
Citation: Chen, S.; Xie, A.; Lv, X.;

Chen, S.; Yan, C.; Jiang, H.; Rong, L.

Tailoring Microstructure of Austenitic

Stainless Steel with Improved

Performance for Generation-IV Fast

Reactor Application: A Review.

Crystals 2023, 13, 268. https://

doi.org/10.3390/cryst13020268

Academic Editor: Shouxun Ji

Received: 13 January 2023

Revised: 30 January 2023

Accepted: 31 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Review

Tailoring Microstructure of Austenitic Stainless Steel with
Improved Performance for Generation-IV Fast Reactor
Application: A Review
Shenghu Chen 1,*, Ang Xie 1,2, Xinliang Lv 1,2 , Sihan Chen 1, Chunguang Yan 3, Haichang Jiang 1

and Lijian Rong 1

1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China

2 School of Materials Science and Engineering, University of Science and Technology of China,
Hefei 230026, China

3 China Institute of Atomic Energy (CIAE), Beijing 102413, China
* Correspondence: chensh@imr.ac.cn; Tel.: +86-24-23971981

Abstract: Austenitic stainless steels are selected as candidate materials for in-core and out-of-core
components of Generation-IV fast reactors due to their excellent operating experience in light-water
reactors over several decades. However, the performance of conventional austenitic stainless steels
proves to be inadequate through operation feedback in fast reactors. To withstand the demands
for material performance exposure to the extreme operating environment of fast reactors, modified
austenitic stainless steels for in-core and out-of-core components have been developed from the
first-generation 300-series steels. The design of an appropriate microstructure becomes a top priority
for improving material performance, and key metallurgical features including δ-ferrite content,
grain size and secondary phase precipitation pertinent to austenitic stainless steel are focused on in
this paper. δ-ferrite content and grain size are closely correlated with the fabrication program and
their effects on mechanical properties, especially creep and fatigue properties are critically assessed.
Moreover, the impacts of some major elements including nitrogen, stabilization elements (Nb, Ti,
V), phosphorus and boron on secondary phase precipitation behaviors during aging or creep are
reviewed in detail. Based on the role of the aforementioned metallurgical features, the recommended
specification of nitrogen content, stabilization ratio, phosphorus content, boron content, δ-ferrite
content and grain size are put forward to guarantee the best-expected performance, which could
provide reactors designers with attractive options to optimize fast reactor systems.

Keywords: fast reactor; austenitic stainless steel; improved performance; δ-ferrite; grain size;
secondary phase evolution

1. Introduction

Generation IV nuclear energy systems are currently being developed to overcome the
limitations of currently deployed Generation II and III light water reactors [1–4]. As the
identified Generation IV nuclear reactors, fast neutron reactors with a closed fuel cycle
not only make efficient utilization of uranium resources but also minimize long-lived
radioactive waste, thus establishing a more sustainable nuclear energy system. Sodium,
lead, or helium can be selected as the coolant in fast neutron reactors. At present, the most
mature technology is the sodium-cooled fast reactor, and most of the basic technology has
been established through the long-term experience of design, construction, test, operation,
inspection and maintenance of demonstration/prototype reactors in the USA, France,
Russia, Japan, India, South Korea and China [5]. Besides, the demonstration activities of
lead-cooled fast reactors and gas-cooled fast reactors are underway and planned [6].

Crystals 2023, 13, 268. https://doi.org/10.3390/cryst13020268 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13020268
https://doi.org/10.3390/cryst13020268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-2590-7114
https://doi.org/10.3390/cryst13020268
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13020268?type=check_update&version=1


Crystals 2023, 13, 268 2 of 18

Developing advanced structural materials is crucial to the success of fast neutron reac-
tors. The extreme operating environment including higher temperature, higher neutron
doses, thermal stress and extremely corrosive environment poses significant challenges to
the material selection and qualification efforts [7–10]. Taking into account the example of
the sodium-cooled fast reactor, the key challenges imposed on in-core structural materials
are to be able to simultaneously bear high temperatures up to 700 ◦C, high peak neutron
doses >100 dpa and sodium exposure. Meanwhile, the major challenges of out-of-core struc-
tural materials include high temperatures of ~550 ◦C, long operating periods of 40–60 years
and sodium exposure. Most of the operating conditions found in the sodium-cooled fast
reactor are also applicable to lead-cooled fast reactors except for the corrosive environment.
Experience feedback is very important for nuclear applications. Advanced structural mate-
rials suitable for fast neutron reactors are expected to build on the feedback of Generation
II and III light water reactors experiences but require significant improvements in specific
properties through continuing R&D activities. Several organizations have issued a series of
nuclear codes such as the ASME code, RCC-MRx code and JSME code for nuclear power
plants and related components [11–13]. All these codes aim to establish rules of safety gov-
erning the design, fabrication and inspection during components construction; meanwhile,
new advancements in design and materials are constantly being added to the codes.

