NH3/Itrp/TEB modes are 0.95
and 1.02 respectively, meaning that the films have a good stoichiometric ratio. In addition,
strong N-Al [45] bonds observed in Figure 4e,f, which are consistent with the XRD scanning
results. As the thickness of h-BN increases, the surface N-Al bond becomes invisible in
Figure 4g,h. The Sp3 N-O bond located at 400.1 eV [46] is found in h-BN film grown in
the NH3/Itrp/TEB mode in Figure 4f. With the assistance of sp3 N-O bonds, h-BN debris
particles are more likely to formed in the NH3/Itrp/TEB mode compared to that in the
NH3/TEB mode in Figures S1 and S2.
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Figure 4. The XPS spectra of (a–d) B-1s, (e–h) N-1s and (i–l) C-1s in h-BN film under four FME modes.
(a,e,i) NH3/TEB, (b,f,j) NH3/Itrp/TEB, (c,g,k) NH3/TEB/Itrp, (d,h,l) NH3/Itrp/TEB/Itrp.

The optical properties of h-BN films grown under four FME modes were evaluated
by the UV-VIS transmission spectra as shown in Figure 5a. The exact optical bandgap
energy (Eg) of h-BN is estimated from the Tauc’s plot in the inset of Figure 5a. The Eg
values are 5.88, 5.85, 5.83 and 5.79 eV, respectively, for the NH3/TEB, NH3/Itrp/TEB,
NH3/TEB/Itrp, and NH3/Itrp/TEB/Itrp modes. According to previous reports [20,26],
the energy bandgap should correspond to the free exciton transition. The h-BN film with
the NH3/Itrp/TEB/Itrp mode has the smallest Eg value, indicating of highest defect
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concentration. There is also an obvious valley in the transmission spectrum at ~300 nm
(4.1 eV) of this sample, which is attributed to the transition from CN to VN.
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Figure 5. (a) The UV–vis transmission spectra and (b) normalized RT-PL spectra of the h-BN films
with fixed 150 growth loops under four FME modes. The inset of (a) shows the (αhν)2 versus photon
energy hν for determining the optical bandgap energy of h-BN.

The normalized RT-PL spectra of four sample were displayed to characterize the defect
luminescence by dividing the PL intensity by the film thickness. In Figure 5b, the samples
under the NH3/TEB/Itrp and NH3/Itrp/TEB/Itrp modes show broad luminescence bands
from 3.5 to 2.0 eV. There are two intensive peaks near 3.40 and 3.07 eV, which are probably
concerned with the donor-acceptor pair (DAP) recombination involving a shallow ON
donor and a deep CN acceptor [47]. The peak at 3.40 eV corresponds to the zero-phonon
line (ZPL) of (CN-ON)-complex. The wide asymmetric emission band around 3.07 eV is as-
sociated with transitions of phonon-assisted (CN-ON)-complex [48–50]. The transition from
CN to the valence band with an energy of 2.3 eV might also submerge in the broad lumines-
cence spectra. The defect luminescence intensities in h-BN films with the NH3/TEB/Itrp
and NH3/Itrp/TEB/Itrp growth modes are stronger than those with the NH3/TEB and
NH3/Itrp/TEB modes. There are two reasons responsible for this phenomenon: (1) the
B-rich growth conditions lower the formation energy of CN and ON defects [51,52] and
result in high-concentration defects; (2) the rapid growth rates facilitate the incorporation
of impurities.

Considering the B-rich growth environment and high concentration impurities in the
NH3/Itrp/TEB/Itrp mode, a series of experiments were carried out to study the effect of
the duration of NH3 supply. As shown in Figure 6a–c, the surface morphology is nearly
identical as the NH3 injection duration increases from 2 s to 12 s. The thickness decreases
from 29 nm to 25 nm, and the corresponding growth rate decreases from 5.78 nm/min
to 5.02 nm/min. It should be noted that the growth rates are somehow higher than that
of the above experiments because of the state fluctuations of facilities at different stages.
Furthermore, the ratios of the B-C (B-O) bond to the B 1s peak are 10.9% (13.1%), 9.4%
(14.8%), and 8.2% (14.7%) for samples with NH3 injection durations of 2 s, 4 s and 12 s,
respectively, and the B/N atomic ratios are estimated to be around 1.46~1.43. It seems
that the increase of NH3 injection duration in each loop could suppress the incorporation
of C impurity, whereas increase the incorporation probability of O impurity; the growth
rate would be slightly decreased due to the reduced surface migration of B adatoms [27]
and the aggravated passivation of N-terminal growth front. More careful optimization of
growth conditions under NH3/Itrp/TEB/Itrp mode are needed to inhibit the concomitant
incorporation of C and O impurities, which are beyond the scope of this work.

