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Abstract: Multi-component high-entropy (TiCrAl0.5NbCu)CxNy coatings targeting applications re-
quiring medium-to-high friction and wear-resistant surfaces were fabricated through the co-sputtering
of elemental targets in an Ar + CH4 + N2 reactive atmosphere using a hybrid HiPIMS/DCMS tech-
nique. Two sets of samples were fabricated: (a) (TiCrAl0.5NbCu)Cx high-entropy carbides (HEC)
and (b) (TiCrAl0.5NbCu)CxN0.13 high-entropy carbonitrides (HECN), 0 ≤ x ≤ 0.48. The structural,
mechanical, tribological, and corrosion resistance properties were thoroughly investigated. The
metallic sample exhibits a single BCC structure that changes to FCC via an intermediary amorphous
phase through the addition of C or N to the content of the films. The crystallinity of the FCC phases
is enhanced and the density of the films decreases down to 5.5 g/cm3 through increasing the car-
bon fraction up to 48%. The highest hardness of about 16.9 GPa and the lowest wear rate of about
5.5 × 10−6 mm3/Nm are presented by the samples with the largest carbon content, x = 0.48. We found
a very good agreement between the evolution of H/E and H3/E2 parameters with carbon content
and the tribological behavior of the coatings. The best corrosion resistance was presented by the
low-carbon carbonitride samples, showing a charge transfer resistivity of about 3 × 108 Ω·cm, which
is more than three times larger than that of the metallic HEA. The best tribological characteristics for
envisioned application were presented by (TiCrAl0.5NbCu)C0.3N0.13, showing a coefficient of friction
of 0.43 and a wear rate of about 7.7 × 10−6 mm3/Nm.

Keywords: high-entropy alloys; structure; surface morphology; mechanical properties; electrochemical
properties

1. Introduction

The automotive industry, machinery tools, and structural components demand materi-
als with exceptional mechanical and thermal properties, high wear resistance, high thermal
stability, and high corrosion resistance. All these features are essential to prevent parts from
experiencing tribological damage during work at high speeds, when high temperatures
develop. In the automobile industry, a primary objective is to utilize lighter components
while maintaining the aforementioned properties [1–3]. While bulk materials can be em-
ployed, achieving the required properties can also be accomplished through coating the
components with special alloys. Two or more components intimately joined in a phase
build an alloy. Common alloys can be pictured as a solvent–solute combination, i.e., a large
amount of an element hosts smaller amounts of one or more other elements [4]. The order
can vary from crystalline to highly disordered structures, degrading sometimes to very
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short distance order. As a bulk material, random solid solutions with a high configurational
entropy usually result from mixing a definite number of elements and subsequently melt-
ing them together or allowing them to undergo a solid-state reaction. More efficiency is,
however, gained when such alloys are grown as thin, or thick, layers, and the bulk is used
as a target for various vapor deposition techniques. The actual trend focuses on carefully
engineered materials built of multi-principal elements, the so-called high-entropy alloys
(HEAs) [5,6]. Typically composed of at least five principal metal elements in close atomic
ratios, they exhibit a high entropy of mixing, lattice distortion, and cocktail effects [7], which
favor the development of thermodynamically stable simple solid-solution structures, i.e.,
face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP)
structures, characterized by excellent thermal stability, as well as outstanding mechani-
cal, tribological, and corrosion resistance properties [8,9]. These remarkable capabilities
have opened up new avenues for research, such as high-entropy ceramics (HECs) [10].
Primarily as a proof of concept, a few types of HECs have been developed to date through
incorporating p-type elements (boron, carbon, nitrogen, oxygen) into the metallic matrix
to form high entropy borides [11,12], carbides [13–15], nitrides [16,17], oxides [18,19], and
silicides [20,21]. These materials have demonstrated great potential for structural and
functional applications. Specifically, coatings of high-entropy nitrides (HEANs) [22–24]
and carbides (HEACs) [8,14,23] have been investigated for their promising use as pro-
tective coatings. HEANs have exhibited high hardness and a high coefficient of friction
but poor self-lubricating performance, while HEACs, in addition to their relatively high
hardness, have shown excellent tribological properties, particularly when a graphite phase
is present in the films [14]. Enhanced mechanical and tribological performances can be
achieved through combining metal nitrides and carbides to form high-entropy carbonitride
systems (HECNs) [24,25]. To date, only a few HECN systems have been synthesized as
thin films [24,26] or in bulk [27,28].