Conventional austenitic stainless steels such as AISI 304 and 316 show excellent oper-
ating experience in light water reactors over several decades and are selected as candidate
materials for in-core and out-of-core components of fast reactors [14–21]. However, the
performance of conventional austenitic stainless steel proves to be inadequate during
operation. For the in-core components including fuel cladding/wrapper, an increase in
the fuel life is needed to assure credibility because the first-generation AISI 316 exhibits
considerable swelling when irradiated up to 100–120 dpa [14–17]. For the out-of-core
components including vessel, core support structure, piping, pump, intermediate heat ex-
changer, etc., mechanical properties degradation induced by the microstructural evolution
during long-term exposure is detrimental to the reliability during the 40–60 years of the
design life [18–21]. In order to deal with these challenges in the materials selection of fast
reactors, continuous efforts have been made to develop advanced austenitic stainless steels
to offer improved safety margins, material reliability and design flexibility.

This paper reviews the extensive research on the improvement in the performance of
conventional austenitic stainless steels and ongoing R&D on new alloy development for fast
reactors based on the design of an appropriate microstructure. Key metallurgical features
including δ-ferrite, grain size, and secondary phase precipitation pertinent to austenitic
stainless steel are focused on.

2. Austenitic Stainless Steels for Fast Reactor Application

Candidate austenitic stainless steels for the in-core and out-of-core components of fast
reactors are summarized in Table 1. The chemical composition specifications of advanced
austenitic stainless steels are carefully modified based on the conventional grade to meet
the high-level requirement of design code for fast reactors. Advanced austenitic stainless
steels for out-of-core components are optimized in the following: (i) the content of each ele-
ment is controlled within narrow limits, (ii) tightening the specification ranges of C and N,
(iii) upper limits on impurity elements such as Si, S and P. The composition modifica-
tions of advanced austenitic stainless steels for in-core components are listed as follows:
(i) higher Ni content and lower Cr content are specified, (ii) controlled content of Si, P and B,
(iii) addition of stabilizing elements such as Ti, Nb and V. Besides composition optimization,
the microstructure is tailored by hot-work, cold-work, heat treatment, etc.
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Table 1. Chemical composition specifications of candidate austenitic stainless steels for in-core and
out-of-core components of fast reactors.

Chemical Composition (wt.%)

Type C N Ni Cr Mn Mo Si Nb Ti Others

Conventional
Austenitic stainless

steels

304
304L
316

316L

≤0.08
≤0.03
≤0.08
≤0.03

≤0.1
≤0.1
≤0.1
≤0.1

8.0–10.5
8.0–10.5

10.0–14.0
10.0–14.0

18.0–20.0
18.0–20.0
16.0–18.0
16.0–18.0

≤2.0
≤2.0
≤2.0
≤2.0

–
–

2.0–3.0
2.0–3.0

≤0.75
≤0.75
≤0.75
≤0.75

–
–
–
–

–
–
–
–

–
–
–
–

Advanced austenitic
stainless steels for

out-of-core components

Type 304
Type 316

316FR
316L(N)
316KD
NF709

0.04–0.06
0.04–0.06
≤0.02
≤0.03

0.04–0.05
≤0.10

0.04–0.07
0.04–0.07
0.06–0.12
0.06–0.08
0.05–0.07
0.1–0.25

8.0–10.0
11.0–12.5
10.0–14.0
12.0–12.5
11.0–12.5
23.0–26.0

18.5–20.0
17.0–18.0
16.0–18.0
17.0–18.0
17.0–18.0
19.5–23.0

1.0–2.0
1.0–2.0
≤2.0

1.6–2.0
1.0–2.0
≤1.5

≤0.2
2.5–3.0
2.0–3.0
2.3–2.7
2.5–2.7
1.0–2.0

≤0.6
≤0.6
≤1.0
≤0.5
≤0.6
≤1.0

–
–
–
–
–

0.1–0.4

–
–
–
–
–
≤0.2

–
B:0.003
B:0.001
B:0.002

–
B:0.002

Advanced austenitic
stainless steels for

in-core components

PNC316
316Ti

15/15Ti
(1.4970)

D9
ChS68
FV548

HT-UPS

0.06
0.05
0.1

0.05
0.05–0.08

0.1
0.08

–
–
–

–
–
–
–

14.0
14.0
15.0

15.0
14.0–15.5

11.5
16.0

16.0
16.0
15.0

14.0
15.5–17.0

16.5
14.0

1.8
1.7
1.6

2.0
1.3–2.0

1.2
2.0

2.5
2.5
1.3

2.3
1.9–2.5

1.5
2.5

0.8
0.6
0.5

0.6
0.3–0.6

0.35
0.4

0.08
–
–

–
–

0.7
0.1

0.1
0.4
0.5

0.25
0.2–0.5

–
0.3

B:0.004
–

B:0.003

–
B:0.003

–
B:0.003

3. δ-Ferrite Formation

Fe-15Cr-15Ni-2Mo model austenitic stainless steels for in-core components such as
15/15Ti, D9 and ChS68 are devoid of δ-ferrite due to a relatively higher Nieq/Creq ratio
according to the modified Schaeffler diagram [22–24]:

