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Abstract: Two Ni(II) complexes with the formula [{Ni(dppf)}2{(L1)2}](PF6)2 (Ni-I) and [{Ni(dppe)}2

{(L1)2}](PF6)2 (Ni-II) were prepared by reacting [Ni(dppf)Cl2] and [Ni(dppe)Cl2] (dppf = 1,1′-Bis-
(diphenylphosphino)ferrocene; dppe = 1,2-Bis-(diphenylphosphino)ethane) with secondary amine
piperazine derived ligand disodium bis-(dithiocarbamate)piperazine ((piper(dtc)2 = L1) and counter
anion PF6

−. These complexes were characterized by elemental analyses, FT-IR, 1H, 13C and 31P NMR,
UV-Vis. spectroscopy and single crystal X-ray diffraction. The X-ray analyses reveal centrosymmetric
structures where each Ni(II) centre adopts distorted square planar geometry defined by two sulfur
centres of dithiocarbamate ligand and two phosphorus centres of dppf and dppe ligands in Ni-I
and Ni-II, respectively. The supramolecular framework of both Ni-I and Ni-II are sustained by
C-H· · ·π and C-H· · · F interactions, and they also display interesting intramolecular C-H· · ·Ni
anagostic interactions. Further, the nature of these interactions are studied using Hirshfeld surface
analyses, DFT and quantum theory of atoms in molecules (QTAIM) calculations. Additionally,
non-covalent interaction (NCI) plot analyses were conducted to gain additional insight into these
non-covalent interactions. This work is vital in a new approach towards the rational designing of the
centrosymmetric molecules with interesting architectures.

Keywords: reduced schiff-base; X-ray crystallography; NCI; metal ions

1. Introduction

During the past few decades, significant investigations have been conducted on the
design and syntheses of coordination complexes comprising varied classes of multifunc-
tional ligands [1–5]. Amongst different varieties of ligands, dithiolates are a crucial class
that recently gained attention due to their ability to serve as poly-functional ligands [6,7].
Amongst mono-anionic dithiolates, dithiocarbamates form stable complexes with a wide range
of metals in some unusual oxidation states, viz., iron (IV), copper (III), nickel (IV) and gold (III),
in symmetric as well as in asymmetric mode and hence exhibited intriguing electrochemical
and optical properties [8–12]. In addition, these multifunctional dithiolate ligands can bind to
multiple metal centres and can create stable multimetallic aggregates [13–17]. These complexes
have industrial applications as lubricating agents, anti-oxidizing agents, fungicides, vul-
canizing agents in rubber and emissive materials. Apart from their industrial applications
and in view of their interesting crystal engineering aspects and intriguing supramolecular
aggregates, investigators working in the area of dithiolates have rationally designed and
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synthesized a variety of fascinating novel dithiocarbamate complexes that exhibit intriguing
supramolecular structures and photo-physical properties [18]. The supramolecular frame-
works in this class of complexes are stabilized by varied non-covalent interactions, such as
hydrogen bonding, S· · ·H, O· · ·H, N· · ·H, S· · · S, C–H· · ·π (chelate, CS2M), etc. [19,20].
Such non-covalent interactions demonstrate a propensity for supramolecular structures to
self-assemble in the solid state through secondary bonds [21]. Such interactions are not only
crucial for crystal engineering purpose but facilitate ion transport, sensing and recognition,
protein folding, enzyme inhibition and drug interaction with receptors [22–25].

Amongst varied dithiocarbamate-based complexes, nickel (II) complexes offer interesting
thermal, electrochemical, catalytic and optical properties. The heteroleptic Ni (II) dithiocarba-
mate complex has been found to be the potential precursor for nickel sulfides and has displayed
potential as electrocatalysts in oxygen evolution reactions (OERs) [26–30]. In addition, they had
been used as potential sensitizers in TiO2-based dye sensitized solar cells (DSSCs) [31–33]
and exhibited interesting crystal engineering through varied intermolecular interactions
and interesting anagostic Ni· · ·H interactions as well [34,35].

