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Abstract: The spatial self-phase modulation (SSPM) of the optical field revealed the magnitude and
polarity of nonlinear refraction coefficients of the graphene-oxide (GO) atomic layers in an aqueous
base solution with a resonant excitation using a chopped quasi-static laser at 532 nm. The SSPM of
the optical field as a result of the intrinsic nonlinear refraction coefficient of GO atomic layers and
the spatial distribution of intensity displayed the concentric diffraction rings at the far field due to
the coherent superposition of transverse wave vectors. The number of concentric rings as a function
of the applied intensity revealed the nonlinear refraction coefficient of GO which was estimated to
be ~–6.65 × 10−12 m2/W for the laser-excitation duration of ~0.32 s, where the negative polarity
of nonlinear refraction coefficient was confirmed with the interference image profile of SSPM. The
upper and vertical distortion of concentric rings at the far field at the longer laser-excitation duration
of ~0.8 s indicates the distortion of the coherent superposition of transverse wave vectors due to
the localized thermal vortex of GO in the aqueous solution that offers novel platforms of thermal
metrology based on localized optical nonlinearity and temperature-sensitive all-optical switching.

Keywords: spatial self-phase modulation; graphene-oxide atomic layer; nonlinear refraction

1. Introduction

The third-order optical nonlinearity of nonlinear absorption and refraction coeffi-
cients of the two-dimensional (2D) graphene oxide (GO) have intensively characterized
for the photonic applications of pulse compression, mode-locking, Q-switching, optical
limiting [1–5], and all-optical switching [6]. In addition to nonlinear optical applications
of the GO, other several atomic layers were intensively studied for optoelectronic devices,
biomedicine, bio-sensing, energy conversion, and storage [7–11].

The third-order optical nonlinearity can be characterized by various techniques in-
cluding Z-scan, I-scan, four-wave-mixing, phase-modulation, etc. with either resonant or
non-resonant excitation [1,12–16]. The third-order nonlinearity with the resonant excitation
is a comparatively large and slow response than the non-resonant excitation [17]. The Z-
scan and I-scan are simple techniques using a single beam, but Z-scan requires a reasonably
long scanning time and I-scan includes a relatively high intensity which may hinder the
characterization of highly absorptive optical materials. The FWM requires spatial overlap
and temporal correspondence between pump-probe beams. The Z-scan reveals both the
magnitude and the polarity of nonlinear absorption and refraction coefficients, and the
I-scan and FWM characterize the cubic nonlinear susceptibility. The polarization-resolved
forward-/backward-pump, probe, and signal beams in degenerate-/nondegenerate-FWM
also reveal the physical origins of optical nonlinearity. The physical origins of optical
nonlinearity may include the electronic transition [18], molecule reorientation or layer
alignment, thermal effect, etc. The optical nonlinearity also has been characterized using
spatial/temporal self-/cross-phase modulation for all–optical switches. The cross-phase
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modulation has an optical time delay in all-optical switches which is not observed on
monochromatic-based phase modulation or self-phase modulation [19–21]. Spatial self-
phase modulation (SSPM) uses the radially distributed intensity of a Gaussian beam and
the intrinsic nonlinear refraction coefficient of optical material. The coherent superposition
of the transverse wave vectors, which have the phase difference due to the intrinsic nonlin-
earity and the spatial intensity distribution, display the concentric diffraction rings at the
far-field [22]. The concentric diffraction rings are due to the constructive and destructive
interferences depending on the even or odd integer π nonlinear phase difference [23–25].
Therefore, the number of concentric rings as a function of the applied intensity reveals the
nonlinear refraction coefficient of optical materials. The phase-modulation techniques re-
cently have been applied to characterize the optical nonlinearity of GO atomic layers [6,26].
Shan and Xiang reported the third-order nonlinear susceptibility of GO dispersion using
cross-phase modulation and described the thermal distortion of concentric diffraction
rings [6]. Wang et al. disseminated the physical origin of diffraction patterns using dif-
ferent base solutions [26]. Further, Sadrolhosseini et al. [27] studied the nonlinear effect
in Ag-NPs/GO and Au-NPs/GO nanocomposite using the spatial self-phase modulation
technique at 532 and 405 nm wavelengths.