For machining and automotive applications that require medium-to-high coefficients
of friction and highly wear-resistant surfaces, this work focuses on the development of high-
entropy carbide and carbonitride coatings. The structural, tribological, and mechanical
properties of these coatings have been investigated. The proposed high-entropy system is
composed of titanium (Ti), chromium (Cr), aluminum (Al), niobium (Nb), and copper (Cu).
These are low-density elements known for their high strength and wear resistance, making
them suitable for tribological applications. Specifically, Cr, Nb, and Ti are known for their ef-
fectiveness in creating wear-resistant alloys [29–31], while Al, Nb, Cr, and Cu are commonly
utilized to enhance strength, corrosion resistance, and thermal stability [32,33]. Copper
could also contribute to improving wear resistance due to its ductility and lubricity proper-
ties [34,35]. Furthermore, nitrides and carbides based on Ti, Cr, Ni, and Al are characterized
by their hardness, wear resistance, and exceptional corrosion resistance [36,37].

To the best of our knowledge, high-entropy ceramics (HECs, HECNs) based on the
Ti-Cr-Al-Nb-Cu system had not been previously produced and investigated. The primary
objective of this research was to synthesize these materials in the form of coatings and
assess their structural, tribological, and corrosion resistance characteristics. The aim was to
determine their suitability for applications demanding surfaces with high levels of friction
and exceptional wear resistance. There exists a clear industry demand for such materials
due to the limitations of conventional organic-based frictional materials, typically composed
of polymer resins with additions of different components like carbon fibers, asbestos, metal
wires, and powders [38]. While these conventional materials offer medium-to-high friction
coefficients (less than 0.5 [38,39]), along with cost-effectiveness and ease of production,
they present relatively high wear rates ranging from 10−5 to 10−4 mm3/Nm [39], thermal
instability, and potential carcinogenic risks (associated with resin and asbestos).

In this study, a promising candidate for applications requiring surfaces with both high
friction and wear resistance was identified. The (TiCrAl0.5NbCu)C0.3N0.13 HECN exhibited
a coefficient of friction of about 0.43 and a wear rate of approximately 7.7 × 10−6 mm3/Nm.



Crystals 2023, 13, 1565 3 of 21

2. Materials and Methods

The coatings were developed using a hybrid magnetron sputtering deposition tech-
nique, combining the direct current (DCMS) and high-power impulse magnetron sputtering
(HiPIMS) methods. The hybrid HiPIMS/DCMS technique was adopted in order to improve
the adhesion, to increase the density of the films, and to tailor the microstructure of the films,
which are usual consequences of the high current density of ionized particles bombarding
the films’ growing surface during the deposition process, generated by the high-power
pulsed discharge [40–45]. The samples were prepared via reactive co-sputtering in an
Ar + CH4 + N2 atmosphere of high-purity elemental targets (5 mm thick, 50.8 mm diameter,
99.99% purity from Testbourne Ltd., Basingstoke, UK) using a con-focal AJA ATC-ORION
magnetron sputtering system (AJA International Inc., Scituate, MA, USA). The deposition
unit was equipped with five unbalanced magnetrons fed by HiPIMS (for Al and Cr targets)
and DCMS (for Ti, Nb, and Cu targets) power supplies. An additional RF source was used
for substrate bias. All power supplies are manufactured by AJA International Inc., except
for the HiPIMS power supply, which is custom-made in the laboratory. It is designed
with a 1.5 Ω output impedance and capable of delivering a maximum output power of
1000 V/150 A.

