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Abstract: Two slabs of dielectrics with different values of refractive index are synthesized to form a
composite structure and the whole system satisfies parity-time-reciprocal scaling symmetry. Four
coherent-perfect-absorber-laser points are induced by modulating the incident wavelength of light-
waves and the loss/gain factor of materials. The locations of coherent-perfect-absorber-laser points
in parameter space, which manifests the multi-wavelengths of coherent-perfect-absorber-lasers could
be regulated by the incidence angle. Especially, a value of π phase shift in the transmitted/reflected
light wave has been observed as well. This research has potential applications in multi-wavelength
absorbers/lasers and half-wave phase shifters.

Keywords: PTX symmetry; CPA-laser point; half-wave phase shifter; dielectric structure; laser

1. Introduction

The absorption and radiation of light waves by materials make the loss of the system
inevitable through the interaction process of light and material [1]. By using the stimulated
radiation of the gain medium or the parametric process of the nonlinear medium [2–4], the
energy loss or gain of the system can be compensated. The introduction of loss and gain in
non-Hermitian optical structures provides more freedom for photon manipulation.

The concept of parity-time (PT) symmetry has been transplanted from quantum
systems to non-Hermitian optical systems. It has become a research hotspot in recent
years and has a broad application prospect in laser technology [5,6], optical sensing [7],
material engineering [8], and other fields. In non-Hermitian systems, the eigenvalues of
Hamiltonians are usually complex numbers. However, when the Hamiltonian satisfies the
PT symmetry, the eigenvalues of the Hamiltonian may also be real numbers. The complex
function of the refractive index for the PT optical system could be written as n(x) = n ∗
(−x), viz. the real component of the refractive indice presents the symmetrical distribution,
while the imaginary component is anti-symmetric. The asterisk represents the complex
conjugate operation. Compared with the uniform distribution of complex permittivity, the
complex permittivity modulated by space or time makes the non-Hermitian optical system
show many unique optical properties, such as optical invisibility [9], one-way nonreflective
transmission [10,11], electric field localization [12,13], and spectral singularity [14–16],
which opens a new path for the search and exploration of new photonic devices [17–19].
The modulation of the complex permittivity includes the modulating of the real component
and the imaginary component. It is found that spatial modulation of the real component
of the permittivity could control the mode output, and the time modulation can be used
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to construct nonreciprocal devices such as optical isolators [20]. The coherent-perfect-
absorption−laser point (CPA−LP) [21–25] and nonreciprocal amplification [26] can be
realized by modulating the imaginary part of the dielectric constant. CPA−LP is the reverse
physics process of a laser, which could be utilized for an anti-laser, and it may completely
absorb the electromagnetic wave with a specific frequency and waveform. Specifically, as
two beams of coherent light waves with the same intensity incident on the upper and lower
surfaces of the absorber, one can adjust the phase difference in the coherent lights to achieve
the control of the absorption intensity from 0% to 100%. Instabilities of coherent perfect
absorption in layered systems were analysed by alternating, amplifying, and absorbing
media [27]. CPA−LP, as a special solution of the broken phase in PT-symmetric systems [28],
may show more intuitive physical characteristics, which are of great significance to the
study of non-Hermitian physics.

The PT-symmetric structures are special non-Hermitian systems. For quantum me-
chanics, if the Hamiltonian operator H and the parity time operator PT satisfy the reciprocity
relation [H, PT] = 0, then the Hamiltonian is said to be PT-symmetric. The symbols T and
P represent time and parity operators, respectively. In optical crystals, the condition of
parity-time symmetry is equivalent to the existence of gain in one region of the system and
the existence of equivalent loss in another region of symmetry. The scale of the loss and gain
medium meeting should be the same size. The optical loss is easily doped and regulated
within a large size range, but the optical gain can only be controlled within a small range.
On the other hand, the loss/gain factor of the dielectric can be regulated by ion doping
and two-wave nonlinear mixing. For example, the gain coefficient after beam coupling
is significantly increased by two-wave mixing in Fe3+-doped LiNbO3 [3] and Bi-doped
Sn2P2S6 [29]. Inspired by the above studies, we here propose a PTX (parity-time-reciprocal
scaling) symmetry dielectric structure. Based on PT symmetry, the structure increases the
reciprocity symmetry of the space scale; that is, the optical gain size is reduced to 1/G of
the optical loss size (G > 1), but at the same time, the optical gain coefficient is expanded
to G times of the optical loss coefficient. Further, we explore CPA−LPs and their related
characteristics in PTX-symmetric dielectric structures.