This article reports the polarity and magnitude of nonlinear refraction coefficients of
the graphene oxide atomic layers in an aqueous solution using the SSPM technique with a
resonant excitation, and the change of nonlinear refraction coefficient at the thermal vortex
regions for the applications including the thermal metrology based on the localized optical
nonlinearity and the temperature-sensitive all-optical switching.

2. Materials and Methods

The graphene oxide atomic layers in a base solution of deionized water were purchased
from the Graphene laboratory [28]. The GO atomic layers in the aqueous solution include
over 80% monolayers with ~0.5–5 µm lateral size. The optical width of GO atomic layers
in an aqueous solution in the quartz cuvette was 10 mm for the cubic nonlinearity using
the SSPM technique. The laser excitation source was a chopped CW laser at the peak
wavelength of 532 nm at a frequency of 300 Hz. The laser beam with a diameter of ~1.6 mm
was focused onto the GO atomic layers in an aqueous solution using a focal lens which has
an effective focal length of 175 mm. The Rayleigh length and the beam waist at the focal
point were ~1.1 mm and ~37 µm, respectively. The imaging screen of the diffraction ring
was placed ~1.35 m away from the sample, and a CCD USB 2.0 image camera (DCU223C,
Thorlabs, Inc, USA) monitored the diffraction image on the screen. The MATLAB code
was utilized to convert the diffraction images to 2-D graphics for further analysis. In this
work, the SSPM technique was focused to investigate the diffraction pattern along with
laser interaction time and the number of rings with applied laser intensity to estimate the
magnitude of nonlinear refraction coefficient and its thermal modulation simultaneously.

3. Result and Discussion

Figure 1 displayed the absorption spectrum of GO atomic layers in a base solution of
DI water using a UV-Vis absorption spectrometer. The spectrum includes the UV absorption
features at ~230 nm and ~300 nm wavelength and the visible absorption tail up to ~560 nm
wavelength. The laser excitation spectrum with a peak at 532 nm for the SSPM technique is
located at the edge of GO absorption.



Crystals 2023, 13, 271 3 of 9

Crystals 2023, 13, x FOR PEER REVIEW 3 of 9 
 

 

300 400 500 600 700
0.0

0.5

1.0

A
b

so
rb

an
ce

Wavelength (nm)

 Graphene Oxide

 Excitation source

GO

 

Figure 1. The absorption spectrum of graphene oxide atomic layers in the deionized water (DI) wa-

ter (black), and the laser excitation source (green) at 532 nm for the SSPM. 
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Figure 1. The absorption spectrum of graphene oxide atomic layers in the deionized water (DI) water
(black), and the laser excitation source (green) at 532 nm for the SSPM.

The nonlinear refraction coefficient of graphene oxide atomic layers in the aqueous
base solution was investigated using the SSPM technique with a resonant excitation at
532 nm. The transverse intensity distribution of the Gaussian beam and the intrinsic
nonlinear refraction coefficient of GO atomic layers make the phase differences between
the spatial optical fields of the Gaussian beam. The coherent superposition of the optical
fields for the concentric rings at the far field depends on the even or odd integer number of
mπ of nonlinear spatial phase shift ∆φNL = φNL(r1) − φNL(r2) at the arbitrary positions
r1 and r2 of a gaussian beam with the equal transverse propagation wave vector δk(r). The
maximum nonlinear phase shift ∆φNL(0) = kγI(0)Le f f ≥ 2π is the primary condition
of concentric rings at the far field, where k is the wavenumber vector, γ is the nonlinear

refraction coefficient, I(0) is the applied intensity, and Le f f =
L2∫

L1

1
1+(z/zo)

2 dz is the effective

length of optical sample path L, where L1 is the distance from the exit surface of sample
to the focal point, L2 is the distance from the input surface of a sample to the focal point,
L2 − L1 = L is the thickness of optical medium [24,29]. Therefore, the number of concentric
rings (N) as a function of the applied intensity I(0) reveals the nonlinear refraction coefficient
γ from the maximum nonlinear phase shift ∆φNL(0) = kγI(0)Le f f = 2πN.