Nieq. = Ni + 21C + 11.5N + 0.5Mn (1)

Creq. = Cr + 2Mo + 3Si (2)

However, austenitic stainless steels for out-of-core components such as Type 316,
316L(N) and 316KD present a higher content of ferrite stabilizing elements such as Cr and
Mo to ensure high-temperature properties, resulting in a higher propensity for δ-ferrite
formation. Furthermore, the formation of δ-ferrite is promoted in the large-scale billets due
to the obvious changes in solidification time and cooling rate across the thickness [25–27].
In the 180 mm thick 316KD continuous casting slab for the Chinese CFR600 demonstration
fast reactor [28], different amounts of δ-ferrite are observed across the slab thickness,
manifesting as cellular δ-ferrite less than 3% at the surface position and skeletal δ-ferrite
up to 8% at the center position (Figure 1). It is found that the combined effects of macro-
segregation and cooling rate are responsible for the significant differences in morphologies
and amount of δ-ferrite across the thickness, i.e., macro-segregation of Cr, Mo and Ni across
thickness alters the Nieq/Creq ratio and a lower cooling rate at the center position increases
the time for the solidification reaction.

In light water reactors at the service temperature <350 ◦C, spinodal decomposition
and G phase precipitation are observed within δ−ferrite; cast austenitic stainless steels CF-8
with δ-ferrite contents <20% are less likely to undergo significant thermal embrittlement
over the extended lifetimes of reactors (80 years) [29–31]. Upon exposure to the operation
temperature of ~550 ◦C in a fast reactor, δ-ferrite is susceptible to thermal embrittlement
through precipitations of M23C6 carbides, Laves phase, σ phase and χ phase, evidenced
by a significant reduction in the tensile ductility, impact toughness, creep-rupture strength
and fatigue crack growth rate [32–35]. It is reported that the rate of phase precipitation in
ferrite is about 100 times more rapid than that in austenite [36]. The δ-ferrite content must
be controlled or even limited to have a stable microstructure at high temperatures. For
instance, the measured ferrite content of solution-treated X2CrNiMo17-12-2[316L(N)] prod-
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ucts including plate, rolled bars, forged bars and forgings must be less than 1% according
to the RCC-MRx code [22]. δ-ferrite can be nearly eliminated through δ-ferrite→austenite
transformation after long-time homogenization treatment at a temperature above 1200 ◦C
(Figure 2), and the elimination of δ-ferrite is mainly a Cr-diffusion controlled process [37].
However, abnormal grain growth occurs during the homogenization treatment, which is not
beneficial to obtain uniform grain structure in subsequent hot working and heat treatment.
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Figure 2. Area fraction of δ-ferrite as a function of homogenization temperature and time of as-cast
samples at the center position of 180 mm thick 316KD austenitic stainless steel [37].
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4. Grain Size Distribution

Grain size has a profound effect on the mechanical response of metals, and the Hall–
Petch relations can provide a reference for understanding the grain size dependence
of mechanical strength [38–46]. In order to avoid scatter in mechanical properties, the
grain structure is controlled within specific regions besides the narrow limits on chemical
composition in the nuclear codes proposed by several organizations. For instance, the
grain size number shall be no less than 2 for solution-treated X2CrNiMo17-12-2[316L(N)]
products including plate, rolled bars, forged bars and forgings in accordance with RCC-
MRx code [22]. The grain size number must be in the range of 3–6 for Type 304 and Type
316 steel in accordance with the ASME-NH code [11]. As the operating temperature reaches
~550 ◦C in fast reactors, creep and fatigue properties are of great importance to the design
and safety evaluation due to the occurrence of creep damage and fatigue damage caused
by elevated temperature and thermal stress, apart from conventional tensile strength and
impact toughness.

