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Abstract: The orange fluorescence of scapolite has been confirmed to be caused by (S2)−, but the
frequent blue fluorescence in gem-quality scapolite has not been well explained. An energy dispersive
X-ray fluorescence spectrometer (XRF), electron probe microanalyzer (EPMA), X-ray powder diffrac-
tometer (XRD), Fourier transform infrared spectrometer (FTIR), Raman spectrometer, ultraviolet-
visible spectrophotometer, fluorescence spectrometer, and conventional gemological test methods
were used to study the gemological characteristics, chemical composition, coloration mechanism,
spectral characteristics, and luminescence of colorless and yellow scapolite. The results show that
both yellow and colorless scapolites are mizzonite and that they share the same gemological and
spectroscopic characteristics. The results of XRD, FIRT, and Raman spectra show that the yellow
scapolite has the same structure as the colorless scapolite. The yellow color of scapolite is caused
by Fe3+ and when the Fe content is low it is colorless. Yellow scapolite has about three times the Fe
content of colorless scapolite. Under the excitation of long-wave and short-wave ultraviolet light,
scapolite forms a strong and wide excitation peak in the blue-violet region centered at approximately
410 nm, which is due to the 4f1 → 5d1 of Ce3+, resulting in blue fluorescence.

Keywords: scapolite; gemological characteristics; coloration mechanism; luminescence

1. Introduction

Scapolite is a feldspathoid mineral. Feldspathoid is a kind of framework silicate with
a similar chemical composition to feldspar. Different from feldspar, the Si:Al value of
these minerals is less than three, and the structure is more open, with larger voids that
can accommodate large radius cations and larger additional anions. They are produced
under conditions rich in alkali and poor in silicon and do not coexist with quartz. For
example, nepheline, leucite, etc. Since the discovery of gem-grade scapolite in Myan-
mar, various colors of scapolites have been found all over the world. Currently, known
origins are Madagascar, Mozambique, Tanzania, Brazil, Canada, et al. [1,2]. Scapolites
are rich in color, and common colors are colorless, yellow, purple, and pink, in addi-
tion to orange, green, blue, and so on [1]. Marialite (Na4Al3Si9O24Cl) and meionite
(Ca4Al6Si6O24CO3) are two end-member minerals of scapolite [3,4]. They are completely
homogeneous, and the intermediate minerals are mizzonite and leicolite. The value of
Me% (Me% = (Ca + Sr)/(Ca + Sr + Na + K) × 100%) is generally used as a criterion to dis-
tinguish the types of scapolite. When the value of Me% is 0~20%, it is marialite; when the
value of Me% is 20~50%, it is leicolite; when the value of Me% is 50~80%, it is mizzonite;
when the value of Me% is 80~100%, it is meionite [5].

Previous research on scapolite has mainly focused on geochemistry, crystal structure,
spectroscopic properties, luminescence, coloration mechanism, etc., while the research on
the gemological characteristics of scapolite is relatively less. Scapolite is rich in the halogen
element Cl, but unlike other chlorine-containing minerals, scapolite contains almost no
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OH, so its chemical composition can be used as a tracer for Cl and CO2 content, instead of
relying on f H2O [6,7]. Zeng et al. used the combination of halogen geochemistry and other
fluid tracers (such as B and Sr isotopes) in cristobalite to study the origin and evolution of
fluids in magmatic-hydrothermal systems [8]. The crystal structure of scapolite was first
proposed by Pauling [9]. Schiebold and Seumel [10] and then Paike [11] improved this
result and proposed that there are two space groups, I4/m and P42/n, in scapolite. Finally,
Antao proposed that the type of space group of scapolite depends on Me%. When Me%
is 18~90%, it is P42/n, otherwise it is I4/m [12]. The infrared spectra of scapolite were
systematically investigated by Wehrenberg et al. They classified the infrared spectra of
scapolite into three vibrational modes. The first one is the vibration caused by carbonate
ions; the second one is the vibration caused by discrete tetrahedra, which is stable and
does not vary with chemical composition; the third one is the structural mode, whose wave
number varies with the chemical composition [13]. Swayze complemented the study of
the vibration caused by HCO3

− and HSO4
− in the mid-infrared region of scapolite [14].