The typical images of SSPM diffraction rings of GO atomic-layer liquid suspension for
the different excitation times are shown in Figure 2a. The base solution does not display the
concentric rings even at the highest applied intensity within the experiment condition as
shown in Figure 2b due to no nonlinear refraction from the base solution. Figure 2c is the
quantitative analysis of the horizontal radius and the upper vertical radius of diffraction
rings as a function of the laser excitation time at the applied intensity of ~48.8 MW/m2,
where the SSPM diffraction is proportional to the nonlinear phase shift, which is correlated
to the nonlinear refraction and laser intensity [15]. The nonlinear refraction coefficient is
the intrinsic property of the optical material, but it is not the case if the physical origin of
nonlinearity changes. The analysis shows that the radius, including the number (not shown
here), of concentric rings, is increased up to the ~0.32-s excitation time. It implies that the
diffraction ring radius is increased as the net nonlinear refraction coefficient is increased
due to the reduction of out-of-phase with collisions, impurity scattering, and boundary
reflections which leads to the nonlocal electron (or charge carriers) coherence according
to wind-chime model [30,31]. The distortions of upper vertical concentric rings from the
graphene oxide atomic layer in an aqueous solution for the excitation times longer than
~0.32 s is due to the localized thermal vortex with heat convection [32–36].
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Figure 2. Typical SSPM diffraction patterns at the far field of a Gaussian beam (a) through the GO in
aqueous base solution and (b) through the DI water for different laser excitation times, and (c) the
horizontal and upper vertical radii of diffraction profiles as a function of laser excitation times. The
applied intensity of Io ~48.8 MW/m2 was used for (a–c). The data points for horizontal and vertical
radii until 0.2 s are completely overlapped in (c).

The number of diffraction rings “N” increases linearly with the applied laser intensity,
as shown in Figure 3, is described by [24],

N =
∆φNL(0)

2π
=

kγLe f f

2π
I(0)

The linear fitting slope, kγLe f f /2π, of the number of N as a function of applied inten-
sity revealed the nonlinear refraction coefficient of GO. The coefficient was estimated to be
~−6.65× 10−12 m2/W [29,37] which has just an order difference from Shan’s measurements
of ~3.57× 10−11 m2/W using 532 nm and 1.1× 10−11 m2/W using 671 nm CW laser source
for few-layer GO [6]. In addition, the polarity of the nonlinear refraction coefficient was
characterized by fitting with the Fraunhofer approximation of Fresnel–Kirchhoff diffrac-
tion integral to the concentric rings as shown in Figure 4a. The intensity distribution of
Fraunhofer approximation at the far field is given by [38],

I = Io

∣∣∣∣∣∣
∞∫

0

Jo(k0rθ)exp
(
−r2

w2(z)
− iφ(r)

)
rdr
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where w(z) = wo

√(
1 + (z/zo)

2
)
= wo

√
R(z)/(R(z)− z) is the beam radius at which the

field amplitude falls to 1/e of their axial value, k0 is the wave vector number, θ is the far-

field diffraction angle, Io = 4π2
∣∣∣ E(0,z)exp(−αL/2)

iλD

∣∣∣2, Jo(k0rθ) = 1
2π

2π∫
0

exp(−ik0rθ cosϕ)dϕ

is the first kind of zero-order Bessel function, E(0, z) is the applied field at the center
of Gaussian beam, α is the linear absorption coefficients, D is the distance between the
sample and the screen, and φ(r) is the total phase shift which includes both linear and
nonlinear phase shift [39]. Also, R(z) = z