With these aspects in mind and in the quest of newer supramolecular interactions, in
this work, two centrosymmetric heteroleptic nickel (II) dithiocarbamates appended with
1,1′-bis-(diphenylphosphino) ferrocene (dppf) and 1,2-bis-(diphenylphosphino) ethane
(dppe) ancillary ligands were synthesized and characterized (Scheme 1). The solid-state
structures of both complexes were stabilized by varied interaction, and they also displayed
interesting intramolecular C-H· · ·Ni anagostic interactions. The natures of these interac-
tions were addressed with varied computational techniques. The important outcomes of
this study are presented herewith.
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2. Results and Discussion
2.1. Synthesis

The heteroleptic nickel complex cations with hexafluorophosphate anions were syn-
thesized by reacting disodium piperazine bis-(dithiocarbamate), potassium hexaflorophos-
phate and Ni(dppf)Cl2 (Ni-I)/Ni(dppe)Cl2 (Ni-II), in methanol and dichloromethane at
a suitable stoichiometric ratio [20] (Scheme 1). These complexes were stable under ambi-
ent conditions and soluble in halogenated solvents but insoluble in diethyl ether. These
compounds were characterized by FTIR, multinuclear NMR spectroscopic techniques and
single crystal X-ray diffraction studies.

2.2. Spectroscopy

The FTIR spectroscopic studies for both Ni-I and Ni-II revealed a band at ~1000 cm−1

that could be ascribed to symmetric bidentate vibration of CS2 of dithiocarbamate moi-
ety. The band appearing at 1435 cm−1 arises due to thioureide (N=CS2) vibration, which
indicated the existence of a partial double bond character in N=CS2 as it is lower that
the νC=N appearing between 1690–1640 cm–1 and νC–N appearing between the region
1360–1250 cm–1 [26–35]. In the 1H NMR spectra of both the complexes, resonances ap-
pearing between δ 7.26—7.97 implied the presence of aromatic protons of the dppe and
dppf [26–35], while in the case of Ni-I, signals corresponding to ferrocene entity appear at
δ 4.13–4.30 [26–35]. In 13C NMR, the stout signal at δ 200 ppm corresponds to -CS2 moiety
of bis-dithiocarbamate ligand [26–35], while other upfielded resonances matched well with
corresponding aliphatic and aromatic carbons of the main as well as the ancillary ligands.
In the {1H}31P NMR spectra, signals at δ −17.9 in Ni-I and at δ 62 for Ni-II revealed sym-
metric binding of phosphorus centres of the dppf and dppe ancillary ligands with the Ni(II)
core. Additionally, in both complexes, the appearance of a septet at δ 144.3 (J = 712 Hz)
corresponded to the hexafluorophosphate counter-anion [26–35]. The electronic absorption
spectra for both Ni-I and Ni-II were recorded dichloromethane solutions (Figure 1a). The
strong bands observed between 280–320 nm in the near UV region can be attributed to
the intraligand charge transfer transitions, while the appearance of a low energy band
in Ni-I between 420–580 nm arises due to a d-d transition originating from the Fe(II) of
ferrocenyl entity along with the contribution from cyclopentadienyl ring orbitals [36–38].
In addition, the appearance of a weak band at ~510 nm arises due to the d-d transition
corresponding to the Ni(II) centre and suggests square planar geometry around Ni(II) [36].
In addition, the emission spectra for both the complexes were recorded in the solution phase
in dichloromethane (Figure 1b). Photoluminescence studies indicated that on excitation
at ~310 nm, Ni-I displays broad emission at ~368 nm, while Ni-II also exhibited broad
but relatively less intense emission at 354 nm that could be intraligand charge transfer
transitions (Figure 1b) [26–30].
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2.3. Molecular Structure Description