In this study, compound systems are synthesized, which contain two kinds of dielectric
slabs A and B with different refractive indices. The loss/gain factor of dielectrics and the
thickness of slabs A and B are modulated to satisfy parity-time-reciprocal scaling (PTX) sym-
metry. We first investigate multiple CPA−LPs arising from the parameter space consisting
of the loss/gain factor and incident wavelength. Subsequently, regulation of the CPA−LPs
is explored through the incident angle. Then, phase-shift characteristics of light waves
at CPA−LPs are presented as well. Our research provides a theoretical or experimental
project for designing multi-wavelength tunable lasers or half wave phase shifters.

2. Synthesis of PTX-Symmetric Dielectric Structure

The proposed geometrical structure is given in Figure 1. The symbols A and B denote
two dielectric slabs with different refractive indices. Their geometrical thicknesses are
denoted by da and db. The indices A and B are given by: na = nar + i*nai, nb = nbr + i*nbi,
where nar and nbr, respectively, represent the real part nai and the imaginary part nbi and i is
the imaginary unit. The incident, reflected, and transmitted light beams are denoted by the
symbols Ii, Ir, and It, respectively. The incident angle is denoted by θ which represents the
included angle between the incident beam and the horizontal direction (i.e., Z-axis). The
host material of A can be set as LiNbO3. Weak optical loss can be realized by doping iron
ions (Fe2+) into the dielectric slab A and one can choose ion-doped LiNbO3 for the optical
loss dielectric A [3]. The host material of slab B may be SiO2 and the optical gain coefficient
is controlled by Er3+ doping in slab B along with the intensity regulation of the external
pump beam. The refractive indices of materials and the thicknesses of slabs of the system
are adjusted subtly, and finally, the entire dielectric structure meets the PTX symmetry.
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Figure 1. Schematic of dielectrics structure with PTX symmetry.

The parameter z is the spatial position coordinate and the refractive index function
of a composite system that satisfies the equation: n(z) = n*(−z); then, the system follows
PT-symmetry. The refractive index function is written in conjugate form, that is, n(z) = nr(z)
+ i*ni(z). In practice, the real component and imaginary component of the refractive index
in materials need to be adjusted concurrently, so that the real refractive index meets even
symmetry, viz. nr(z) = nr(−z), while the imaginary refractive index satisfies odd symmetry,
viz. ni(z) = −ni(−z). The positive imaginary part of the index value represents the optics
gain of the material, which can be realized by nonlinear two-wave mixing or ion doping. It
shows that the optical gain in a broad-area semiconductor amplifier can be realized by the
two-wave mixing, in which a pump beam and a signal beam with different frequencies,
both a moving phase grating and a moving gain grating, are induced in the amplifier [30].
The optical gain is further provided through two-wave mixing in Fe3+-doped LiNbO3 using
the material’s photorefractive nonlinearity, while optical loss is induced by Fe2+-doping [3].
Otherwise, optical gain enhancements in Si nanocrystals via hydrogenation and Ce3+ ion
doping and Bi-doped Sn2P2S6 crystals are through a two-beam coupling [29,31]. The
coupling gain is induced by a higher effective electro-optic coefficient and an increase in
the trap density compared with values in these pure nanocrystals or crystals. The negative
imaginary refractive index component represents the optical loss in the system, and the
optical loss can be realized by ion doping.