(
1 + (zo/z)2

)
is the radius of curvature and

wo is the beam waist at the focal point, and zo is the Rayleigh length. The nonlinear
phase shift φNL(z, r) = ∆φNL(0)exp

(
− 2r2

w2(z)

)
includes the maximum nonlinear phase shift

∆φNL(0) = ksγIoLe f f [40]. Figure 4a displays the fitting (red color) and the experimental
measurement (blue color) of concentric rings at the far field for the GO atomic layers
in an aqueous solution which estimates the maximum nonlinear phase shift (∆φNL(0))
~−18π. Figure 4b demonstrates the simulated diffraction pattern for the positive and
negative maximum nonlinear phase shift to display the characteristic distinctions between
the polarity of nonlinear refraction coefficient [41]. For the positive maximum nonlinear
phase shift (18π), the diffraction pattern unveiled a distinct central peak (blue) which was
disappeared in the diffraction pattern (red) for the negative maximum nonlinear phase
shift (−18π). The suppression of the central peak indicates the negative nonlinearity or
self-defocusing property of a given optical medium.
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Figure 3. Typical SSPM diffraction patterns at the far field of a Gaussian beam (a) through the GO in
aqueous base solution for different applied intensities [MW/m2] and (b) the number of diffraction
rings as a function of applied intensity. The excitation time duration was tex. ~0.32 s.
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Figure 4. (a) Two-dimensional diffraction profile as a function of radial distance using a maximum
nonlinear phase shift ∆φNL(0) = −18π (b) Demonstration of diffraction patterns for positive and
negative maximum nonlinear phase shift of 18π.

Figure 5a is the schematic sketch of the half-cone angle (θH) and the distortion angles
(θD) with respect to the diffraction profiles at the far field. The images of concentric rings for
the different applied peak intensities at the excitation times of ~0.32 s and ~0.8 s are shown
in Figure 5b. Also, the distortion angle to half-cone angle ratio (θD/θH) and its contribution
to the nonlinear refraction due to the localized heat vortex as a function of applied peak
intensity is quantitatively analyzed in Figure 5c. The distortion radius at the upper half
of the diffraction profile is due to the laser-induced heat convection above the laser axis
which results in non-axial asymmetrical isothermal in liquid base solution [40,41]. Vest and
co-authors introduced heat convection due to a heating wire in liquid [42] which provides
an analogy of the laser-induced heat convection of atomic layers in the base solution, and
Wang and co-authors reported the laser-induced temperature fields [26]. Figure 5c indicates
that the change of nonlinear refraction coefficient ∆γ = (θD/θH)|γ| at the localized thermal
vortex due to the heat convection was estimated to be less than a half order in the unit of
m2/W [37,43].
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Figure 5. (a) Schematic sketch for the half-cone and distortion angles of SSPM, (b) SSPM diffraction
images for different applied peak intensities at the excitation times of ~0.32 s and ~0.8 s, and (c) the
ratio of θD/θH (left y-axis) and the change of nonlinear refraction coefficient (right y-axis) as a
function of applied peak intensity.

4. Conclusions

The nonlinear refraction coefficient of graphene oxide (GO) was estimated to be
~−6.65 × 10−12 m2/W using the SSPM technique with a chopped CW laser excitation at
532 nm and 300 Hz. The number of concentric rings as a function of applied intensity char-
acterized the magnitude of the nonlinear refraction coefficient and fitting by the simulated
Fraunhofer diffraction to the concentric rings revealed the polarity of the nonlinear refrac-
tion coefficient as well. The steady increase of the radius and the number of concentric rings
below ~0.32 s excitation times implies the contribution of atomic layer alignment, according
to the wind-chime model, and the thermal effect to the optical nonlinearity in addition to
the electronic contribution at the absorption edge spectrum. The vertically asymmetric
diffraction ring indicates the phase distortion of the optical field due to heat convection. The
change of nonlinear refraction coefficient at the localized heat convex is around one-order
in the unit of m2/W which may offer novel platforms of thermal metrology based on the
localized optical nonlinearity and the temperature-sensitive all-optical switching.
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