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Abstract: In this work, Sn-doped Ga2O3 films fabricated using plasma-enhanced atomic layer de-
position were treated by rapid thermal annealing (RTA). The RTA influence on the chemical state,
surface morphology, energy band alignment, and electrical properties of Sn-doped Ga2O3 films
were thoroughly investigated. The results of X-ray photoelectron spectroscopy (XPS) demonstrated
that Sn atoms were successfully doped into these films. Moreover, energy band alignments were
obtained by the energy-loss peak of the O 1s spectrum and valence band spectra and thoroughly
discussed. X-ray reflectivity (XRR) and atomic force microscope (AFM) measurements indicated
that the Sn-doping level affects the interfacial microstructure and surface morphology. As the Sn
content increases, the film thickness decreases while the roughness increases. Finally, the leakage
current-voltage (I-V) characteristics proved that the Sn-doped Ga2O3 films have a large breakdown
field. In I-V tests, all metal oxide semiconductor (MOS) capacitors exhibited a hard breakdown. This
research demonstrates a method for manufacturing high-performance optoelectronic devices with
desired properties.

Keywords: Sn-doped Ga2O3 film; plasma-enhanced atomic layer deposition; annealing effect; energy
band alignment; electrical properties

1. Introduction

Gallium oxide (Ga2O3) is becoming popular for the next generation optoelectronic
devices due to its large band gap (Eg~4.1–5.0 eV) [1–3]. The Ga2O3 crystals are transparent
in a wide range of ultraviolet (UV) wavelengths down to 280 nm and are potentially
electro-conductive [4]. This material has an excellent chemical and physical stability and
still exhibits good semiconductor properties at temperatures above 600 ◦C. In addition,
the band gap, conductivity, and optical properties of Ga2O3 materials can be changed by
atomic doping and vacancy modulation, which demonstrates its excellent flexibility [5–9].

Nevertheless, when the Ga2O3 was deposited by different methods, Ga2O3 films
can have a wide range of properties in many aspects, such as microstructure, roughness,
density, chemical composition, and so on. Many researchers have recently used various
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methods to prepare element-doped Ga2O3 films with varying properties. For example,
Tadjer et al. grew Si- and Sn-doped Ga2O3 thin films using edge-defined film-fed growth
and then annealed them in N2 and O2 atmospheres [10]. Rare earth metals, such as Eu and
gallium oxide, are co-sputtered to achieve Eu doping [11]. Eu doping was discovered to
improve its electronic and photoluminescence properties. The Mg-doped Ga2O3 film was
deposited on an n-Si wafer using the metal-organic chemical vapor deposition (MOCVD)
method [12]. The decrease of oxygen vacancies induced by Mg doping is the key to
fabricate a high-performance detector. The physical vapor deposition (PVD) technique
is used to deposit 9.5% Al-doped amorphous Ga2O3 to improve optical and electrical
properties [13]. Atomic layer deposition (ALD) is a self-limiting and ligand-exchange-based
surface reaction technique. ALD can produce wafer-scale uniform films and control the sub-
monolayer thickness, making it attractive for semiconductor device applications [14]. One
can obtain uniform doping of semiconductor films at low temperatures by using ligand-
exchange-based ALD surface reactions and sub-monolayer control [15,16]. Because of its
low-temperature deposition, the resulting films are often amorphous. Heat treatment is
necessary for annealing, oxidation, crystallization, activation, and other processes [8,17,18].
Li et al. introduced a post-annealing method to modulate the oxygen vacancies in ε-Ga2O3
thin films [19]. The devices with a lower oxygen vacancy concentration have been improved
by 1–6 magnitude in a photo-to-dark current ratio, a responsivity, an excellent detectivity,
a superior linear dynamic range, and an outstanding external quantum efficiency. The
gallium oxide film grown on SiO2 substrates by the metal organic chemical vapor deposition
technique is annealed in the range of 750–1050 ◦C [20]. The amorphous Ga2O3 are generated
grains in the β-Ga2O3 phase. At higher temperature annealing, the ultraviolet band shift to
the longer wavelength region and a broad green emission band has appeared, in addition to
the existing blue–green emission band. Therefore, it is essential for post-annealing studies.
It can express some questions, such as, how can the microstructure or chemical state be
influenced after post-annealing in Sn-doped Ga2O3 thin films? Rapid thermal annealing
(RTA) has been broadly employed in the research and production of semiconductors.
Compared with general annealing, RTA is a warming process with fast and very short
holding times that can be used to study the initial effects of annealing [21].