Compared with PT symmetry, the PTX-symmetric condition of the dielectric structure
demands the function of the refractive index to meet the equations:

√
Gda = db/

√
G, nar = nb

and nai /
√

G =
√

Gnbi. The parameter G is the scale transformation coefficient. For LiNbO3,
the real part of the refractive index is nar = nbr = 2.22, and the imaginary part is nai = 0.01*q
and nbi = −0.1*q, respectively. The mark q is called the loss/gain factor of optical media.
The dielectric thicknesses are da = 5 µm and db = 0.5 µm. Here the scale transformation
coefficient is set as G = 10.

For a transverse magnetic (TM) wave at the two ports of a layer, the electric and
magnetic fields can be interconnected by the transfer matrix method (TMM) [32,33].

Ml =

[
cos ϕl − i

ηl
sin ϕl

−iηl sin ϕl cos ϕl

]
, (1)

The symbol is ϕj = 2πnldlcosl/λ. The parameter dl is the thickness of dielectric and θl

is the angle of incidence. The symbol ηl = (ε0εr)1/2/[(µ0µr)1/2cosθl]. Then, the electric and
magnetic fields at the first input port and last output port can be expressed as(

E0
H0

)
=

k

∏
l=1

Ml

(
Ek
Hk

)
=

[
m11 m12
m21 m22

](
Ek
Hk

)
. (2)
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Consequently, the transmission coefficient t and reflection coefficient r can be ob-
tained as

t =
2η0

(m11 + m12ηk)η0 + (m21 + m22ηk)

cos θ0

cos θk
, (3)

and

r =
(m11 + m12ηk)η0 − (m21 + m22ηk)

(m11 + m12ηk)η0 + (m21 + m22ηk)
, (4)

where η0 = ηk = (ε0/µ0)1/2/cosθ. The parameter η0 is the admittance in vacuum. The
transmittance T of light beam and the reflectance R can be obtained by T = tt* and R = rr*,
respectively.

3. Multiple CPA−LPs and Half Wave Phase Shift

The transmittivity log10(T) in parameter space is described in Figure 2a. The parame-
ters space is constituted by the loss/gain factor and the incident wavelength. The transverse
magnetic wave is propagating along the Z-axis in the PTX-symmetric structure and the
angle of incidence is fixed by θ = 0◦. The logarithm log10(T) of the light transmittance T
can be aimed at enhancing the contrast ratio. By modulating the values of λ in the range of
[0.5 µm, 2 µm] and q in the range of [0, 10] synchronously, we could find the transmission
extreme points in parameters space. The maximum transmitted point is commonly known
as this CPA−LP, denoted by the symbol LP. Briefly, these four laser points are located
at LP1 [λ1 = 0.5198 µm, q1 = 2.8529], LP2 [λ2 = 0.6785, q2 = 3.4835], LP3 [λ3 = 0.9765 µm,
q3 = 4.5646], and LP4 [λ4 = 1.7393 µm, q4 = 6.8168], and the corresponding transmittance
values at these CPA−LPs are T1 = 6.6405 × 103, T2 = 2.7102 × 104, T3 = 4.162 × 104, and
T4 = 9.7791 × 105, respectively.
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Figure 2b explores the reflection spectrum log10(R) in parameters space. We mark
the four dark orange dots as LP1, LP2, LP3 and LP4, representing four points with the
maximum value of R. The positions of these four poles are exactly at [λ1 = 0.5198 µm,
q1 = 2.8529], [λ2 = 0.6785 µm, q2 = 3.4835], [λ3 = 0.9765 µm, q3 = 4.5646], and [λ4 = 1.7393 µm,
q4 = 6.8168], viz. the four CPA−LPs. The corresponding values of R for these four poles are
R1 = 1.0053 × 103, R2 = 4.1495 × 103, R3 = 6.8375 × 103, and R4 = 1.8268 × 105, respectively.