For Ni-I, the single crystals were obtained from the dichlormethane:methanol mix-
ture layered with diethyl ether, while for Ni-II the single crystals were grown from the
dichlormethane:acetonitrile mixture layered with diethyl ether. The ORTEP view of both
complex cations are presented in Figure 2. The structural analyses revealed that Ni-I crys-
tallizes in monoclinic crystal system having P21/n space group comprising two molecules
in the unit cell, while Ni-II crystallizes in the triclinic crystal system with P-1 space group
having only one molecule in its unit cell. Both complexes are dicationic in nature; hence,
to maintain electroneutrality, hexafluorophosphate anions are also present along with the
complex cations Ni-I and Ni-II. The proximal geometry around both the Ni(II) in both com-
plex cations are distorted square planar wherein both Ni(II) centres are coordinated sulfur
S1 and S2 of bis-dithiocarbamate ligand. The piperazine ring acquires chair conformation,
while the phosphorus centres P1 and P2 dppf and dppe moieties satisfy the rest of the two
coordination requirements of both the Ni(II) centres in Ni-I and Ni-II, respectively. The
Ni-S1 and Ni-S2 bond lengths are 2.2220(6) Å and 2.2052(6) Å in Ni-I, respectively, while
in Ni-II they are 2.193(3) Å and 2.207(3) Å. In both complex cations, the bond lengths are
nearly identical, thereby suggesting the presence of symmetrical bidentate coordination of
the sulfur centres of bis-dithiocarbamate ligands with Ni(II) [34,35]. The Ni-P1 and Ni-P2
bond lengths in Ni-I are 2.1970(7) Å and 2.2186(6) Å, respectively, while in Ni-II they are
2.149(3) Å and 2.151(3) Å, respectively [34,35]. For Ni-I, the bite angles S1-Ni-S2 and P1-
Ni-P2 are 78.67(2)0 and 99.10(2)0, respectively, while in Ni-II, the bite angles S1-Ni-S2 and
P1-Ni-P2 are 80.57(10)0 and 87.21(12)0, respectively. The S1-Ni-S2 angle is more acute than
the P1-Ni-P2 angle because the dithiocarbamate ligand forms a strained four-membered
chelate ring. In both cases, the C-N bond lengths are 1.311(3) Å (Ni-I) and 1.300(12) Å
(Ni-II), respectively, which are intermediate with respect to the C-N (1.47 Å) and C=N
(1.28 Å) bonds, indicating a partial double bond character in the thioureide (NCS2) moiety
of bis-(dithiocarbamate) ligand [26]. These bond lengths and geometry around Ni(II) in
both complexes are comparable to the previously reported analogous dppe and dppf ap-
pended Ni(II)-dithiolates [20,31–35]. In addition, the geometry indices in Ni-I and Ni-II
are 0.16 and 0.05, respectively, which suggest that in both complex cations the geometries
are ideally square planar with slight distortions.
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Figure 2. ORTEP view of molecular structures of (a) Ni-I and (b) Ni-II. Solvent molecule and
hydrogen atoms have been omitted for clarity. Ellipsoids are constructed at 30% probability.

In both Ni-I and Ni-II, the supramolecular frameworks are sustained by C-H· · ·π and
C-H· · · F non-covalent interactions (Figures 3 and 4, respectively). In Ni-I, two types of
C-H· · ·π exist. The first one operates between the C7 carbon of the ferrocenyl ring and
the H31 hydrogen of the aromatic ring of the dppe ligand. The C-H31· · ·C7(π) interaction
is 2.787 Å with an angle C-H31· · ·C7(π) 165.56◦ (Figure 3). Another C-H· · ·π interaction
operates between the C33 carbon of the phenyl ring of the dppf ligand and the H3 hydrogen
of the ferrocene ring with C-H2· · ·C33(π) distance 2.779 Å and angle 137.80◦. Apart from
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this, the F4 fluorine of the hexafluorophosphate anion interacts strongly with the H36A
hydrogen piperazine unit with H36A· · · F4 distance of 2.481 Å and angle 138.76◦ (Figure 3).
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(b) C-H· · · F non-covalent interactions.