The creep properties of 316FR, 316L(N) and SUS316 at 550 ◦C and 600 ◦C show that
the creep rupture strength decreases with increasing grain size [41–43]. However, grain
size effects are not in agreement with the model by simply incorporating the Hall–Petch
relationship into the classical thermally-activated flow model [41]. On the one hand, grain
boundary strengthening is moderated at the test temperature because of the occurrence
of grain boundary sliding, the recovery process, etc. On the other hand, this is influenced
by phase precipitation on moving dislocations during the creep test. Therefore, the grain
size effect on the creep properties is a balance between grain boundary strengthening and
the strengthening effect by phase precipitation. It is found that the steady-state creep rate
decreases to a minimum value at an intermediate grain size (80~130 µm) and then increases
with a further increase in the grain size at 600 ◦C in 316L(N) (Figure 3) [43]. The grain size
effect on the steady-state creep rate agrees well with Garofalo’s model on the assumption
that grain boundaries act simultaneously as a dislocation source and barriers to dislocation
movement. As the test temperature increases further to 700 ◦C, subgrain structures are de-
veloped during the creep deformation, and the size of the resultant subgrains is not related
to the initial grain size. Therefore, the creep properties are not significantly influenced by
the grain size variation at 700 ◦C [41].

The effect of grain size on fatigue properties depends on the test temperature, strain
range, strain rate and wave shape, so it is difficult to obtain a definitive correlation between
the grain size and fatigue resistance as evidenced by the large amount of scatter in the
number of cycles to failure (Nf) [44]. When the low-cycle fatigue tests are conducted at
a high strain rate (6.7 × 10−3 s−1) at 600–700 ◦C of Type 304 and 316, the transgranular
fracture mode is observed and Nf scarcely depends on the grain size. As the strain rate
decreases to 6.7 × 10−5 s−1, the fracture modes change from transgranular to intergranular,
and Nf decreases with an increase in the grain size. The creep-fatigue properties of SUS316
and 316FR at 550 ◦C reveal that the creep-fatigue life is reduced with increasing grain
size [42]. Besides, the creep-fatigue properties of 316H containing a bimodal grain structure
with the largest grains larger than 200 µm at 650 ◦C show that large grains tend to be
detrimental to the creep-fatigue life [45]. Metallography from the gauge section reveals that
microcracks appear to initiate at the grain boundaries of one of these larger grains.

Until now, the creep and fatigue data as a function of grain size are not sufficient to
establish definitive relationships. The available data show that an intermediate grain size
can lead to excellent creep resistance and fatigue life. Very large grains are detrimental,
which is not acceptable in the microstructure. Besides, grain boundaries are traditionally
considered sinks for radiation-induced point defects, but the combination of radiation-
induced grain boundary migration and evolving defect sink efficiency makes it difficult
to predict the contribution of grain boundaries to radiation resistance through recent
investigations [46]. The grain structures are generally determined as a result of material
processing history based on the combination of the amount of deformation during hot
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working and the subsequent solution treatment [47–50]. Therefore, the processing program
of large industrial-scale heat must be carefully selected to avoid extremely large grains.
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5. Secondary Phase Precipitation Behavior
5.1. Secondary Phase Evolution

For austenitic stainless steel products including plate, rolled bars, forged bars and
forgings, the final heat treatment before practical use is often solution annealing treat-
ment. The resultant microstructure consists of an austenite matrix with a large number
of annealing twins. Long-term exposure to high temperatures in fast reactors can lead
to the precipitation of secondary phases, giving rise to a substantial reduction in per-
formance. Besides, radiation-induced solute segregation around point-defect sinks can
promote secondary precipitation in these micro-regions. Under neutron irradiation at high
temperatures (>0.3 Tm, Tm is the absolute melting temperature) in fast reactors, defects
with sufficiently high mobilities can rapidly diffuse towards point-defect sinks, and some
solute-atoms (such as Ni and Si) strongly coupled to point-defect flows, migrate with them
to promote buildups of solute-atoms at these sinks. The most obvious radiation-induced
phase is Ni3Si, which would not form during thermal aging. The radiation-induced solute
segregation effects tend to diminish with increasing irradiation temperature, and nearly
vanish above 650 ◦C. Thus, secondary phase evolution is mainly dominated by thermal
aging effects in fast reactors.

The time-temperature-precipitation (TTP) diagrams are used to characterize the pre-
cipitation sequences of secondary phases and the competition among various phases. TTP
diagrams of AISI 316, 316L and 316L(N) have been determined [19], and the typical one of
316L is shown in Figure 4. M23C6 carbides are the first phase that forms during aging in
the range of 500–900 ◦C. The preferential sites for M23C6 carbide precipitation are grain
boundaries, followed by twin boundaries, and finally within grains. The precipitation
of intermetallic phases takes place subsequent to M23C6 carbides, and the most frequent
intermetallic phases are the sigma phase (σ), chi phase (χ) and Laves phase (η). The crystal
structures and composition of various phases have been extensively reviewed [36,51,52].
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The very slow kinetics of the intermetallic phase precipitation is due to the low diffusiv-
ities of the substitutional elements for phase formation and the unfavorable orientation
relationship between these phases and the austenite matrix. χ and η show more favorable
orientation relationships with the austenite than the σ phase, as a result, the σ phase is
the last phase appearing during aging. Besides, there is a view that the formation of the
intermetallic phase increases the solubility of carbon in the austenite matrix, which leads to
the gradual dissolution of M23C6 carbide.
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The precipitation behaviors have been extensively investigated according to the avail-
able TTP diagrams of conventional austenitic stainless steel, and the mechanism at the early
stage is fairly well understood. Nevertheless, the precipitation behaviors of new-developed
advanced austenitic stainless steels are rather obscure. Composition optimization in these
new-developed steels can significantly alter the precipitation kinetics. Impacts of several
factors such as nitrogen alloying, the mono-/multi-stabilization elements effect, phospho-
rus addition and boron addition are present in the following.