Based on the morphological and chemical states analysis, the growth mechanisms
of h-BN under four FME modes are discussed as below. As shown in Figure 7, in the
early stage of the growth, BN nucleates primarily around the H2 etching caused pits on
the nitrided substrate surface. In the absence of growth interruptions, the growth rate is
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quite slow due to the passivation of N-terminal growth fronts by hydrogen atoms [53], and
the low surface mobility of B adatoms. Introducing the growth interruption after NH3
injection could remove the passivation of N-terminal fronts, while introducing the growth
interruption after TEB injection could enhance the migration of B adatoms. Considering
the huge difference in the growth rates between the samples under NH3/Itrp/TEB and
NH3/TEB/Itrp modes, we can conclude that the growth rate is dominantly determined
by the surface migration ability of B adatoms. Adopting growth interruptions after NH3
and TEB injections would suppress the possible the parasitic reaction more thoroughly,
further increases the growth rate and improves the surface morphology. In addition, the
high growth rate leads to the incorporation of C and O impurities to substitute N sites,
forming sp2 B-C bonds and sp3 B-O bonds.

Figure 6. The SEM images and XPS spectra of h-BN films with different NH3 injection durations
under NH3/Itrp/TEB/Itrp modes: (a,d) 2 s, (b,e) 4 s and (c,f) 12 s. The TEB injection duration and
the growth loop were kept 2 s and 150, respectively.

Finally, h-BN films with a similar thickness (2 ± 0.3 nm) were prepared using different
FME methods with 4 s NH3 injection durations by adjusting the growth loops. Figure 8
shows the surface morphology of h-BN films grown by four FME methods. The surface
roughness decreases after introducing the growth interruption. The sample using the
NH3/Itrp/TEB/Itrp growth mode has the smoothest surface because of the enhanced
surface mobility of B adatoms and weakened parasitic reaction.

In Figure 9a,c, the characteristic peaks of h-BN are significant in FTIR and Raman
spectra for all samples. The sapphire substrate has a characteristic peak at 1353.8 cm−1

(marked as peak1) in Figure 9c. It might interfere the observation of the characteristic peak
of thin h-BN, which is around 1370 cm−1 contributed by the E2g vibration mode [54]. Hence,
we used multi-peaks gaussian fitting to obtain the calibrated FWHM values and the Raman
shifts of h-BN. The fitted FWHM values of fixed peak1 is around 37 cm−1 for all samples,
confirming that the fitting results are reliable. The h-BN sample under NH3/Itrp/TEB FME
mode has the narrowest FWHM values of characteristic FTIR and Raman peaks, 26 cm−1

and 23 cm−1, respectively, indicating that h-BN with excellent crystalline quality can be
achieved by solely introducing an interruption after the NH3 injection. The passivation
of the N-terminals can be efficiently eliminated during the interruption, thus promote the
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lateral merging of nucleation islands, and improve the crystallinity of h-BN. On the other
hand, the relative slow growth rate reduces the concentration of N-related defects.

Crystals 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 7. Schematic growth model of h-BN grown by NH3/TEB (a,b,c-1,d-1), NH3/Itrp/TEB (a,b,c-

2,d-2,e-2), NH3/Itrp/TEB (a,b,c-1,d-3,e-3) and NH3/Itrp/TEB/Itrp (a,b,c-2,d-2,e-4,f-4). 

 

Figure 8. The AFM images of 2-nm-thick BN films grown by four FME modes: (a) NH3/TEB, (b) 

NH3/Itrp/TEB, (c) NH3/TEB/Itrp, (d) NH3/Itrp/TEB/Itrp. 