In this work, Sn-doped Ga2O3 films were prepared using the plasma-enhanced atomic
layer deposition (PEALD) technique, followed by RTA at 800 ◦C in an N2 environment.
The post-annealing effects were studied by X-ray photoelectron spectroscopy (XPS), which
revealed that Sn doping on the films had been achieved. Furthermore, we studied the
interfacial microstructure and surface morphology by using an atomic force microscope
(AFM) and X-ray reflection (XRR). In addition, the energy bandgap (Eg) and energy band
alignment of the annealed Sn-doped Ga2O3 films were detected and analyzed using thor-
ough XPS measurements on the energy-loss peak of the O 1s spectrum and valence band
spectra. Finally, the electrical properties of these films were investigated to assess their
utility in further applications.

2. Experimental

Sn-doped Ga2O3 films with varying Sn concentrations were sequentially deposited
on Si substrates at 200 ◦C using a BENEQ TFS200 ALD system (BENEQ, Finland). As
it was previously described [6], trimethylgallium (TMG) and tetrakis(dimethylamino)tin
(TDMASn) were respectively used as the gallium and tin sources during the deposition
process. The Sn-doped Ga2O3 films with 0%–20% Sn contents were prepared by controlling
the SnO2 and Ga2O3 ratio during one cycle. The RTA was then performed at 800 ◦C and
holding for 10 min in a highly pure N2 atmosphere with a ramp rate of about 20 ◦C/s.

X-ray photoelectron spectroscopy (XPS, Thermo ScientificTM K-AlphaTM+) was used
to characterize the chemical state. The step sizes in the XPS were 1 eV, 0.1 eV, and 0.02 eV
for the survey spectrum, the core level spectra, and the valence band maximum (VBM),
respectively. All survey and core-level spectra would be referenced to the C1s peak binding
energy of 284.8 eV for adventitious carbon. The surface topography and microstructure of
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the films were examined using an atomic force microscope (AFM, Bruker, Dimension icon)
and an X-ray reflection (XRR, Bruker, D8 Discover), respectively. A large area scan of AFM
images with 25 µm × 25 µm was tested by 3100 SPM of Veeco Inc. (Plainview, NY, USA)
The narrow scan analysis of 1 µm × 1 µm was performed using Dimension Icon of Bruker
Inc. The XRR data were fitted using the REFLEX software [22]. REFLEX uses a slab-model
approach with the Abeles matrix method taking into account the interfacial roughness
of each layer together with their respective thickness and electron density. Metal oxide
semiconductor (MOS) capacitors were constructed for in-depth electrical characterization.
Magnetron sputtering was used to deposit aluminum electrodes with a thickness of 200 nm
on the Sn-doped Ga2O3 films and the bottom of the Si substrate. The top electrodes were
200 µm wide square shaped arrays. A Keithley 4200-SCS parameter analyzer was used to
perform leakage current-voltage (I-V) tests on the Sn-doped Ga2O3 devices in the air at
room temperature on the Lakeshore probe station. The voltage range was 0–50 V with a
step of 0.1 V.

3. Results and Discussion
3.1. Chemical Composition

Figure 1a shows a detailed study of the XPS spectra of the annealed Sn-doped Ga2O3
thin films with varying Sn contents. The XPS wide scan spectra are dominated by pho-
toelectron peaks of Ga (2p, 3s, 3p, and 3d), the Sn (3p and 3d), the O (1s), and C (1s, as
introduced) along with the respective Auger peaks from gallium (Ga LMM) and oxygen
(O KL1), which is in accordance with previous literature reports about unannealed Sn-
doped Ga2O3 [6]. These results indicated the excellent quality of the annealed Ga2O3 thin
films. The stacked XPS narrow scans of Ga 2p peaks in Figure 1b show that the energy gap
of Ga2p1/2 (~1144.71 eV) and Ga2p3/2 (~1117.81 eV) for Ga–O bonding is about 26.9 eV,
which is consistent with the standard value [23]. Figure 1c shows that the peaks of Ga 3d
are located in 20.1 eV. With the change of the doping amount, the peak position is basically
unchanged, indicating that the chemical environment around Ga atoms has not changed
significantly. At the higher binding energy of about 26.1 eV, a weak signal of Sn 4d was
detected. The photoelectron peaks of Sn 3p and 3d were also not visible in the broad spectra.
In addition, the XPS peak for the Sn 3d is difficult to discern from the Auger peaks of the Ga
LM due to their close binding energy. In order to confirm the Sn 3d peak, so we performed
narrow scans of the Sn 3d peak, as shown in Figure 1d. With increasing Sn content, the
intensity of the Sn 3d peaks increases, but the binding energy difference between Sn 3d3/2
(~495.0 eV) and 3d5/2 (~486.6 eV) remains constant at 8.4 eV. The signals of peaks located at
491.1 eV were observed in the Sn 3d spectra, which is the Ga LM4 peak. The XPS analysis
indicates that the Sn remained after RTA.