Elken et al. found that the luminescence intensity of the scapolite after heat treatment
at 1000 ◦C is enhanced 117-fold, and this enhancement is very stable, indicating that the
scapolite is an excellent luminescent material. At the same time, he found that the crystal
structure of scapolite did not change significantly before and after heat treatment. Therefore,
he presumed that the reason for the enhanced luminescence of scapolite was the conversion
of SO3

2− and SO4
2− into (S2)− [15], and Blumentritt also proved in subsequent studies

that the orange fluorescence of scapolite was indeed caused by (S2)− [16]. Choudhary et al.
analyzed the UV-visible spectrum of purple scapolite and found that purple scapolite had a
broad absorption peak centered at 550 nm, which was the absorption peak of Fe. Therefore,
they feel that Fe plays a decisive role in the formation of the purple color of scapolite [2]. As
a minority gemstone, the gemological characteristics and coloration mechanism of scapolite
still lack systematic research. The study of its infrared spectra and Raman spectra is not
complete, and the peak position of scapolite Raman spectra still lack a systematic and
comprehensive assignment. Therefore, the study on the coloration mechanism and spectral
characteristics of different color scapolite may be helpful to better identify and distinguish
them in the future.

In this paper, the gemological characteristics and appearance characteristics of the
samples were studied by conventional gemological testing methods. The spectral character-
istics and crystal structure of scapolites were analyzed by an XRD, an infrared spectrometer,
and a Raman spectrometer. The coloration mechanisms of different color scapolites were
studied by UV-Vis spectrophotometer. The chemical composition of scapolite was studied
by EPMA and XRF. The fluorescence of scapolite was tested and analyzed by a fluorescence
spectrometer. The above work summarizes the gemological characteristics, spectroscopic
characteristics, and coloration mechanism of yellow scapolite, improves the related research
of scapolite, and provides a theoretical basis for the future identification of scapolite. In
addition, the origin of blue fluorescence of natural gem-grade scapolite is discussed for the
first time, which expands our understanding of scapolite.

2. Materials and Methods
2.1. Materials

The common colorless, yellow scapolites on the market were selected. Samples were
from the original stone suppliers. Yellow scapolites were from Mozambique in Africa, and
colorless scapolites were from Madagascar. The sample numbers were cl-1~3 and y-1~15,
respectively. As shown in Figures 1 and 2, the colorless samples are carved gems, and the
yellow are the original stones. The colorless samples are smaller in size, and the yellow
samples are larger. Each sample has at least one polished surface.
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2.2. Methods 
Using a gem polarizing mirror, refractometer, specific gravity scale, and so on, to test 

the lightness, axiality, refractive index, birefringence, and specific gravity. The surface and 
internal characteristics of the scapolites were observed using a GI-MP22 gemological mi-
croscope. 

In order to obtain the composition of colorless and yellow scapolite and the content 
of rare earth elements, XRF, EMPA, and ICP-MS were used, respectively. 

The EDX-7000 X-ray fluorescence spectrometer produced by Shimadzu Company of 
Japan (Kyoto, Japan) was used for semi-quantitative component detection of the sample. 
The main experimental conditions are as follows: experimental voltage 50 kV; direct cur-
rent 833 μA; collimator 5 mm (colorless sample 1 mm); vacuum atmosphere; the element 
analysis range is 11Na~92U. 

The main elements of the samples were determined by a JXA-8230 electron micro-
probe (EPMA, Joel, Japan) of the Beida Microfabrication Laboratory. The main experi-
mental conditions are as follows: an accelerating voltage of 15 kV; a beam current of 50.4 
nA; and a beam diameter of 5 μm. 

ICP-MS is a very common and effective test method for detecting trace elements in 
minerals [17]. The trace elements in the columnar powder samples were determined by 
the Agilent-7700 (Agilent, America) ICP-MS of the sci-go testing mechanism. 

It is necessary to compare the spectral characteristics and crystal structure of colorless 
and yellow cristobalite, so we used an XRD, a Raman spectrometer, and an infrared spec-
trometer. 

The crystal structure of the sample was determined by the Smart Lab X-ray diffrac-
tometer (D8 Focus, XBruker, Germany) of the School of Materials, China University of 
Geosciences (Beijing, China). The main experimental conditions are as follows: voltage 45 
kV; scanning speed 10°/min; scan range 5~80°. 

Figure 1. Pictures of colorless scapolites.
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Figure 2. Pictures of yellow scapolites.