5.2. Effect of Nitrogen Alloying

High carbon grades of 304 and 316 are used extensively for out-of-core structural
components in the early sodium-cooled fast reactor. Afterward, carbon content is limited
to a low value to prevent sensitization during welding so as to decrease the risks of
intergranular corrosion and stress-corrosion cracking. Since low carbon grade steels have
lower strength than normal grades, the nitrogen-alloyed versions designated as Type 304,
Type 316, 304L(N), 316L(N), 316FR and 316KD are developed for the high-temperature
components in the countries developing fast reactors.

Despite a reduction in the carbon content in the modified austenitic stainless steel
resulting in a higher tendency to form δ-ferrite, nitrogen addition effectively prevents
δ-ferrite formation due to nitrogen being a strong austenite stabilizer according to the
aforementioned Nieq equation. Meanwhile, influences of nitrogen content on mechanical
properties demonstrate that the optimum amount of nitrogen can substantially improve the
tensile strength, creep rupture strength and fatigue life [17,21,53–57]. The beneficial effects
of nitrogen have been widely studied, and the strengthening mechanisms are summarized:
(i) Nitrogen has a strong solid-solution hardening effect. Nitrogen produces a higher
dilation than carbon due to the difference in electron exchange characteristics between
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carbon and nitrogen. The introduction of enhanced elastic distortions into the austenitic
crystal lattice gives rise to stronger pinning effects on dislocation motion. The variations of
Young’s modulus with nitrogen content demonstrate a significant increase in modulus with
increasing nitrogen content [57]. It is estimated that the strengthening effect of nitrogen
is more than twice as effective as carbon [58]; (ii) nitrogen alters the carbide precipitation
behavior. Unlike carbon, nitrogen does not present a noticeable grain boundary segregation
tendency due to a weak affinity of nitrogen to grain boundaries. Nitrogen has been shown
to delay the onset of M23C6 precipitation during thermal aging or creep, supported by an
increase in the incubation time of M23C6 precipitation with increasing nitrogen content
during aging in 316KD austenitic stainless steel (Figure 5). The reason is that chromium has
a higher affinity for nitrogen than for carbon [59]. Moreover, nitrogen is known to reduce
the coarsening rate of M23C6. Matsuo et al. [60] previously proposed that nitrogen can
decrease the misfit between M23C6 and austenite, resulting in the retardation of carbide
coalescence. This explanation is not consistent with the very small amount of nitrogen in
M23C6 carbide. A more reasonable explanation is that the presence of nitrogen in a solid
solution decreases the activity of chromium through the formation of chromium nitrides
or Cr-N complexes and thus slows down the diffusivity of chromium [61]. However,
there is no experimental evidence for this explanation yet. (iii) Nitrogen affects the high-
temperature deformation mechanism. Dislocation evolution during deformation is directly
correlated with the stacking fault energy (SFE). A new empirical expression to predict SFE
from composition in austenitic stainless steels is proposed [62]:

SFE (mJ·m−2) = 2.2 + 1.9Ni−2.9Si + 0.77Mo + 0.5Mn + 40C − 0.016Cr − 3.6N (3)
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It is shown that the addition of nitrogen decreases SFE value. Lower SFEs are known to
be beneficial for creep properties because the more extended partial dislocations make cross-
slip more difficult [63]. Microstructural observations after creep-fatigue tests of 316L and
316L(N) at 600 ◦C found that dislocation structures change from cell/subgrain to planar slip
with the addition of nitrogen [55]. The suppression of cell/subgrain formation with increas-
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ing nitrogen content is also observed after the creep test of 316L(N) at 650 ◦C [57]. Besides,
the operation temperature of fast reactors is the most active temperature for the occurrence
of dynamic strain aging (DSA), which is induced by the interaction between diffusing
solute atoms and mobile dislocation during plastic deformation. Although DSA increases
tensile strength through enhanced work-hardening ability, it is significantly detrimental
to strain-controlled fatigue and creep-fatigue life [55,64–67]. The proposed mechanism
is that DSA-induced inhomogeneous deformation reduces the crack initiation life, while
DSA-induced hardening decreases the propagation life. As the strong interaction between
nitrogen and chromium slows down the diffusion of chromium to mobile dislocations, the
addition of nitrogen retards DSA [68,69]. As a consequence, fatigue and creep-fatigue life
increase and the crack propagation rate decreases with the addition of nitrogen. Despite
nitrogen having a high solubility in austenite in excess of 0.1 wt.% at a temperature above
550 ◦C [70], an upper limit of nitrogen content (~0.08 wt.%) is generally set to have no
detrimental effect on weldability in Type 304, Type 316, 304L(N), 316L(N) and 316KD. A
potential higher content is specified for 316FR in the JMSE code [12], but the actual nitrogen
content in products is also limited to ~0.08 wt.% [71].