3.2. Surface Topography and Microstructure

To study the influence of annealing on the surface topography, XRR and AFM measure-
ments were carried out to analyze the physical properties and microstructure of the Ga2O3
film. Figure 2 presents the reflectance spectra of annealed Ga2O3 films having different
Sn concentrations. The simulated XRR spectra (curves) were obtained via a bilayer model
composed of a Ga2O3 layer and a thin SiO2 buffer layer. It is demonstrated that the films
have smooth interfaces by the well-developed oscillations [24], especially, in undoped films.
The Kiessig fringes [25] period of the undoped film is around 0.32º, indicating that the
thickest film thickness is 24.07 nm. Sn doping reduces the film thickness, which increases
the period of fringes. One percent Sn-doped film has the longest Kiessig fringe period, 0.59º,
and the least film thickness reduction of 12.64 nm. Furthermore, the periods of the Kiessig
fringes of another sample are around 0.33º for the Ga2O3 films with 2% Sn compositions,
about 0.4º for Sn composition at 10%, and roughly 0.45º for Sn compositions at 20%. The
thicknesses of Ga2O3 and SiO2 layers obtained from the XRR data as a function of the Sn
composition are plotted in Figure 2b. Sn doping results in a slightly thicker buffer layer
when compared to an undoped film. Furthermore, the 20% Sn-doped film has the fastest
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decay of amplitude, which means that the roughness of the film has a lower interfacial qual-
ity than other films [24]. In the 20% Sn-doped film, the roughness of the Ga2O3 layer, SiO2
sublayer, and Si substrate are 13.89 Å, 3.8 Å, and 13.05 Å, respectively. On the contrary, the
undoped film exhibited clear Kiessig fringes even at 2θ = 5◦, indicating that the annealed
film has a smooth surface. The corresponding roughness of the Ga2O3 layer, SiO2 sublayer,
and Si substrate are 6.89 Å, 2.6 Å and 8.36 Å, respectively. The roughness data of each layer
of all films obtained from Figure 2a were plotted in Figure 2c. It is clear that increasing
Sn doping causes the surface roughness of Ga2O3 film, buffer layer SiO2, and substrate
Si wafer to increase and a significant improvement in surface roughness compared to
unannealed films [6]. This could be attributed to the roughening of the interface by Sn
atoms during the annealing process. Moreover, burning of the film surface and oxidation of
the Si substrate during post-annealing could cause the increase of the roughness of Ga2O3
surface. Meanwhile, the thicknesses of unannealed films are slightly less than the annealed
films. As shown in Figure 2d, the densities were measured from the XRR for the Ga2O3
films with different Sn contents. Sn atoms with a higher atomic mass replace some of the
Ga atoms during the doping, resulting in a denser Sn-doped film than an undoped film.
Since the samples were annealed under an oxygen-deficient environment, the O atoms
escaped the Ga2O3 films and the oxygen vacancy concentration was increased, which may
lead to the density of the unannealed film becoming greater than that of the annealed film.
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compared to the simulated data (black curves). Thickness (b), RMS roughness (c), and density (d) of
the films as a function of the Sn concentration.

In contrast to the XRR measurements, which obtain surface roughness indirectly, AFM
technology can directly observe surface features and morphology. In order to obtain the
holistic roughness information of the films, the large area scan of 25 µm × 25 µm was
examined, as shown in Figure 3(a1–e1). It is determined that the surfaces of the samples
after RTA are still smooth. The related root-mean-square (RMS) roughness values are
less than 8 Å for all films, and the RMS roughness is plotted versus Sn-doped content
in Figure 3(f1). The RMS roughness linearly increases with the Sn content of the film.
This shows a roughness variation trend similar to the XRR measurement results. The
corresponding high distribution images derived from the 25 µm × 25 µm area are shown
in the inset of Figure 3(a1–f1). For the undoped film, the absolute value of height is
mostly less than 5 Å. As the Sn content increases, the ratio of the height greater than
10 Å rises and the normal distribution curve spreads out. This means that the surface
of the film becomes rougher. To further observe the morphology feature of the annealed
films, we performed a narrow scan of 1 µm × 1 µm for a locally enlarged area. Typical 3D
AFM images of annealed Sn-doped Ga2O3 thin films are displayed in Figure 3(a2–e2) The
formation of island-like and larger-sized grains in the annealed sample distinguishes it from
the unannealed acicular structure observed in the films prepared using PEALD [6,22]. In
addition, Sn-doping can have a significant impact on the distribution of surface morphology.
As it is shown in Figure 3(a2–e2), the grain size and surface roughness increase with
increasing Sn content. This could be related to the fact that Sn atoms promote the migration
of atoms and nucleation of absorbed atoms. For instance, significant island-like grains and
increased roughness were observed for 20% Sn-doping. The RMS roughness derived from
the narrow scan is plotted versus the Sn-doped content in Figure 3(f2), which displays a
roughness variation trend similar to the data from the large area scan.
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3.3. Energy Band Structure