2.2. Methods

Using a gem polarizing mirror, refractometer, specific gravity scale, and so on, to test the
lightness, axiality, refractive index, birefringence, and specific gravity. The surface and internal
characteristics of the scapolites were observed using a GI-MP22 gemological microscope.

In order to obtain the composition of colorless and yellow scapolite and the content of
rare earth elements, XRF, EMPA, and ICP-MS were used, respectively.

The EDX-7000 X-ray fluorescence spectrometer produced by Shimadzu Company of
Japan (Kyoto, Japan) was used for semi-quantitative component detection of the sample.
The main experimental conditions are as follows: experimental voltage 50 kV; direct current
833 µA; collimator 5 mm (colorless sample 1 mm); vacuum atmosphere; the element
analysis range is 11Na~92U.

The main elements of the samples were determined by a JXA-8230 electron microprobe
(EPMA, Joel, Japan) of the Beida Microfabrication Laboratory. The main experimental
conditions are as follows: an accelerating voltage of 15 kV; a beam current of 50.4 nA; and a
beam diameter of 5 µm.

ICP-MS is a very common and effective test method for detecting trace elements in
minerals [17]. The trace elements in the columnar powder samples were determined by the
Agilent-7700 (Agilent, America) ICP-MS of the sci-go testing mechanism.

It is necessary to compare the spectral characteristics and crystal structure of colorless
and yellow cristobalite, so we used an XRD, a Raman spectrometer, and an infrared
spectrometer.

The crystal structure of the sample was determined by the Smart Lab X-ray diffrac-
tometer (D8 Focus, XBruker, Germany) of the School of Materials, China University of
Geosciences (Beijing, China). The main experimental conditions are as follows: voltage
45 kV; scanning speed 10◦/min; scan range 5~80◦.

The Vcctor33 Fourier transform infrared spectrometer produced by Brucker in Ger-
many (Bremen, Germany) was used to test by the direct reflection method. The experimen-
tal conditions were as follows: a test range of 400~2000 cm−1; a resolution of 4 cm−1; a
sample scan time of 32 s.
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The Raman spectra of the samples were measured by an HR-Evolution microlaser
Raman spectrometer produced by HORIBA, Kyoto, Japan. The test conditions were as
follows: the measurement range was 100~1600 cm−1; the integration time was 3 s; the laser
wavelength was 532 nm. The test environment was as follows: room temperature 18 ◦C,
humidity: 33%, 220 V, 10 A.

UV-Vis is necessary for discussing the coloration mechanism of yellow scapolite.
The samples were tested by UV-3000 ultraviolet-visible spectrophotometer produced by
Shimadzu, Japan. Test conditions were as follows: the test method was transmission; the
wavelength range was 300~800 nm; the scanning speed was medium speed; the slit width
was 20; the atmosphere was a vacuum.

In order to analyze the luminescence of colorless and yellow scapolite, we used a
fluorescence spectrometer. The FLS920 series of fully functional steady-state/transient
fluorescence spectrometers produced by the Edinburgh Company (Edinburgh, UK) of
China University of Geosciences (Beijing) was used. The experimental conditions were as
follows: the excitation light source was a 450 W xenon lamp; the voltage was 450 V; the
measuring wavelength range was 380–750 nm; the scanning speed was 240 nm/min.

The following flow chart (Figure 3) shows the various tests performed and the re-
sults obtained.
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3. Results and Discussion
3.1. Conventional Gemological Features

The colorless samples cl-1~3 are carved gemstones with a glassy luster, good trans-
parency, and visible black mineral inclusions inside (Figure 4a), the halo can also be seen at
the healing crack (Figure 4d). The rest of the samples are original stones, glass to grease
luster, good transparency, the phenomenon of parallel connection can be seen on the surface
(Figure 4b), the development of a shell-like fracture (Figure 4c), the complete cylindrical
cleavage can be seen (Figure 4e), and the columnar longitudinal lines are very developed
(Figure 4f).
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Figure 4. Surface and internal characteristics of scapolite. (a) Corresponding to cl-1, (b) corresponding
to y-15, (c) corresponding to y-4, (d) corresponding to cl-2, (e) corresponding to y-6, (f) corresponding
to y-13.