A comparison of creep rupture strength and strain-controlled low-cycle fatigue proper-
ties of low-carbon medium-nitrogen 316L(N) in RCC-MRx with medium-carbon medium-
nitrogen Type 316 in ASME-NH at 550 ◦C is shown in Figure 6. The creep rupture strength
data are available up to 300,000 h, and the fatigue life data up to 106 cycles are provided.
The creep rupture strength of 316L(N) grade is lower than Type 316 at a high sustained
stress level, while 316L(N) shows superior creep rupture strength than Type 316 at sus-
tained stress levels lower than 310 MPa (Figure 6a). Meanwhile, the fatigue life of 316L(N)
is higher than Type 316 as the total strain is lower than 0.7% (Figure 6b). In comparison,
316L(N) is preferred over Type 316 in the future design of sodium-cooled fast reactors to
fulfill the requirement for extending the design life from the current level of 40 years to
60 years.
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5.3. Effect of Mono-/Multi-Stabilization Elements

In order to inhibit the precipitation of M23C6 carbides, the addition of strong carbide-
forming alloying elements can result in the formation of MC carbides primarily in austenitic
stainless steels [72]. Niobium, titanium and vanadium are the well-known strong MC
carbide-forming elements. The fine dispersion of MC carbides not only serves as an
obstacle to dislocation movement to improve the high-temperature creep strength but
also suppresses the radiation-induced void development during irradiation. Therefore,
optimized niobium and titanium contents play a dominant role in swelling resistance and
creep strength.
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Titanium has the greatest influence on the swelling behaviors of austenitic stainless
steels under neutron irradiation among the general stabilizing element (Ti, Nb, V) [73].
Ti-stabilized austenitic stainless steels such as 316Ti, D9, 15/15Ti, 1.4970 and ChS68 are
developed for the in-core components of fast reactors. Titanium in the solid solution
diffuses toward dislocation to form a Contrell-type atmosphere, which can stabilize the
pre-existing dislocation network under irradiation [74]. Furthermore, the formation of fine
TiC carbides consumes a fraction of titanium from solid solution, and these fine TiC carbides
can pin the dislocation and act as defect sinks and recombination sites [75]. In the presence
of phosphorus, the formation of fine (Fe,Ti)2P-type phosphide particles is also beneficial
for the suppression of swelling, which will be reviewed in Section 5.4. It is worth noting
that the final cold working with an optimum of 20% is required for Ti-stabilized austenitic
stainless steels in order to promote the formation of fine TiC on dislocations [76]. Recently,
the advantage of multi-stabilization (Nb, Ti, V) has also been proposed. Multi-stabilization
strategies significantly increase the void swelling incubation dose, because the replacement
of titanium in MC carbides and M2P phosphide by niobium and vanadium can leave more
and more Ti in a solid solution. The newly multi-stabilized (Nb, Ti, V) HT-UPS exhibits
better-swelling resistance than Ti-stabilized D9 [77]. Modified ChS68 with three stabilizing
elements of niobium, titanium and vanadium has been developed in Russia to reduce the
swelling rate at enhanced damaging doses [78].

Upon exposure to high temperatures, the precipitation of secondary MC carbides in
the austenite matrix is also responsible for the excellent mechanical properties [79]. The
stabilization ratio SR = (Ti + Nb + V)/C is extremely important so as to maximize the
strengthening mechanism and avoid the formation of a detrimental phase. The influence
of the Ti/C ratio on the creep properties of D9 at 700 ◦C shows that a peak in the rupture
strength and a minimum in the steady creep rate is found in steel with Ti/C ≈ 6 because
of a higher volume fraction of fine secondary TiC carbides (Figure 7) [80]. A lower Ti/C
ratio (Ti/C ≈ 4) leads to the formation of M23C6 and M6C, while a higher Ti/C ratio
(Ti/C ≈ 9) promotes the formation of primary TiC and intermetallic Fe2Mo during creep.
In the Nb-stabilized austenitic stainless steels such as Type 347 and TP347HFG, the superior
creep strength at high temperatures is attributed to the precipitation of secondary NbC
carbides [81]. Usually, a specified Nb/C ratio of 8~11 is controlled to optimize the secondary
NbC precipitation. A higher Nb/C ratio results in the formation of coarse primary NbC
carbides during the solidification process and the precipitation of the Fe2Nb Laves phase
after long-term aging/creep [82]. Small cracks and voids are detected along coarse NbC
carbides, which deteriorates the fracture resistance. Coarse primary NbC is very difficult to
be eliminated through subsequent hot working and heat treatment, even near the melting
temperature. Furthermore, its formation consumes a large amount of Nb from the solid
solution, which is unfavorable for the precipitation of secondary fine NbC [83]. A more
restrictive specification on the content of carbon and niobium to obtain the optimum Nb/C
ratio is also needed.