In Figure 9a,c, the characteristic peaks of h-BN are significant in FTIR and Raman 

spectra for all samples. The sapphire substrate has a characteristic peak at 1353.8 cm−1 

(marked as peak1) in Figure 9c. It might interfere the observation of the characteristic peak 

of thin h-BN, which is around 1370 cm−1 contributed by the E2g vibration mode [54]. Hence, 

we used multi-peaks gaussian fitting to obtain the calibrated FWHM values and the Ra-

man shifts of h-BN. The fitted FWHM values of fixed peak1 is around 37 cm−1 for all sam-

ples, confirming that the fitting results are reliable. The h-BN sample under NH3/Itrp/TEB 

FME mode has the narrowest FWHM values of characteristic FTIR and Raman peaks, 26 

cm−1 and 23 cm−1, respectively, indicating that h-BN with excellent crystalline quality can 

be achieved by solely introducing an interruption after the NH3 injection. The passivation 

of the N-terminals can be efficiently eliminated during the interruption, thus promote the 

lateral merging of nucleation islands, and improve the crystallinity of h-BN. On the other 

hand, the relative slow growth rate reduces the concentration of N-related defects. 

        

   

                              

                

        

   

                  

        

   

                         

        

   

                             

        

   

                             

        

   

                          

        

   

                 

        

   

                             

        

   

        

   

                         

        

   

                             

 

 

 

 

 

       

            

            

                 

    

     
                                                           

            

         

                              

   

Figure 7. Schematic growth model of h-BN grown by NH3/TEB (a,b,c-1,d-1), NH3/Itrp/TEB
(a,b,c-2,d-2,e-2), NH3/Itrp/TEB (a,b,c-1,d-3,e-3) and NH3/Itrp/TEB/Itrp (a,b,c-2,d-2,e-4,f-4).
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Figure 8. The AFM images of 2-nm-thick BN films grown by four FME modes: (a) NH3/TEB,
(b) NH3/Itrp/TEB, (c) NH3/TEB/Itrp, (d) NH3/Itrp/TEB/Itrp.
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Figure 9. (a) FTIR spectra, (b) the variations of FWHM of Eu1 peaks, (c) Raman spectra and (d) the
variations of FWHM (left axis in black) and location of E2g (right axis in red) of the h-BN with a
similar thickness grown by four FME modes.
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4. Conclusions

In summary, the effect of the growth interruption on the surface morphology and
crystalline quality of h-BN by MOCVD was investigated. It was found that the growth
interruption after the TEB injection could enhance the surface mobility of B adatoms
and improve the growth rate of h-BN dramatically; while the growth interruption after
the NH3 injection could eliminate the N-terminal passivation and reduce the parasitic
reactions between precursors. As a result, the h-BN film grown in the NH3/Itrp/TEB/Itrp
mode presents the smoothest surface morphology and the fastest growth rate, providing
a feasible method to prepare thick h-BN films. The surface RMS of 24 nm-thick h-BN
film is 2.01 nm after the 150-loop NH3/Itrp/TEB/Itrp growth mode, which is lower than
that of 20 nm-thick reported in [26] (RMS = 3.77 nm). But further optimization of growth
conditions is required to suppress the concomitant incorporation of C and O impurities.
Meanwhile, thin h-BN with excellent crystalline quality can be obtained by introducing
a growth interruption solely after the NH3 injection due to the promotion of the lateral
growth of BN domains and the low concentration of defects. Under this mode, the FWHM
values of E2g peaks of 2 nm-thick h-BN is 23 cm−1, which is compatible to the results
in [26,29,30] (27–36 cm−1).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cryst13030486/s1. Figure S1: The surface morphology variations
of h-BN films grown by NH3/TEB with the growth loops; Figure S2: The surface morphology
variations of h-BN films grown by NH3/Itrp/TEB with the growth loops; Figure S3: The surface
morphology variations of h-BN films grown by NH3/TEB/Itrp with the growth loops; Figure S4:
The surface morphology variations of h-BN films grown by NH3/Itrp/TEB/Itrp with the growth
loops; Figure S5: The XPS spectra of Al 2p peak in h-BN film under four FME modes. (a) NH3/TEB,
(b) NH3/Itrp/TEB, (c) NH3/TEB/Itrp, (d) NH3/Itrp/TEB/Itrp; Figure S6: The XPS spectra of O 1s
peak in h-BN film under four FME modes. (a) NH3/TEB, (b) NH3/Itrp/TEB, (c) NH3/TEB/Itrp,
(d) NH3/Itrp/TEB/Itrp; Table S1: The variations of binding energy, FWHM and percentage content
of different bonds of B 1s, N 1s and C 1s XPS core level spectra in h-BN films by four FME modes.
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