The samples rotate 360◦ under orthogonal polarization, and there are four bright and
four dark phenomena. The ‘black cross’ interferogram can be seen under the cone light
microscope, which is a uniaxial crystal heterogeneity. As shown in Table 1, the refractive
index range is roughly 1.54–1.56, the maximum refractive index of colorless and yellow
samples exceeds 1.560, and the birefringence is above 0.014. In general, meionite (Me) has
a higher refractive index than marialite (Ma), and as Me% increases, the refractive index
increases accordingly [18–21]. The specific gravity of the two colors of scapolite is basically
the same, and the specific gravity of both colorless and yellow samples is 2.63–2.65. There
is a direct relationship between the specific gravity and composition of scapolite. In the
two end-member minerals of scapolite, the proportion of meionite (Me) is larger than that
of marialite (Ma) [16,19]. The content of meionite in scapolite increases, and the specific
gravity increases accordingly. Based on the above experimental results, the content of
meionite in the colorless and yellow scapolite in this paper should be similar. Subsequent
EPMA experimental results can also prove this view.

Table 1. Conventional gemological properties of scapolite.

Sample
Number Color Luster Transparency Specific

Gravity
Refractive

Index Birefringence

cl-1 Colorless Vitreous luster Opaque 2.65 1.543–1.564 0.021
cl-2 Colorless Vitreous luster Opaque 2.64 1.548–1.562 0.014
cl-3 Colorless Vitreous luster Opaque 2.64 1.545–1.561 0.016
y-1 Yellow Vitreous luster Opaque 2.65 1.535–1.562 0.027
y-2 Yellow Vitreous luster Opaque 2.65 1.546–1.560 0.014
y-3 Yellow Vitreous luster Opaque 2.64 1.543–1.558 0.015
y-4 Yellow Vitreous luster Opaque 2.64 1.543–1.562 0.019
y-7 Yellow Vitreous luster Opaque 2.63 1.545–1.560 0.015
y-9 Yellow Vitreous luster Opaque 2.64 1.545–1.561 0.016

y-10 Yellow Vitreous luster Opaque 2.65 1.545–1.561 0.016

3.2. Composition and Crystal Structure Analysis of Scapolite
3.2.1. X-ray Fluorescence Spectrum and EPMA Analysis

EPMA is a very important method in quantitative analysis of mineral composi-
tion [22,23]. As shown in the supporting document (shown in Tables S1 and S2 see
supplementary materials), XRF test results show that the main components of scapolite are
Si and Al, in addition to Na, Ca, Fe, K, S, Sr, Br, and trace Mn, Cu, Zn, Rb, Pb, etc. The
EPMA data show that the contents of Al2O3 and SiO2 in colorless and yellow scapolite are
very close. The contents of Al2O3 are 16.185% and 15.83%, respectively, and the contents
of SiO2 are 65.355% and 66.490%, respectively. The content of Na2O in colorless scapolite
is 5.32%, which is significantly higher than that in yellow scapolite (1.48%). However,
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the content of CaO in yellow scapolite is 8.635%, which is higher than that in colorless
scapolite (6.39%), which is also the reason for the large difference in Me% between the
two. Through calculation, the Me% of colorless scapolite cl-2 is 51.10%, and the Me% of
yellow scapolite y-1 is 77.30%, which belongs to mizzonite. This is also the reason why the
two have little difference in specific gravity, refractive index, and birefringence. It is worth
noting that there are differences in the Fe content between colorless and yellow scapolite.
The Fe content in yellow scapolite is nearly three times that of colorless scapolite; therefore,
the difference in Fe content will be a breakthrough for us to discuss the color difference of
scapolite. The relevant content will be discussed in more detail in the UV-Vis section.

3.2.2. XRD Analysis

As shown in Figure 5, the XRD patterns of colorless and yellow scapolite are basically
consistent with the standard card PDF # 76-0892. This indicates that there is no structural
difference between scapolites of different colors. The XRD peak of the sample is sharp,
which indicates that scapolite has high crystallinity. The strongest diffraction peak of
scapolite is 25.779◦ in 2-Theta, followed by 23.367◦, 25.100◦, 29.264◦, 29.652◦, 32.833◦,
and 33.350◦. In addition, there is a densely arranged diffraction peak group between 47◦