In Ni-II, the C-H· · ·π interaction exists between the C23 of the phenyl ring carbon
of the dppe ligand and the H2B hydrogen of the aliphatic moiety of another dppe ligand
(Figure 4). The C-H2B· · ·C23(π) interaction distance is 2.786 Å with angle 151.56◦. Further,
the robustness in the solid state framework of Ni-II is further achieved by two C-H· · · F
interactions. The first C-H· · · F interaction involves H42 of the aromatic ring of the dppe
ligand and F7 of the hexafluorophoshate anion and has separation of 2.540 Å and angle
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138.76◦, while the second interaction operates between F10 of the hexafluorophoshate anion
and H59B of the piperazine unit, having separation of 2.568 Å and angle 140.28◦.

Apart from the aforementioned intermolecular interactions, interestingly in both Ni-I
and Ni-II the phenyl hydrogen of the dppf and dppe ligands are lying close to the Ni(II)
centre to engender C-H· · ·Ni intramolecular anagostic interactions (Figure 5). The C-
H· · ·Ni distances are 2.954 and 2.953 Å long in Ni-I and Ni-II, respectively, with Ni· · ·H-C
angles of 117.0◦ and 113.9◦, respectively, lying in the dimensional value of the anagostic
interactions [34]. Unlike agostic interactions, which entail three centre—two electron
interactions, these interactions display ionic character (Scheme 2) [34].
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2.4. Hirshfeld Surface Analyses

To assess the nature of weak interactions operating in both complexes, Hirshfeld
surface analyses were performed (Figure 6). The Hirshfeld surface of the compounds
was mapped over dnorm (−0.50 to 1.50 Å), shape index (−1.00 to 1.00 Å) and curvedness
(−4.00 to 0.40 Å) [39–42]. In both complexes, strong interactions exist as the red circular
depressions on the dnorm surface, whereas the prevalence of weak interactions is signified
by the light colour depressions (Figure 6). The mode of packing operating in the crystalline
state can also be represented by shape index plots, which are sensitive to minor variations in
molecular shape caused by irregular deformation generated by nearby crystalline environ-
ments. The bumpy patches in both Ni-I and Ni-II provide evidence for weak interactions
that are least impacted by the nearby crystalline environment (Figure 6). Additionally, a
closer look at the Ni-I surface curvature revealed yellow flecks amid the flat green surfaces,
while Ni-II has a flat green surface with red areas that have considerable surface curvature.
The red patches in Ni-II show that the supramolecular connections involved in creating
molecular packing in the single crystal are not iso-energetic in nature in contrast to the
yellow patches that highlight the isoenergetic supramolecular contacts in Ni-I (Figure 6).
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Apart from the surface analyses, fingerprint plots for both Ni-I and Ni-II were con-
structed in which one molecule functions as a donor (de < di), while another behaves like an
acceptor (de > di). Additionally, these plots are capable of identifying the atom pairs with
close contacts, which provide insight into the better understanding the contributions of the
various interactions existing in the crystalline state. In Ni-I, the C-H· · ·π and C-H· · · F inter-
actions contribute 18.3% and 16.9%, respectively, to the total Hirshfeld surface area, while
in Ni-II they have percentage contributions of 20.2% and 19.7%, respectively (Figure 6). In
both cases, C-H· · ·π interaction appeared as a distinct pair of spikes in the 2D region of
the fingerprint plots between 1.6 Å < (de + di) < 2.1 Å. In addition, the C-H· · · F interaction
arises as discrete spikes between 1.0 Å < (de + di) < 2.1 Å in Ni-I and 0.9 Å < (de + di) < 2.1 Å
in Ni-II. In addition, a meagre C-H···Ni anagostic also exists in the 2D fingerprint plots in
both Ni-I and Ni-II with net contributions of 0.1% and 0.9%, respectively.