Prior to each deposition run, the substrates were ultrasonically cleaned in acetone
and isopropyl alcohol and dried in nitrogen gas flux before mounted on a substrate holder
(100 mm in diameter) and placed in the vacuum chamber on a rotating mount, 150 mm away
from the sputtering targets. Prior to each deposition process, the deposition chamber was
evacuated down to 8 × 10−6 Pa, while the substrates were heated to 300 ◦C for degassing.
Then, the substrates were plasma-etched for 10 min at −300 V bias in radio-frequency
(RF) Ar plasma at 0.67 Pa. In order to deposit films with homogeneous composition, the
sputtering targets were etched in Ar plasma for 10 min.

Two set of samples were fabricated on p-type Si(100) wafer (25.0 × 25.0 × 0.5 mm,
Testbourne Ltd., UK) and C45 substrates (25.0 mm diameter, 2.0 mm thickness, COS
Targoviste S.A., Romania—see Table 1 for C45 composition), at a substrate temperature of
300 ◦C [8,14,23]: (a) The first set consisted of carbides. It began with a metallic sample, and
varying amounts of carbon were introduced into the film composition through supplying
corresponding proportions of CH4 to the process gas. (b) The second set comprised
carbonitrides. It originated from a nitride sample, and a similar quantity of carbon was
added compared to the carbide samples (refer to Table 2 for details).

Table 1. C45 substrate elemental composition.

Elements C Cr Ni Mn Si Mo S P Fe

C45 (wt.%) 0.436 0.351 0.294 0.639 0.291 0.089 0.031 0.027 balance

Table 2. Deposition parameters (mass flows of process gases), film thickness, and composition.

Sample Ar
(sccm)

CH4
(sccm)

N2
(sccm)

Thickness
(µm)

Composition
(at. Ratio)

M 20 0 0 1.94 TiCrAl0.5NbCu
C1 19.0 1.0 0.0 1.87 (TiCrAl0.5NbCu)C0.09
C2 18.0 2.0 0.0 1.73 (TiCrAl0.5NbCu)C0.2
C3 17.0 3.0 0.0 1.62 (TiCrAl0.5NbCu)C0.3
C4 16.0 4.0 0.0 1.41 (TiCrAl0.5NbCu)C0.48
N 18.9 0.0 1.1 1.85 (TiCrAl0.5NbCu)N0.13

CN1 18.0 0.95 1.0 1.69 (TiCrAl0.5NbCu)C0.09N0.12
CN2 17.1 1.9 1.0 1.60 (TiCrAl0.5NbCu)C0.2N0.13
CN3 16.2 2.8 1.0 1.53 (TiCrAl0.5NbCu)C0.3N0.13
CN4 15.3 3.8 0.9 1.28 (TiCrAl0.5NbCu)C0.45N0.13
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The sputtering yield of targets is altered through changing the composition of the
process gas mixture due to chemical reactions between the reactive gas components (CH4,
N2) and the target material. In order to maintain a similar metallic composition of the films,
the electrical power applied to the sputtering targets was adjusted before depositing each
sample type. Short deposition runs, lasting approximately 15 min, were carried out on test
substrates to determine the atomic composition of the resulting films. The atomic content
of copper (Cu) was used as a reference point. Therefore, the electrical power applied to
the Cu target remained constant, while the electrical power applied to the other targets
was readjusted based on the atomic composition observed in the test runs. For further
details, please refer to Table 2, which provides information about the process gas mixture
used for the fabrication the two sets of samples, along with the labels assigned to each
sample. The labels include M for metallic samples, N for nitride samples, C1–C4 for carbide
samples, and CN1–CN4 for carbo-nitride samples. For M samples, the electrical power
applied to the Ti, Cu, Nb, Cr, and Al targets was 246 W, 84 W, 153 W, 139 W, and 203 W,
respectively, where the electrical power values corresponding to Cr and Al targets, with
HiPIMS polarized, represent the equivalent DC power. The HiPIMS pulse voltage, current,
width, and frequency applied to the Cr and Al targets were 800 V, 12 A, 100 µs, and 145 Hz
and 580 V, 30 A, 100 µs, and 116 Hz, respectively.