It is essential to determine the energy band gap (Eg) of the semiconductor materi-
als because it is a crucial parameter for designing high-powered optoelectronic devices.
Therefore, we investigated the doping effect of the Sn atom on the Eg of annealed Ga2O3
thin films. Figure 4 shows the fitting Eg estimation procedure of the annealed Ga2O3 thin
films using the energy-loss peak of the O 1s spectrum. This method has been previously
used for several oxide semiconductors [26–28]. The energy loss structure is close to the
approximate location of the onset of inelastic losses. The difference between the core level
peak energy of O 1s and the onset of inelastic losses was utilized to obtain the Eg. As shown
in Figure 4a, the energy gap of pure Ga2O3 measured using this method is 4.87 eV, which is
in agreement with the literature [29]. When the Sn contents rise, the position of O 1s peak
moves to high bonding energy from 530.57 eV of 0% to 530.71 eV of 20%. As shown in
Figure 4b to Figure 4e, the energy gaps of Sn-doped Ga2O3 films with Sn content of 1%, 2%,
10%, and 20% are 4.83 eV, 4.76 eV, 4.64 eV, and 4.47 eV, respectively. Figure 4f shows that
the bandgap of Sn-doped Ga2O3 films decreases continuously as the Sn content increases.
The Eg value is 3.60 eV in pure SnO2 materials [30], which is lower than that of the Ga2O3
materials. This result leads to a reduction in the Eg value of Sn-doped Ga2O3 films. In
contrast, the Eg value of annealed films is larger than that of the unannealed films. This
reason may be attributed from the Sn4+ ions were activated into the films after annealing.
These findings demonstrate that the Eg still can be controlled by the Sn doping ratio after
RTA, paving the way for the development of optoelectronic and photonic devices based on
Sn-doped Ga2O3 films.
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For the optoelectronic application of Ga2O3 thin materials, one needs to understand
the nature of the band edges, namely, the valence band maximum (VBM) and conduction
band minimum (CBM) [31]. The characteristics of VBM and CBM will have a direct impact
on the application of a device, for example, in optical transitions, charge transfer, and so
on. The valence band spectra were depicted in Figure 5a–e and the VBM is determined
by the tangent method. The VBM varies slightly when the Sn content is changed. The
maximum value of VBM, Ev, is 3.12 eV for the 20% Sn-doped Ga2O3 film, while the Ev
of other films is less than 2.9 eV. The calculated VBMs are 2.67 eV, 2.63 eV, 2.88 eV, and
2.58 eV for the annealed Ga2O3 having 0%, 1%, 2%, and 10% Sn contents, respectively.
The increase in VBM could be related to an increase in oxygen vacancies and defects. The
value of CBM is calculated using Ec = Ev − Eg. Fermi level of Ga2O3 film was 2.20 eV
below the CBM. The Ga2O3 film doping Sn atoms showed a similar result. The calculated
maximum CBMs is −1.35 eV in 20% Sn contents of the Ga2O3 film, and the minimum
value was in 1% Sn-doped films. The other calculated CBMs are −1.88 eV and −2.06 eV
for the annealed Ga2O3 having 2% and 10%, Sn contents, respectively. The VBMs and
CBMs of all samples were summarized, and their energy levels with respect to the vacuum
are plotted in Figure 5f. The CBM shifted significantly toward higher energies as the Sn
content increased. Thus, the Fermi level shifts toward the conduction band in the annealed
films as the Sn content increases. As compared to the previously reported unannealed
film [6], the Fermi level of the annealed films shifts further away from the conduction band,
and its Ec is smaller. This may be related to the presence of Sn in the form of amorphous
SnO2 before annealing, and the contribution of Ec is made up of SnO2 with a low CBM
value of 0.8 eV [32] and pure Ga2O3. Following annealing, the Sn atoms were activated
and appeared mainly in the form of Sn ions in the Ga2O3 film instead of in the form of
amorphous SnO2.
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3.4. Electrical Properties