and 48.5◦. The space group of yellow scapolite y-5 is P42/n, the unit cell parameters are
a0 = b0 = 1.2060 nm, c0 = 0.7579 nm, α = β = γ= 90◦, and the unit cell volume is 1.10241 nm3.
The space group of colorless scapolite cl-3 is P42/n, and the unit cell parameters are
a0 = b0 = 1.2045 nm, c0 = 0.7564 nm, α = β = γ = 90◦, and the unit cell volume is 1.09728 nm3.
Elena et al. found that the unit cell parameter a0 in scapolite is positively correlated with
the value of Me% [24]. Therefore, the reason for the unit cell parameters between the two
scapolites is the different Me% values. According to the results of XRF and EPMA, the Me%
value in yellow samples is higher than that in colorless samples, so the a0 value of y-5 is
higher than that of cl-3.

Crystals 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

calculation, the Me% of colorless scapolite cl-2 is 51.10%, and the Me% of yellow scapolite 
y-1 is 77.30%, which belongs to mizzonite. This is also the reason why the two have little 
difference in specific gravity, refractive index, and birefringence. It is worth noting that 
there are differences in the Fe content between colorless and yellow scapolite. The Fe con-
tent in yellow scapolite is nearly three times that of colorless scapolite; therefore, the dif-
ference in Fe content will be a breakthrough for us to discuss the color difference of scap-
olite. The relevant content will be discussed in more detail in the UV-Vis section. 

3.2.2. XRD Analysis 
As shown in Figure 5, the XRD patterns of colorless and yellow scapolite are basically 

consistent with the standard card PDF # 76-0892. This indicates that there is no structural 
difference between scapolites of different colors. The XRD peak of the sample is sharp, 
which indicates that scapolite has high crystallinity. The strongest diffraction peak of 
scapolite is 25.779° in 2-Theta, followed by 23.367°, 25.100°, 29.264°, 29.652°, 32.833°, and 
33.350°. In addition, there is a densely arranged diffraction peak group between 47° and 
48.5°. The space group of yellow scapolite y-5 is P42/n, the unit cell parameters are a0 = b0 
= 1.2060 nm, c0 = 0.7579 nm, α = β = γ= 90°, and the unit cell volume is 1.10241 nm3. The 
space group of colorless scapolite cl-3 is P42/n, and the unit cell parameters are a0 = b0 = 
1.2045 nm, c0 = 0.7564 nm, α = β = γ = 90°, and the unit cell volume is 1.09728 nm3. Elena et 
al. found that the unit cell parameter a0 in scapolite is positively correlated with the value 
of Me% [24]. Therefore, the reason for the unit cell parameters between the two scapolites 
is the different Me% values. According to the results of XRF and EPMA, the Me% value 
in yellow samples is higher than that in colorless samples, so the a0 value of y-5 is higher 
than that of cl-3. 

 
Figure 5. The XRD patterns of colorless and yellow scapolite. 

3.3. Spectroscopy Analysis of Scapolite 
3.3.1. Infrared Spectra Analysis 

The scapolite samples of two colors were tested by infrared spectroscopy. The reflec-
tion method and transmission method were used to test the scapolite samples, and the 
infrared spectral characteristics of different colors were compared. 

Figure 6 shows that all samples show the typical infrared spectral characteristics of 
scapolite, which is consistent with card #R040043 in the RRUFF database. To prevent the 
difference caused by different crystallographic orientations during the test, the direction 
selected during the test is perpendicular to the crystal axis c axis. The absorption peak 
near 414 cm−1 is caused by the bending vibration of Si-O-Si (Al). The absorption peaks at 
457 cm−1, 493 cm−1, and 549 cm−1 are caused by the coupling of the bending vibration of O-
Si-O and the stretching vibration of Ca (Na)-O. Except for the weak absorption peak near 

Figure 5. The XRD patterns of colorless and yellow scapolite.

3.3. Spectroscopy Analysis of Scapolite
3.3.1. Infrared Spectra Analysis

The scapolite samples of two colors were tested by infrared spectroscopy. The reflection
method and transmission method were used to test the scapolite samples, and the infrared
spectral characteristics of different colors were compared.