Unless otherwise stated, all investigations were performed on films deposited on C45
substrates. The elemental composition of the multi-principal element coatings deposited on
Si substrates was assessed via energy-dispersive X-ray spectroscopy (EDS) using a Hitachi
TM3030 Plus scanning electron microscope (SEM) equipped with a Bruker’s Quantax70
EDS. EDS spectra linear calibration was carried out using the Cu-Kα (8.037 keV) and Cu-Lα

(0.926 keV) lines obtained from a standard Cu sample. The EDS spectra of the samples were
recorded over the 0–15 keV energy range for 1200 s. An accurate elemental composition
analysis was not feasible using EDS on samples deposited on C45 substrates due to the
presence of chromium and carbon, which are constituent elements found in both the films
and the C45 substrate. Therefore, the EDS analysis was conducted on samples deposited
on Si substrates to avoid this interference.

The crystallographic structure was investigated via out-of-plane X-ray diffraction
(XRD) using a SmartLab diffractometer (Rigaku, Tokyo, Japan) equipped with a 9 kW
Cu rotating anode and a 5-axis vertical goniometer of 0.3 m radius. The diffractometer
was operated in parallel beam mode with high-resolution optics on the incident beam
(2-bounces Ge(220) monochromator) to select Cu-Kα1 radiation (λ = 1.5406 Å). The hori-
zontal and vertical incident slits were set to 1.0 mm and 5.0 mm, respectively. The XRD
patterns were recorded over a 2θ range of 20◦ to 100◦ with a resolution of 0.005◦ and an
acquisition speed of 1.0◦/min. The crystallographic structure analysis was performed
using the powder X-ray diffraction profile analysis software, PDXL (version 2.7), making
use of ICDD PDF-4+ XRD reference database.

The SmartLab diffractometer was additionally employed for assessing the average
mass density of the films through the X-ray reflectivity (XRR) technique. The XRR patterns
were recorded with horizontal and vertical incident slits set to 0.15 mm and 5.0 mm,
respectively. The measurements were conducted over a 2θ range of 0.1◦–3.0◦ with a
resolution of 0.001◦ and an acquisition speed of 0.16◦/min. The experimental XRR patterns
were simulated using the Rigaku GlobalFit Ver. 2.1.1 software package. A two-layer model
was adopted, including a topmost layer of a few nm describing the air-contaminated layer
of the films and a second layer describing the film’s actual properties. Since the thickness
of the films is much larger than the X-ray penetration depth (<500 nm), the second layer
was considered bulk in relation to the XRR technique. The XRR simulation provided the
iteratively adjusted fitting parameters such as the average density, thickness of the layers,
and the roughness of the interfaces once the goodness-of-fit value (χ2) dropped below
0.01. However, it is recognized that the XRR technique tends to overestimate the surface
roughness. In consequence, this paper presents only the AFM surface roughness values,
which are considered to be more accurate [42,46–48].
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The film’s surface morphology was assessed using a vibration-damped atomic force
microscope—AFM (Innova—Veeco)—working in intermittent contact mode. The AFM im-
ages were recorded from 5 µm × 5 µm areas, with a matrix resolution of 1024 × 1024 pixels,
at a scan rate of 0.7 Hz, using commercial pyramidal p-doped silicon tips (model RTESPA)
mounted to a 125 µm cantilever, presenting a resonance frequency of about 332.2 kHz
and a nominal force constant of about 40 N/m. Surface roughness and surface porosity
analyses were conducted on the entire surface area recorded via AFM using Gwyddion
v.2.30 software, Czech Metrology Institute [49], using the implemented surface statistical
quantities and grains function, respectively. The edge detection grain marking algorithm
was utilized to identify grains and calculate the overall grain surface area, Agrains, and
the overall surface area, Atotal. The surface porosity, P, was calculated as the ratio of
the surface area of pores (voids), Apores = Atotal − Agrains, to the total surface area, i.e.,
P = (1 − Agrains/Atotal) [50].