To obtain a higher density of MX carbide during subsequent precipitation, solution
treatment is adopted to promote the dissolution of stabilizing elements in the solid solution
as much as possible. Therefore, the solubility product of [M][X] is an important factor
in optimizing the content of the stabilizing element. The estimated solubility product
curves show that the solubility product of TiC is much larger than that of NbC (Figure 8).
In comparison, a higher amount of TiC can be dissolved into a solid solution after the
solution is treated at the same temperature, resulting in the larger precipitation hardening
in Ti-stabilized austenitic stainless steels during creep. Meanwhile, TiC shows a lower
coarsening rate than NbC during creep because of the smaller lattice mismatch between
TiC and austenite matrix [79]. However, TiO2 and TiN inclusions are frequently formed
during the casting of Ti-stabilized austenitic stainless steels since Ti has a high affinity for
O and N from the air, molten steel, or molten slag [84]. Besides the addition of mono-
stabilized elements and further improvements in the creep resistance have been made
by the multi-stabilization of niobium, titanium and vanadium through the formation of
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M(C,N) carbonitrides and the Z phase (CrNbN) in advanced HT-UPS and NF709, which
are considered as attractive candidate construction materials for major components (reactor
vessel, core supports, intermediate heat exchanger, etc.) of advanced burner reactors and
sodium-cooled fast reactors [85].
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5.4. Effect of Phosphorus Addition

Phosphorus has long been considered an impurity element in austenitic stainless steel,
thus the upper limit on phosphorus content (<0.05 wt.%) is generally specified. However,
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concerns have been raised about the beneficial effect of phosphorus on the mechanical
properties and irradiation properties of austenitic stainless steel since the 1980s.

Firstly, variation in phosphorus content can affect the precipitation behavior of carbides
and intermetallic phases. It is found that the amount of Laves phases within grains and
M23C6 carbide on grain boundaries are both reduced with an increase in phosphorus
content [71,86]. For the cold-worked 316Ti, the beneficial effects of phosphorus on the
improvement of mechanical properties are due to phosphorus being conducive to the
precipitation of finely distributed M23C6 carbides within grains during annealing treatment
between 600 ◦C and 800 ◦C [87,88]. In addition, phosphorus has been found to delay the
formation of the intermetallic phase because of the abundant nucleation of M23C6 carbide.
The creep rupture properties of Type 316 containing 0.002~0.052% phosphorus at 550 ◦C
and 600 ◦C reveal that an increase in phosphorus content enhances rupture strength, and
the effect is more pronounced after long-term creep tests [86].

Secondly, phosphorus is shown to be much more effective in suppressing swelling
and improving the irradiation creep resistance of austenitic stainless steels. Investiga-
tions on irradiation creep in AISI 316 pressurized tubes show that phosphorus is much
more effective in reducing swelling on a per-atom basis than other common solutes
(Figure 9) [89–91] because phosphorus can increase the diffusivity of matrix solvent and
the equilibrium vacancy concentration by orders of magnitude. Temperature dependence
of void swelling in alloy D9 with a phosphorus content of 0.026% and 0.048% in the range
of 427–697 ◦C exhibits that void swelling is found to be lower with a higher phosphorus
content, and swelling at the peak temperature is also less [17]. Moreover, swelling can be
suppressed through the formation of a very fine dispersion of stable M2P phosphide parti-
cles during thermal aging/irradiation in phosphorous-modified Fe-Ni-Cr alloys, which is
attributed to the phosphide-matrix interface providing nucleation sites for a high density
of helium bubbles [92,93].
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Based on the effect of phosphorus addition on mechanical properties and irradiation
properties, modified austenitic stainless steel with a controlled phosphorus content has
been developed for fast reactors. In France, Germany and India, modified versions of D9,
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15/15Ti and 1.4970 having rather high contents of phosphorus (0.04 wt.%) are developed
for in-core components [17]. Modified austenitic stainless steels with a controlled amount
of phosphorus (0.015~0.03 wt.%) are developed on the basis of ChS68, which is used as
a standard material for fuel element cladding for the BN-600 sodium-cooled fast reactor
in Russia [78]. The lower and upper limits of phosphorus content (0.02~0.045 wt.%) are
specified in 316FR, which is developed for reactor vessels and the internals of sodium-
cooled fast reactors in Japan [71].