Figure 6 shows that all samples show the typical infrared spectral characteristics of
scapolite, which is consistent with card #R040043 in the RRUFF database. To prevent the
difference caused by different crystallographic orientations during the test, the direction
selected during the test is perpendicular to the crystal axis c axis. The absorption peak
near 414 cm−1 is caused by the bending vibration of Si-O-Si (Al). The absorption peaks at
457 cm−1, 493 cm−1, and 549 cm−1 are caused by the coupling of the bending vibration
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of O-Si-O and the stretching vibration of Ca (Na)-O. Except for the weak absorption peak
near 493 cm−1, the other absorption peaks are sharp and strong. The absorption peak
at 622 cm−1 is caused by the bending vibration of O-Si(Al)-O. The absorption peak at
686 cm−1 is the absorption peak of CO3

2− [24], which is directly related to the content of
meionite. The intensity of this absorption peak in colorless and yellow cristobalite is weak.
The 729 cm−1 and 750 cm−1 are caused by the stretching vibration of Si-Al (Si), and the
absorption peaks are weak. The absorption peaks at 848 cm−1, 1415 cm−1, and 1523 cm−1

are also the characteristic absorption peaks of CO3
2−, which are caused by the bending

vibration of CO3
2− and the asymmetric stretching vibration of CO3

2−, respectively [3,14].
These absorption peaks are very weak and almost invisible, and the absorption peak at
1523 cm−1 will decrease with the increase in the Me% value [25], which also indicates that
the value of Me% in the experimental sample is relatively high. The absorption peaks at
950 cm−1, 970 cm−1, and 1035 cm−1 are caused by the stretching vibration of Si (Al)-O. It is
worth noting that the absorption peaks of the yellow sample are split into two absorption
peaks at 950 cm−1 and 970 cm−1, while the colorless sample has only one weak vibration.
The absorption peak at 1035 cm−1 is related to Si-O, while the absorption peak at 950 cm−1

depends on Al-O [13], so this may be related to the content of Al in the colorless sample.
The degree of substitution of Al for Si is greater than that of yellow samples. The absorption
peaks 1107 cm−1, 1195 cm−1, and 1217 cm−1 are strong and sharp [13] and are caused by
the stretching vibration of Si-O.
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The test range of the transmission method is 2000–4000 cm−1. From the experimental
results, the spectra of the colorless sample and the yellow sample are consistent. The
absorption peaks at 2503 cm−1 and 2632 cm−1 are both absorption peaks of carbonate,
which are caused by the symmetric and antisymmetric stretching vibration of CO3

2−. The
absorption peaks at 2885 cm−1 and 2962 cm−1 are attributed to the first-order frequency
doubling peak of CO3

2− antisymmetric stretching vibration. The absorption peak at
3051 cm−1 is attributed to the stretching vibration of M-OH. 3587 cm−1 and is caused by
the symmetric stretching vibration of O-H [24].
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3.3.2. Raman Spectra Analysis

The Raman spectra of two color scapolites were tested, and the experimental results
are shown in Figure 7. The results show that the Raman spectra of colorless and yellow
samples are completely consistent, which is consistent with # R040043 in RRUFF. Unlike
the study of infrared spectroscopy, scapolite has not received enough attention in the study
of Raman spectroscopy. There is a lack of research on Raman spectroscopy and its peak
assignment in the literature. Therefore, this paper will combine the previous research,
synthesize the above crystal structure research, and analyze and assign its peak position
with reference to the framework silicate.
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There are eleven obvious absorption peaks in the range of 100–1500 cm−1, including
two strong absorption peaks, six moderate absorption peaks, and three weak absorption
peaks. Predecessors have carried out a lot of research on the Raman spectra of silicate
minerals. You et al. found that the Raman peaks below 400 cm−1 corresponded to the
vibration of M-O and the lattice vibration mode between lattice skeletons [26].