The nanoindentation tests were carried out using a Hysitron TI Premier unit equipped
with a Berkovich tip characterized by a 100 nm radius of curvature and a corresponding
total including angle of 142.3◦. Prior to nanoindentation measurements, several sources
of uncertainties and errors were taken into account such as the thermal drift, initial pen-
etration depth, machine compliance, and indenter area function [51]. The force calibra-
tion was conducted on the standard fused quartz sample with H = 9.25 GPa ± 10% and
E = 69.6 GPa ± 10%. According to ISO 14577-1:2015 [52], the following two aspects were
considered in order to avoid both the influence of C45 substrate on the resulting mechanical
properties and the limitation given by the geometrical characteristics of the used Berkovich
tip. Therefore, all the maximum indentation and contact depths were smaller than 1/10 of
the total films thickness and higher than 40 nm, respectively [53]. The load–displacement
curves availed to derive the hardness (H) and reduced modulus (Er) were obtained through
using a maximum indentation load of 3 mN. The corresponding time intervals for a com-
plete indentation in terms of loading, hold, and unloading were 7 s, 2 s, and 7 s, respectively.
A total of 15 points on different areas for each sample were selected for indentation, while
the distance between points was chosen to be at least 5 µm apart in order to prevent any
potential interference.

Tribology tests were conducted using a laboratory-made pin-on-disc tribometer to
assess the wear rate and the coefficient of friction of the samples. All the tests were
performed at a room temperature of 23 ◦C and a relative humidity of 40%. The pin used
was a synthetic sapphire ball with a diameter of 6 mm. Before each test, both the ball and
the samples were cleaned with isopropyl alcohol. The tribological tests were performed
using the following parameters: a normal applied load, F, of 1 N; a sliding speed, v, of
0.1 m/s; and a sliding track radius, r, of 8 × 10−3 m. The sliding distance, D, was 115 m
for all samples, except for the M, N, and C1 samples. For sample N, the sliding distance
was reduced to 70 m, while for samples M and C1, the sliding distance was set to 35 m, in
order to avoid substrate influence. The wear track profiles were recorded using a surface
profilometer (Dektak 150, Bruker, Billerica, MA, USA), from which the volume of the wear
track, V, was determined. The wear rate, K, was calculated using the equation K = V/(F·D).

The electrochemical behavior of the investigated samples was evaluated using the elec-
trochemical impedance spectroscopy (EIS) technique, through applying a sinusoidal signal
of 10 mV RMS vs. open circuit potential (EOC), in a frequency range of 0.5–104 Hz. The
tests were performed in 0.9% NaCl (Hemofarm, Timisoara, Romania) at room temperature
(22 ± 1 ◦C), using a VersaSTAT 3 potentiostat (Princeton Applied Research, Oak Ridge, TN,
USA). The corrosion cell consisted of an Ag/AgCl saturated electrode (reference electrode,
RE) (0.197 V vs SHE), a platinum electrode (counter electrode, CE), and the investigated
samples (the working electrode, WE). The EOC was monitored for 12 h, and the EIS data
were recorded after 1 h and 12 h immersion time in NaCl, respectively. The data acquisition
was made using VersaStudio software (version 2.60.6, Princeton Applied Research, Oak
Ridge, TN, USA) and for the data fitting procedure, we used the ZView software package
(version 12136-4, Scribner Associates Inc., Southern Pines, NC, USA).