The propensity of the interatomic contact (X, Y) to create crystal packing interactions
has also been evaluated using the enrichment ratio parameter [43–45]. In Ni-I, the C-H· · · F
interaction with an enrichment ratio of 1.21, had the strongest tendency to produce crystal
packing interactions (Table 1), while C-H· · ·C and C-H· · · S exhibited enrichment ratios of
1.12 and 1.18, respectively and hence have ability to establish crystal packing interactions
(Table 1). In Ni-II also the interaction with the highest propensity to form crystal packing
interactions for Ni-II was C-H· · · F that exhibited an enrichment ratio of 1.38. In addition
to C-H· · · F contact, C-H· · ·C, C-H· · ·N, C· · ·C and C-H· · · S contacts also have a stronger
potential to create crystal packing interactions, with enrichment ratios of 1.04, 1.17, 1.18
and 1.09, respectively (Table 2).
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Table 1. Enrichment ratio of pair of chemical species of Ni-I. The enrichment ratio is not calculated
for any pair of chemical species for which random contact is less than 0.9%.

Contact % Atom H C F N S Ni

H 57.7 18.3 16.9 0.3 4.6 0.1
C 18.3 1.1 0.5 - - -
F 16.9 0.5 - 0.1 0.4 -
N 0.3 - 0.1 - - -
S 4.6 - 0.4 - - -

Ni 0.1 - - - - -

Surface% 77.8 10.5 8.95 2.5 0.2 0.45

Random contacts % Atom H C F N S Ni

H 60.52
C 16.33 1.10
F 13.92 1.87 0.80
N 0.46 0.04 0.05
S 3.89 0.52 0.44 0.01 0.06

Ni 0.70 0.09 0.08 0.001 0.02 0.002

Enrichment ratio Atom H C F N S Ni
H 0.95
C 1.12 1.00
F 1.21 0.26
N
S 1.18

Ni

Table 2. Enrichment ratio of pair of chemical species of Ni-II. The enrichment ratio is not calculated
for any pair of chemical species for which random contact is less than 0.9%.

Contact % Atom H C F N S Ni

H 44.9 20.2 19.7 4.2 5.4 0.9
C 20.2 2.0 0.5 0.4 1.7 -
F 19.7 0.5 - 0.4 - -
N 4.2 0.4 0.2 - - -
S 5.4 1.7 - - - -

Ni 0.9 - - - - -

Surface % 69.75 13.4 10.2 2.45 3.55 0.45

Random contacts % Atom H C F N S Ni

H 48.65 - - - - -
C 18.69 1.79 - - - -
F 14.22 2.73 1.04 - - -
N 3.35 0.64 0.49 0.06 - -
S 4.95 0.95 0.72 0.17 0.12 0.03

Ni 0.62 0.1 0.09 0.02 0.03 -

Enrichment ratio Atom H C F N S Ni

H 0.92
C 1.08 1.11
F 1.38 0.18
N 1.20
S 1.09

Ni

2.5. NCI-RDG

The NCI plot (non-covalent interactions plot) is a technique that is helpful in locating
and visualizing non-covalent contacts, including steric hindrance, hydrogen bonds and
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Van der Waals interactions [22,46]. In such plots, regions displaying a small decline in
density gradient and having low but not zero density serve as indicators of non-covalent
interactions. In addition, these interactions are assessed with the help of 3D visualization in
the RGB (red–green–blue) color scheme. The blue patches suggest stabilizing interactions,
such as hydrogen bonding [47–49], while red regions evince strong repulsive/destabilizing
interactions, including ring closure interactions and steric interactions, and the green
patches, which are located between the two centres, reveal weak van der Waals interactions.
The NCI-RDG plots of Ni-I and Ni-II presented in Figures 7 and 8, respectively, evince
significant non-covalent intermolecular interactions in the form of green patches. Addi-
tionally, there are a few small green patches that appear between the monomeric units and
are brought on by intramolecular interactions. Apart from this, in both complexes, the red
areas appearing at the centre of the aromatic ring evidence the effect of steric repulsion.
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2.6. Computational Studies for Non-Covalent Interaction