5.5. Effect of Boron Addition

Boron was previously considered a trace solute impurity in austenitic stainless steels.
Boron has a strong tendency to segregate at grain boundaries owing to the large free
energies of segregation. Unlike many other segregants, it does not cause grain boundary
embrittlement. Afterward, boron was regarded as a kind of micro-alloyant to improve the
mechanical properties of austenitic stainless steels.

Boron segregations at grain boundaries are detected after solution treatment in
austenitic stainless steel, and the segregation behaviors are dominated by the
non-equilibrium segregation mechanism [94,95]. Numerous investigations demonstrate
that the addition of boron significantly increases the high-temperature creep strength in
304, 316, 347 and DIN 1.4970 [96–101]. The beneficial effect of boron on creep resistance
can be divided into three respects. Firstly, the addition of boron is beneficial for carbide
precipitation. Boron being an interstitial element reduces the solubility of carbon in austen-
ite, consequently, carbide precipitation on dislocations is promoted during creep, which
is responsible for the enhanced creep deformation resistance. Significant effects of boron
on promoting the precipitation of finely dispersed carbides are observed in cold-worked
austenitic stainless steel [97]. Secondly, the addition of boron alters the character of the
matrix/precipitates interface. The incorporation of boron into M23C6 carbide to form
M23(C,B)6 increases the stability of carbides, so as to increase grain boundary sliding
resistance [98]. The resultant decrease in the mismatch between carbide and austenite
matrix lowers the matrix/precipitates interface energy, thereby suppressing creep cavity
nucleation. Lastly, the addition of boron suppresses creep cavity growth. Boron is found
to segregate on the creep cavity surface by Auger electron spectroscopy analyses. The
segregation of boron is expected to significantly reduce self-diffusivity along the cavity
surface [99–101], which is considered to impart a high reduction in cavity growth rate.
Firm segregation of boron along the cavity surface provides the steel with the function of a
self-healing effect for creep cavitations.

Boron has relatively low solubility in the austenite lattice due to its atomic size. The
calculated solubility of boron in Fe-16Cr-13Ni austenitic stainless steel confirms that the
maximum solubility is ~200 ppm at eutectic temperatures and significantly decreases to
~20 ppm at 900 ◦C [52]. During welding operations, the formation of a eutectic phase
with a low-melting point causes hot cracking when a higher content of boron is added.
Furthermore, M2B precipitation easily takes place during creep if the boron content exceeds
~30 ppm in the austenitic stainless steels [102]. The effect of M2B precipitation on mechanical
properties is still not very clear. Nevertheless, the formation of M2B is prone to remove
boron from a solid solution, causing a deterioration in the self-healing function for creep
cavitation. Optimized boron content is specified in most modified austenitic stainless steels
for fast reactors, including Type 316, 316L(N) and NF709 for out-of-core components, and
1.4970, ChS68 and HT-UPS for in-core components.

6. Conclusions

Based on the experience feedback from the fast reactor constructions and operation
worldwide, modified austenitic stainless steels for in-core and out-of-core components
are developed from the first candidate 300-series steels. The design of appropriate mi-
crostructure is crucial to improve the material performance, and key metallurgical features
including δ-ferrite content, grain size and secondary phase precipitation pertinent to
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austenitic stainless steel are comprehensively reviewed in this paper. δ-ferrite content and
grain size are the two key final metallurgical features of products, which are closely corre-
lated with the fabrication program. Their influences on mechanical properties, especially
creep and fatigue properties pertinent to fast reactors are assessed. δ-ferrite content must
be controlled or even limited to have a stable microstructure. An intermediate value or
maximum value is specified for grain size, and isolated grains with extremely large sizes
must be avoided. Secondary phase precipitation is mainly responsible for the changes
in mechanical properties and irradiation resistance during long-term exposure to high
temperatures, which strongly depends on some major elements including nitrogen, stabi-
lization elements, phosphorus and boron. The impacts of these factors on secondary-phase
precipitation behaviors are reviewed in detail. The optimum nitrogen content, stabilization
ratio, phosphorus content and boron content are beneficial for creep rupture strength,
fatigue life and irradiation resistance. A modified version is developed through a precise
specification of nitrogen content, phosphorus content, boron content, stabilization ratio,
δ-ferrite content and grain size.

The technical database of the modified austenitic stainless steels is much less than
conventional 304SS and 316SS until now. The secondary phase precipitation mechanisms
at the early stage are fairly well understood, but precipitation kinetics for longer times
are rather obscure. Especially, long-term data are dramatically needed to demonstrate the
material behaviors to fulfill the planned lifetime extension requirements in fuel and reactor.
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