To further prove the resonance characteristics of the CPA−LPs, we focus on one of
the laser points to investigate its optical spectrum. Figure 2c describes the spectrum of
transmission light waves for the parameter of q = 6.8168. The parameter q = 6.8168 is exactly
equal to the corresponding loss/gain factor of LP4. The transmittivity of the light beams
changes with the increase in the incident wavelength, and one can find that a sharp trans-
mission peak appears in the spectrum of transmission beams, which is indicated by a red
asterisk (I). The value of this transmission peak is log10(T) = 5.9903, and correspondingly,
the wavelength of incidence is fixed by λ = 1.7393 µm, which also happens to be λ4. The
transmittance of this peak log10(T) = 5.9903 = log10(T4) identifies with the transmittance at
LP4. The transmittivity roughly increases with the augment of the incidence wavelength
as λ ≤ 1.7393 µm. The transmitted intensity of light beams has been greatly improved as
the incident wavelength tends to LP4 from the left side. As the value is λ > 1.7393 µm, the
transmittivity decreases with the rise in the incident wavelength, while the transmitted
intensity declines dramatically when the incident wavelength expands from the right of
LP4. Otherwise, the transmission spectrum curve is asymmetric to the CPA−LP of LP4.

Figure 2d studies the relationship between the incident wavelength and the reflectance
of the light beam for the value of q = 6.8168. It can be found that the reflectance of the light
waves changes with the wavelength of incidence. At λ = 1.7393 µm, there is a reflection
peak, marked with a red asterisk (I) as well. The peak value of reflectance is taken as the
logarithm log10 (R) = 5.2617 = log10 (R4), so the value is exactly equal to the reflectance
at LP4. Similarly, by adjusting the incident wavelength, the reflectivity of the light waves
changes violently near the LP4. The reflectance changes relatively gently as the incident
wavelength moves away from LP4 on both sides.

Furthermore, one can change the incident angle, and the other parameters remain
unchanged. Along the Z-axis a transverse magnetic wave propagates in the PTX-symmetric
dielectrics structure as the incidence angle is θ = 0◦. Figure 3a provides the transmittiv-
ity of light waves around LP4 as θ = 10◦. The CPA−LP (LP4) appears at [λ4 = 1.7337 µm,
q4 = 6.8368] in parameter space. The transmittivity at this CPA−LP (LP4) is T = 2.0128 × 105.
For the value of incident angle θ = 30◦, the CPA−LP (LP4) moves to [λ4 = 1.691, q4 = 6.997]
and its transmittance is T = 4.1908× 106 as provided in Figure 3b. Increasing the angle of in-
cidence to 50◦, the position of the CPA−LP (LP4) is located at [λ4 = 1.6003 µm, q4 = 7.5576],
as shown in Figure 3c, and the corresponding transmittance is T = 1.0174 × 106.

Changing the angle of incidence from the value of 0◦ to 60◦, Figure 3d shows the rela-
tionship between the position of this CPA−LP (LP4) in parameter space and the incidence
angle. One can see that with the augment of the angle value of incidence, LP4 moves to the
upper left of the parameter space, viz. the corresponding wavelength of the laser decreases,
and the loss/gain factor grows. In a similar way, the corresponding wavelengths of the
other laser points of LP1, LP2, and LP3 may change with the incidence angle as well. If the
incident angle of the light wave changes, the position of the corresponding laser point in
parameter space will change accordingly, that is, by changing the value of the incidence
angle, the corresponding laser wavelength may be tuned.