Using BSSE-corrected B3LYP level theory, non-covalent interaction energies in the
crystal structures of both compounds were determined for two neighbouring units held
by different non-covalent interactions. The calculated interaction energies for the dimer of
the Ni-I held by C-H· · ·π interactions were 4.0 kJ/mol and 4.1 kJ/mol, while in Ni-II, the
calculated interaction energy for the dimer held by C-H· · ·π interactions was 4.4 kJ/mol. In
addition, the calculated interaction energy for C-H· · · F interaction for Ni-I was 7.4 kJ/mol,
while for Ni-II, it was 7.4 kJ/mol.

Further, intermolecular interactions were assessed using QTAIM calculations [47–50].
The existence of bond critical points (bcp) between the interacting atomic centres evinced
the existence of non-covalent interactions. In addition, ρbcp between the interacting atom
centres was less than +0.10 au, suggesting the closed-shell nature of these interactions
(Table 3) [50–52]. The positive ∇2 ρbcp values for these interactions provide additional
evidence of the decline in electron density between interacting atoms (Table 3) [50–52].
Additionally, the bond ellipticity (ε), which quantifies how well the electron density is
constrained along the bond path, suggested the cylindrically asymmetrical nature of these
interactions. The weak non-covalent nature of each of these interactions was further
demonstrated by the total electron energy density (H), which shows that none of these
interactions exhibit substantial sharing of electrons [50–52].

Table 3. Topological parameters for C-S· · ·π and C-H· · · F interactions computed for Ni-I and Ni-II.

Interaction Type ρbcp ∇2 ρbcp (ε) H E (kJ/mol)

Ni-I

C31-H31· · ·C7 +0.0063 +0.0212 +1.525 0.0011 4.04

C3-H3· · ·C33 +0.0043 +0.0319 +1.325 0.0012 4.12

C36-H36A· · · F4 +0.0090 +0.0361 +0.028 0.0023 7.38

Ni-II

C2-H2B· · ·C23 +0.0060 +0.0190 +0.604 0.0010 3.52
C42-H42· · · F7 +0.0066 +0.0307 +0.148 0.0007 7.18

C59-H59B· · · F10 +0.0052 +0.0265 +0.296 0.0016 4.65

2.7. Wiberg Bond Indices, Mayer Bond Order and Delocalization Index Calculations

The nature of C-H· · ·Ni interactions operating within both complex cations were ex-
plored using Wiberg bond indices, Mayer bond order and delocalization index calculations.
The calculations revealed that in both compounds the Wiberg bond indices for both Ni-I
and Ni-II are nearly similar with comparable Mayer atomic bond orders (Table 4). Further,
delocalization indices calculation that provide insight regarding the number of electrons
shared or exchanged between the two atoms suggested δ(Ni· · ·H) (δ = 0.020) are less
than ~0.1, suggesting that there is negligible delocalization between the two atomic basins
which clearly demonstrates the absence of bond between the two nickel centres. Because
anagostic interactions are mostly electrostatic, the natural charges on the coordinated and
uncoordinated ortho-hydrogen atoms of the phenyl rings of the dppf and dppe ligands
were computed (Table 4). The calculations show that the ortho-hydrogen atoms having
anagostic interactions have a lower electron density than ortho-hydrogen atoms located far
away from the Ni centre. This supports the occurrence of anagostic interactions in Ni-I and
Ni-II.
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Table 4. The C-H· · ·Ni Wiberg bond indices, Mayer bond orders, delocalization indices and natural
charges for Ni-I and Ni-II.