Therefore, the absorption peaks of 108 cm−1, 162 cm−1, 263 cm−1, 300 cm−1, 336 cm−1,
and 360 cm−1 in scapolite are attributed to the vibration of M-O and lattice vibration
between lattice skeletons. The Raman peak in the range of 400–800 cm−1 is the bending
vibration or stretching vibration of the bridge oxygen (Si-O-Si) between the silicon-oxygen
tetrahedrons. Mysen [27] and McMillan et al. [28,29] proposed that the absorption peak
at 464 cm−1 is the bending vibration of bridge oxygen in the silicon-oxygen tetrahedral
structural unit, so the absorption peak at 459 cm−1 in scapolite should be attributed to
the bending vibration of Si-O-Si. There is also an absorption peak from 500–550 cm−1 for
nepheline and sodalite, which are also feldspathoids minerals. Pan et al. calculated it using
the Dmol3DFT quantum mechanics program. The results show that it is caused by the bend-
ing vibration of Si-Obr [30]. Therefore, it is speculated that the spectral peak of scapolite at
537 cm−1 belongs to the bending vibration of Si-Obr. Pan et al. found that the absorption
peak in the range of 700–800 cm−1 was caused by the symmetric stretching vibration caused
by the non-bridging oxygen of AlIV-Onb tetracoordinate aluminum [30]. Therefore, the
absorption peak at 773 cm−1 in scapolite should be attributed to the symmetric stretching
vibration caused by the non-bridging oxygen of AlIV-Onb tetracoordinate aluminum. Previ-
ous studies have shown that the absorption peak in the range of 800–1200 cm−1 is caused
by the non-bridging oxygen symmetric stretching vibration between Si-Onb of the silicon-
oxygen tetrahedron [31,32], and the characteristic peak will have a significant left shift as
AlIV enters the silicate skeleton. The sodalite, which belongs to the same group as scapolite,
has an absorption peak of 992 cm−1, and the nepheline, which is also a feldspathoids
mineral, has an absorption peak of 982 cm−1 and 1103 cm−1 [30]. Therefore, the absorption
peaks at 990 cm−1 and 1110 cm−1 should be attributed to the non-bridge oxygen symmetric
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stretching vibration between Si-Onb. Based on the above discussion, the spectral peaks of
scapolite are summarized in Table 2.

Table 2. Assignment of Raman spectra of scapolite.

M-O Lattice
Vibration

Si-O-Si Bending
Vibration

Si-Obr Symmetric
Bending

Vibrations

AlIV-Onb
Symmetric
Stretching
Vibrations

Si -Onb
Symmetric
Stretching
Vibrations

Raman
characteristic
peak/cm−1

108 cm−1, 162 cm−1

263 cm−1, 300 cm−1

336 cm−1, 360 cm−1
459 cm−1 537 cm−1 773 cm−1 990 cm−1

1110 cm−1

3.3.3. UV-Vis Analysis

There are few studies on the coloration mechanism of scapolite. Choudhary et al.
proposed that the absorption band of purple scapolite at 550 nm is produced by Fe3+, which
is also the reason why scapolite is purple [2]. However, there is still a lack of complete
analysis and research on the coloration mechanism of yellow scapolite. Because scapolite is
a feldspathoids mineral and has a similar structure to feldspar, the analysis of the coloring
mechanism of scapolite in this paper mainly refers to the previous research results on the
coloring mechanism of feldspar.

As shown in Figure 8, the experimental results show that the absorption spectra of
colorless and yellow scapolite are almost the same, and the main absorption bands of
scapolite exist near 380 nm, 420 nm, 530 nm, and 657 nm. Fe3+ in the framework silicate
will replace Al and Si in the backbone of the structure, causing absorption peaks near
377 nm, 417 nm, 442 nm, and 483 nm [33]. The electronic configuration of Fe3+ is 3d5, and
there is only one sixfold degenerate ground state energy level 6A1. Therefore, scapolite
has a narrow absorption band at 380 nm, which is caused by the 6A1→4E(4D) transition of
Fe3+. The full width at half maximum of the absorption band at 420 nm is wider, which is
caused by 6A1→4T2(4D) of Fe3+. The absorption at 460 nm is caused by the 6A1→4A1

4E(4G)
transition [34,35]. The red labradorite found in the United States contains a much higher Cu
content than ordinary feldspar, which also gives it an absorption peak at 569 nm [36]. The
red feldspar treated by Cu diffusion found in the market has absorption peaks at 565 nm
and 660 nm [37]. Therefore, the absorption peaks at 568 nm and 657 nm in scapolite are
related to the trace Cu element contained in it, which is produced by Cu→Cu+. Of course,
from Figure 7, we can easily see that the absorption of the blue-purple region is significantly
stronger than that of the red region, so scapolites will show yellow. Therefore, we prefer
that Fe3+ is the chromophore of the yellow scapolite, while Cu is almost ineffective.
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Through the above discussion, combined with the results of component analysis, we
put forward a point of view. The scapolite is yellow because it contains a certain amount of
Fe. For example, the Fe content in the yellow sample y-1 in this paper is 0.32%. When the
Fe content is low, it is colorless. For example, the Fe content in the colorless sample cl-2
in this paper is 0.11%. This view can be supported by previous studies—Yellow feldspar
contains more Fe than colorless feldspar, which makes the two colors different [38]. Based
on the above discussion, the yellow color of scapolite is caused by the combination of Fe3+

and Cu, in which Fe3+ plays a decisive role, which is the main reason for the yellow color
of scapolite, and the role of Cu needs further study.