In the parameter space constituted by the incident light wavelength and the loss/gain
factor, the PTX-symmetric dielectric structure supports multi-wavelength laser points.
Multi-wavelength laser points correspond to the maximum points of transmittance and
reflectance, which could be utilized for obtaining ideal multi-wavelength lasers. The
wavelengths of the laser correspond to the wavelength values at these multi-wavelength
laser points. The multi-wavelengths of the laser can be flexibly adjusted by the value of
the incidence angle. Compared with PT-symmetric aperiodic photonic crystals, which
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also are used for realizing multi-wavelength laser, the PTX-symmetric dielectric proposed
here has a simple structure. However, the reduction in the size of the gain material in
multi-wavelength lasers is at the cost of increasing the gain coefficient of the material.
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For a fixed incident wavelength, the dependence of the CPA−LP on the direction of the
reflected light wave in the PTX-symmetric dielectric structure is discussed here. Figure 4a
demonstrates the intensity transmitted light versus the loss/gain factor and the incident
angle. One could find that there is a CAP−LP in the parameters space. The according
parameters of this CAP−LP are given by the incident angle of θ = 69.175◦, the loss/gain
factor q = 7.3417, and the maximum transmittivity of T = 8.9702 × 104.
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For the loss/gain factor value q = 7.3417, Figure 4b describes the corresponding
transmission spectrum changing with the incidence angle. The transmittance changes with
the incidence angle. At θ = 69.175◦, there is a sharp transmission peak marked with a red
asterisk (I). At the labeled asterisk, the maximum value is log10(T) = 4.9528 = log10(TL),
which exactly equates to the relevant value of transmittance for the laser point LP, as shown
in Figure 4a. The transmission intensity increases slowly with the increase in the incident
angle for θ ≤ 69.175◦, while for θ > 69.175◦, the transmission intensity decreases rapidly
with the rise in the incidence angle. As the incident angle reaches the peak from the right
or the left sides of this laser point LP, the transmission intensity could be greatly improved.
Therefore, one can modulate the parameters of the laser point LP through the loss/gain
factor and the incidence angle.

Figure 4c provides the reflectance of light waves varying with the incidence angle in
parameters space. In order to increase the contrast, the logarithm log10 (R) of the light wave
reflectance R is also taken in simulations. There is one LP appearing in the quantitative
value range of parameters space, and its reflectance is extremely high, with a value of
RL = 1.8214 × 103. For a fixed quantity of the loss/gain factor q = 7.3417, the corresponding
reflection spectrum for light waves is described in Figure 4d. Obviously, the reflectance
increases as the incident angle changes around θ = 69.175◦ = θL, and the reflectance reaches
the maximum value at θL marked with a red asterisk (I). The reflectance at this point
is log10(R) = 3.2604 = log10(RL). In the same way, the reflectivity of light waves changes
dramatically near this CPA−LP. When the incident angle of the light waves is far from
the peak on both sides, the reflectance change is relatively flat. In conclusion, for the
PTX-symmetric dielectric structure proposed here, the CPA−LP is precisely located at the
pole of the transmitted light beam or the reflected light beam.

Generally, the transmission coefficient can be expressed as t = Eo/Ei, where Ei denotes
the input electric field strength, while Eo represents the transmission electric field strength,
both of which are complex. Further, the transmission coefficient is written in the form
of the complex index, t = |t|exp(iϕt), Eo = |Eo|exp(iϕo), and Ei = |Ei|exp(iϕi). From
this, we can obtain Eo = t*Ei = |t||Ei|exp[i(ϕt + ϕi)], viz. the phase ϕo = ϕt + ϕi of the
transmitted electric field. Similarly, the phase ϕo = ϕr + ϕi of the reflected electric field can
be obtained. That is to say, the phase of the electric field is closely related to the reflection
coefficient phase and the transmission coefficient phase. Finally, the phase of the electric
field can be adjusted by modulating the reflection coefficient phase or the transmission
coefficient phase.

For a fixed incident wavelength λ = 1.31 µm, the transmission coefficient phase of the
light waves in parameters space is formed by the loss/gain coefficient and the incident angle
is demonstrated in Figure 5a. One could find that the CPA−LP is located at [θL = 69.175◦,
qL = 7.3417] and the transmission coefficient phase ϕt is singular at the CPA−LP. This
means that near the CPA−LP, the phase of transmission coefficient is very sensitive to the
incident angle and the loss/gain factor. If the incident angle undergoes a minor change, the
transmission coefficient phase will vary dramatically.