Bond Type Wiberg Bond
Index

Mayer Atomic
Bond Order

Delocalization
Index

(Atom Basin)
Natural Charges

Ni-I

C-H24· · ·Ni 0.0041 0.0073 0.0209 H24 0.2216
H28

(not displaying C-H· · ·Ni) 0.2134

Ni-II

C-H14· · ·Ni 0.0059 0.0112 0.0198 H14 0.2287
H10

(not displaying C-H· · ·Ni) 0.2102

3. Experimental Procedures
3.1. Materials and Methods

All the reagents and chemicals were commercially available and were used without
further purifications. The ligand piperazine-bis-(dithiocarbamate) was prepared in accor-
dance with the previously reported method [53]. The FTIR spectral data were collected
using Shimadzu IR Affinity-1S spectrometer using KBr disc method. The 1H, 13C and
31P NMR were recorded on a Bruker Avance IIIHD NMR spectrometer using TMS and
phosphoric acid as references. Electronic spectral data in dichloromethane solutions were
collected on a SPECORD210 spectrophotometer.

3.2. Synthesis
3.2.1. Synthesis of ({Ni(dppf)}2(piperdtc)) (PF6) (Ni-I)

Disodium piperazine bis(dithiocarbamate) (0.070 g, 0.25 mmol) and potassium hexaflu-
orophosphate (0.110 g, 0.6 mmol) were dissolved in methanol and agitated on an ice bath
for half an hour. Thereafter, dichloromethane solution of Ni(dppf)Cl2 (0.342 g, 0.5 mmol)
was added to the stirring solution to obtain an orange coloured solution. The reaction
mixture was further stirred for another 4 h, and then the solution was rotary evaporated
to dryness, dissolved in a minimum amount of dichloromethane and precipitated with
diethyl ether. The obtained precipitate was filtered and washed with diethyl ether twice.

Characterization data: Orange–red solid; Yield: 0.350 g, 43.7%.; m.p. 205 ◦C; 1HNMR
(300 MHz, CDCl3, δ): 3.50, 3.97 (m x 2, 8H, NC4H8N), 4.24 (s, 4H, Fc), 4.38 (s, 2H, Fc),
4.53 (s, 4H, Fc), 7.26–7.77 (m, C6H5, 40H); 13C NMR (75.45 MHz, CDCl3, δ): 205.9(CS2),
126.9–132.87(-C6H5), 29.27(-CH2-CH2) 31P NMR (121.54 MHz, CDCl3)−17.9; IR (KBr/cm−1,
ν) 1436 (C–N), 1002 (C–S, sym). Elemental Analysis Calc. for C70H64F12Fe2Ni2P6N2S4 (%):
C, 49.33; H, 3.78; N, 1.64; S, 7.53. Found C, 50.12; H, 3.86; N, 1.79; S, 7.98.

3.2.2. Synthesis of ({Ni(dppe)}2(piperdtc))(PF6)(Ni-II)

The Ni-II complex using the same procedure except that instead of Ni(dppf)Cl2
Ni(dppe)Cl2 (0.264 g, 0.5 mmol) was used.

Characterization data: Orange red solid; Yield: 0.328 g, 45.5%.; m.p. 202 ◦C; 1HNMR
(300 MHz, CDCl3, δ): 2.52 (d, 8H, CH2-CH2), 4.14 (s, 8H, C4H8), 7.28–7.97 (m, 40H, C6H5),
13C NMR (75.45 MHz, CDCl3, δ): 203.8 (CS2),127.2, 129.8, 132.1, 133.0(C6H5) 44.8 (C4H8),
26.6 (CH2– CH2), 31P NMR (121.54 MHz, CDCl3) 62.35; IR (KBr/cm−1, ν) 1435 (C–N),
1007(C–S, sym). Elemental Analysis Calculated for C58H56F12Ni2P6N2S4 (%): C, 48.36; H,
3.92; N, 1.94; S, 8.90. Found: C, 48.94; H, 4.03; N, 2.12; S, 9.23.
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3.3. X-ray Crystallography

The data were collected as per our previous reports employing CrysAlisPro [54],
SHELXT [55] and (SHELXL-2018/3) software [55]. Except hydrogens, all atoms were refined
anisotropically, while H-atoms were geometrically fixed and refined using a riding model.