3.4. Luminescence Properties of Scapolite

Different from the orange fluorescence found by previous scholars, the yellow and
colorless Scapolite studied in this paper showed blue fluorescence. The excitation spectra of
colorless and yellow scapolite collected under 254 nm and 365 nm excitation light sources
are shown in Figure 9a, and the image of their color coordinates on CIE1931 is shown in
Figure 9b. The results showed that colorless and yellow scapolite fluoresced blue under
both long-wave UV and short-wave UV, but the fluorescence intensity of scapolite is much
stronger under 254 nm excitation, which is intuitively manifested by the more intense
blue fluorescence of the colorless sample. In the short-wave region, scapolite has a broad
strong excitation peak centered at 410 nm, which is the reason for its blue fluorescence.
The experimental results of ICP-MS of y-5 and cl-3 samples (shown in Table S3 in the
supporting document) show that scapolite samples contain rare earth elements Ce, Eu,
La, Lu, Nd, Th, Tm, Y, and Yb. Obviously, the strong excitation at 410 nm is produced
by 4f1 → 5d1 of Ce3+ [39], which is the reason for the blue fluorescence of the scapolite.
The excitation in the range of 450–500 nm is produced by other rare earth elements in the
scapolite. In the red region, there is a very obvious strong excitation band in scapolite,
which shows broadband centered at 690 nm under the excitation of 365 nm, and a narrow
excitation peak centered at 738 nm under the excitation of 254 nm. This is mainly caused
by the presence of (S2)− dimer in scapolite, which is also the reason why scapolite exhibits
orange fluorescence [15,16]. However, it is obvious that the excitation of the blue region is
much stronger than that of the red region in the scapolite, so the scapolite still exhibits blue
fluorescence as a whole. In summary, scapolite has two very strong excitation centers both
in the short-wave and long-wave UV. The rare earth elements make scapolite appear blue
in fluorescence, in which Ce3+ plays a dominant role.
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4. Conclusions

In summary, the Raman peaks of scapolite were assigned completely, and the gemo-
logical characteristics, crystal structure, and chemical composition of colorless and yellow
scapolite were systematically compared. The coloration mechanism of yellow scapolite was
obtained, and the origin of blue fluorescence of scapolite was discussed for the first time.
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The refractive index of colorless and yellow scapolite is 1.535–1.564, the birefringence
range is 0.014–0.027, and the specific gravity is 2.63–2.65. The infrared spectra and Raman
spectra of colorless and yellow scapolite are identical, which is consistent with the standard
spectra of scapolite. The Me% values of colorless scapolite and yellow scapolite are 51.10%
and 77.30%, respectively. This means that both of them are mizzonite, so they have
very consistent gemological characteristics and crystal structures. The results of UV-Vis
showed that the scapolite was yellow because of the presence of Fe3+. The 6A1→4E(4D),
6A1→4T2(4D) and 6A1→4A1

4E(4G) of Fe3+ in scapolite were observed. This makes the
scapolite appear yellow. The difference in Fe content is the reason for the color difference
between colorless scapolite and yellow scapolite. Additionally, the Fe content in colorless
scapolite is only one-third of that in yellow scapolite, so it is colorless. The blue fluorescence
is caused by the 4f1 → 5d1 transition of Ce3+, which makes scapolite form a strong and
wide excitation band centered at 410 nm. Given the high consistency between yellow
scapolite and colorless scapolite in the above studies, these two scapolites should be the
same type. These conclusions are helpful to the identification of scapolite and deepen the
understanding of the coloration mechanism of scapolite. This paper makes a preliminary
explanation for the blue fluorescence phenomenon of gem-grade scapolite, which may
provide a new perspective for the future study of the tenebrescence of scapolite.
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