The electrical properties of annealed Sn-doped Ga2O3 films were investigated using
the MOS capacitors. Figure 6a shows room temperature I-V characteristic curves of the
annealed Ga2O3 thin films with different Sn-doped contents. The leakage current of all
films was less than 1 × 10−9 A at 0.1 V, indicating good insulating properties. As the
voltage rises, the leakage current remains stable at ~1 × 10−7 A in the pre-breakdown
region, which means the MOS capacitors are still intact. When the loading voltage reaches
the critical breakdown voltage, the leakage current sharply increases. There is no visible
“soft” breakdown point in any of the five samples until the final “hard” breakdown point is
reached. This indicates that there are no pinholes or cracks inside the dielectric film, and the
breakdown mode of all samples is the intrinsic breakdown. In addition, the as-deposited
Ga2O3 films by the ALD method have a very smooth surface. These observations are
closely related to its outstanding electrical properties. However, for the unannealed films,
at the critical breakdown voltage, there is no sharp change in the leakage current of the
MOS capacitor made by 10% Sn-doped Ga2O3 film [6]. When the doping concentration
reaches 20%, the MOS capacitor exhibits visible soft breakdown, which is different from
the MOS capacitor made by the annealed films. This may be because tiny and non-dense
voids of the unannealed films were healed by self-growth in the post-annealing process.
This caused that all annealed samples showed a significant “hard breakdown” mode. The
breakdown voltages are ~32.1 V of V1, ~17 V of V2, ~23.8 V of V3, ~18.1 V of V4, and
~11.9 V of V5 for 0%, 1%, 2%, 10%, and 20% Sn contents in the doped film, respectively.
This indicates that the breakdown voltage of various Sn-doped samples differs significantly.
As the Sn doping concentration increases, the Eg value decreases which is the main intrinsic
reason causing the reduction in the breakdown voltage. Of course, the other reason may be
attributed to the extrinsic factor. The thickness of the film reduced, leading to a decrease in
the breakdown voltage. In order to better analyze the effect of Sn doping on the breakdown
resistance characteristics of the films, their breakdown electric field was calculated by
taking into account the thickness. The thickness of these films was estimated by using
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the XRR analysis shown in Figure 2b. The calculated breakdown electric field is plotted
in Figure 6b. Similar to the Eg variation shown in Figure 4f, the breakdown electric field
decreases with the increasing Sn content. Moreover, the breakdown field in this work is
slightly larger than the bulk Ga2O3 [33] and amorphous Ga2O3 [6]. This could be due to
the introduction of a thin SiO2 buffer layer in the RTA process. The insulated SiO2 material
has wide a band gap [28] and a high electric field [34], which improves the breakdown
electric field in Ga2O3 MOS capacitors.
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4. Conclusions

Various Sn-doped Ga2O3 films were prepared using PEALD and were then subjected
to the RTA process at 800 ◦C in an N2 environment. According to the XPS results, all
annealed films were still of excellent quality similar to the standard Ga2O3 films. The
bonding energy gap of Ga2p1/2 and Ga2p3/2 for Ga–O bonding was approximately 26.9 eV,
which is consistent with the standard value. The intensity of the Sn 3d peaks increases as
the doped Sn content increases, indicating that Sn atoms were successfully doped in Ga2O3
films after RTA. The XRR and AFM analyses confirmed that the surfaces of these films
were smooth and of high quality. The microstructure changes as the amount of Sn doping
changes. Furthermore, as the Sn concentration in the film increases, the energy bandgap
of the Ga2O3 film decreases from ~4.87 eV to ~4.47 eV. The Fermi level shifts toward the
conduction band in the annealed films at a higher Sn content. In comparison to unannealed
Sn-doped Ga2O3 films, Sn ions were activated after RTA, causing Ec to decrease. The I-V
tests were carried out using Ga2O3 MOS capacitors. The presence of the SiO2 layer after
annealing increases the breakdown electric field. Meanwhile, the tiny and non-dense voids
of the unannealed films maybe be healed by self-growth in the post-annealing process
which improves the reliability of the MOS capacitors. According to these findings, Ga2O3
films with the required properties can be fabricated for high-performance electrical devices
by varying the Sn concentration.
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