3.3.1. Crystallographic Data for Ni-I

C70H64F12Fe2Ni2P6N2S4, M = 1704.43, Monoclinic, P21/n, a = 10.51678(13) Å, b = 18.6535(2) Å,
c = 20.7494(2) Å, β = 97.4473(11)◦, V = 4036.17(8) Å3, Z = 2, Dc = 1.503 mg/m3, F(000) = 1868,
crystal size = 0.480 × 0.151 × 0.102 mm3, Reflections collected = 42,004, Independent
reflections 8016 [R(int) = 0.0552], gof = 1.042, Final R indices [I > 2sigma(I)] R1 = 0.0365,
wR2 = 0.0811, R indices (all data) R1 = 0.0457, wR2 = 0.0850, largest diff. peak and hole
0.515 and −0.278 e Å−3. CCDC No. 2236166.

3.3.2. Crystallographic Data for Ni-II

C58H56F12Ni2P6N2S4, M = 1440.55, Triclinic, P-1, a = 9.5191(4) Å, b = 19.3138(8) Å,
c = 19.9449(10) Å, α = 73.313(4)◦, β = 85.849(4)◦, γ = 82.985(4)◦, V = 3483.5(3) Å3, Z = 1,
Dc = 1.432 mg/m3, F(000) = 1538, crystal size = 0.330 × 0.121 × 0.035 mm3, Reflections
collected = 35,018, Independent reflections 12,711 [R(int) = 0.0773], gof = 1.141, Final
R indices [I > 2sigma(I)] R1 = 0.1189, wR2 = 0.2396, R indices (all data) R1 = 0.1697,
wR2 = 0.2653, largest diff. peak and hole 1.310 and −0.734 e Å−3. CCDC No. 2236167.

3.4. Computational Details

The molecular geometries of dicationic complexes and their dimers were optimized
using density functional theory (DFT) by employing the B3LYP functional [56–59]. For
all atoms except Ni, a 6-31G** basis set was used, while for Ni, MDF-10 basis sets were
employed. The interaction energies were calculated using our previous reports employing
the Boys–Bernardi scheme [60]. All computations were performed using the Gaussian 09
revision B.01 programme [61]. QTAIM analyses were performed using AIMALL package
version 10.05.04 [62]. The NCI-RDG analysis was performed using the Multiwfn soft-
ware [63], and the VMD programme was used to create 3D isosurfaces [64]. Additionally,
the coloured NCI plots were created using a GNU plot [65].

3.5. Hirshfeld Surface Analyses

Hirshfeld surface analyses were executed by employing the procedure mentioned
previously [66–73].

4. Conclusions

In the presented investigation, two piperazine dithiocarbamate based heterometallic
complexes of nickel involving 1,2-bis-(diphenylphosphino)ferrocene (dppf) and 1,2-bis-
(diphenylphosphino)ethane (dppe), respectively, were synthesized and characterized. Hir-
shfeld surface studies, as well as DFT and AIM theory simulations, were used to investigate
the nature of weak inter- and intramolecular interactions in these compounds. The finger-
print plots allow for a more complete examination by depicting all of the intermolecular
interactions inside the crystal and are thus appropriate for studying changes in crystal pack-
ing in the molecular systems under research. In addition, fingerprint plots, Wiberg bond
indices, and Mayer bond order calculations were used to verify the anagostic interactions
found in the X-ray structures. Based on our findings, we may infer that self-assembled hy-
drogen bonded and stacking interaction architectures can be altered by carefully designing
the nature of the ring and including the right functions on these aromatic rings.
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