Figure 5b provides the transmission coefficient phase varying with the incident angle.
For demonstrating the change in the transmission coefficient phase, we here take three
specific values of the loss/gain factor to demonstrate. The incident wavelength is provided
by λ = 1.31 µm. The parameter value q = 7.3417 is just equal to the loss/gain factor of
the CPA−LP. One of the other two parameters is greater than q = 7.3417 and the other
is less than q = 7.3417. One can see that at θ = 69.175◦ = θL, there is a π phase jump in
the transmission coefficient phase ϕt. For the loss/gain factor q = 7.3, it has a jump of 2π
in phase in the transmission coefficient phase curve as the incident angle increases. The
2π phase change is meaningless and can be ignored. For the loss/gain factor q = 7.4, the
transmission coefficient phase changes slowly and continuously with the varying of the
incident angle. In short, the variation in the transmission coefficient phase is exactly equal
to π at the CPA−LP, and this phase jump effect can be used in half-wave phase shifters for
transmitted light waves. The phase shift is controlled by changing the incident angle.
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Figure 5c gives the relationship between the incident angle and the phase of reflection
coefficient. The phase ϕr at the CPA−LP experiences a dislocation. Figure 5d depicts the
phase of the reflection coefficient changing with the incident angle for different loss/gain
factors. In comparison with the characteristics as shown in Figure 5b, it can be found
that the changing trend in the phase ϕr is the same as that in phase ϕr for the three given
loss/gain factors. For q = 7.3417, the phase of ϕr changes suddenly at the CPA−LP, and the
corresponding reflection coefficient phase change is exactly equal to π as well. This effect
can also be used in half-wave phase shifters for reflected light waves, and the shift in phase
can be controlled by varying the value of the incident angle.

For different incident wavelengths, Figure 6 gives the corresponding transmittance
of light waves. There is one CPA−LP in Figure 6a and another CPA−LP in Figure 6b as
well. The LP appears at [θL = 62.85◦, qL = 5.4454] and the peak value of the transmittance is
log10(T) = 2.8508 for λ = 0.85 µm, whereas the other LP is situated at [θL = 54.8◦, qL = 7.6977]
and the maximum transmittance is log10(T) = 6.5361 for λ = 1.55 µm. It demonstrates that
the laser resonance may be realized by adjusting the loss/gain coefficient and the incident
angle for different incident light wavelengths. At the laser point, the phase jump of π
occurs in both the reflection coefficient phase and the transmission coefficient phase, thus
realizing the half-wave shift in the phase of the transmitted light wave and the reflected
light wave.
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With a fixed incident wavelength, the PTX-symmetric dielectric structure supports a
resonant laser point, that is, a CPA−LP. This point corresponds to the maximum transmit-
tance and reflectance of light waves simultaneously. The reflection coefficient phase and
the transmission coefficient phase have a phase jump of π at the laser point as well. This
phase jump effect could be utilized to realize the half-wave phase shift in the transmission
light wave and the reflection light wave. Furthermore, for different incident wavelengths,
the positions of the CPA−LP in the parameter space are different, viz., the corresponding
value of the incident angle and the loss/gain coefficient at the CPA−LP changes.

4. Conclusions

In summary, multiple CPA−LPs are researched in the dielectric structures with PTX
symmetry. Along the Z-axis, two kinds of dielectric sheets are arrayed to form one-
dimensional dielectric composite structures. The thickness of the dielectric and optical
loss/gain of the dielectric system are meticulously modulated to satisfy PTX symmetry. PTX
symmetry is based on PT symmetry; meanwhile, the spatial scale reciprocity symmetry is
added to reduce the optical gain factor to 1/G (G > 1) of the optical loss factor, while the op-
tical gain coefficient is G times that of the optical loss coefficient. The parameter G refers to
the scale transformation coefficient. Four CPA−LPs appear in the parameter space and the
corresponding wavelengths for these CPA−LPs decrease with the increase in the incident
angle. In particular, for a specific incident wavelength, the PTX-symmetric dielectric struc-
ture supports CPA−LPs as well, and the phases of reflection and transmission coefficients
simultaneously undergo a π phase jump at the CPA−LPs, which can be utilized to achieve
an accurate half-wave phase shift. Otherwise, the position of the CPA−LP varies with the
light wavelength. This research can be applied to multi-wavelength absorbers/lasers and
half-wave phase shifters.
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