Crystals 2023, 13, 1565 6 of 21

3. Results
3.1. Thickness and Elemental Composition

The thickness of the films, as determined via surface profilometry, falls within the
range of 1.28–1.94 µm (as shown in Table 2). The EDS investigations showed that the
stoichiometry of metallic components remains consistent across different samples (as
depicted in Figure 1). For both sets of samples, the carbon content varies from 9% to
48% relative to the metallic constituents, while all nitrogen-containing samples exhibit a
nitrogen concentration of approximately 13% (as shown in Figure 1 and Table 2).
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3.2. Structure and Phase Composition

Figure 2 presents the diffraction patterns of carbide (Figure 2a) and carbo-nitride
(Figure 2b) sets of samples. Notably, the metallic sample, M, presents a well-crystallized
structure that is fully textured along a single out-of-plane direction. The solitary visible
diffraction line, identified at about 2θ = 36.6◦ should be attributed to a BCC structure, in
agreement with the valence electron concentration (VEC) rule, which represents a good
indicator of phase stability. The VEC rule is a empirically established criteria proposed
to predict the structure of HEAs [54,55]. It posits that a high-entropy alloy will primarily
form a FCC solid solution phase if VEC ≥ 8.0, a BCC phase if VEC < 6.87, and a mixture of
FCC and BCC phases if VEC falls between these thresholds (6.87 ≤ VEC < 8.0). The VEC
value of an alloy is calculated from the weighted average valence electron concentration of
the constituent components, i.e., VEC = ΣCi(VEC)i, where Ci and (VEC)i are the atomic
percent and the VEC of the i-th element, respectively [54–56]. Using the (VEC)i values
from reference [56], it can be determined that the VEC value corresponding to the metallic
sample, M, is about VEC = 5.98, which is less than 6.87. This suggests that the M sample is
likely to possess a BCC structure. Consequently, the diffraction line identified at 2θ = 36.6◦

in the XRD pattern corresponding to the sample M could be attributed to (110) reflection
of a BCC structure with a lattice parameter of about 3.469 Å. This is in line with other
high-entropy systems [57–62].

The C1 and N samples exhibit an amorphous structure. The only XRD features arising
from these films are broad and are identified at about 2θ = 39.8◦ and 2θ = 39.9◦, respectively.
These peaks have a full width at half maximum (FWHM) of about 4.9◦ and 5.2◦, respectively,
indicating an average crystallite size of 1.8 nm and 1.7 nm, respectively, which is typical for
amorphous materials.
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Figure 2. X-ray diffraction patterns of (a) (TiCrAl0.5NbCu)Cx and (b) (TiCrAl0.5NbCu)CxN0.13 samples.

In contrast, the diffractograms of C2–C4 and CN1–CN4 samples display more distinct
features observed at about 36.0◦, 41.9◦, 61.1◦, and 73.0◦. These features can be attributed
to the (111), (200), (220), and (311) reflections, respectively, corresponding to a FCC-type
crystallographic structures, similar to PDF 00-031-1400 reference [63] and other FCC high-
entropy carbide and nitride systems [22,64–69].

A noticeable trend in Figure 2 is the evident narrowing of the diffraction lines as
the carbon concentration increases. This suggests an enhancement in the crystallinity of
the films. Following the Scherrer equation [70], Figure 3 illustrates the dependence on C
concentration of the average crystallite sizes in the direction perpendicular to the (200)
lattice planes of the FCC structures, and in the direction perpendicular to the (110) planes of
the metallic BCC structure. In general, the carbonitride films exhibit superior crystallinity
when compared to the carbide films of same carbon content. The lattice parameter values
of the carbide and carbonitride FCC structures fall within the region of 4.4 Å, which aligns
with typical values for transition metal carbides and carbonitrides [71–73].
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3.3. Density of the Films

The density of the films was investigated via the XRR technique. Figure 4a presents
the reflectivity spectra corresponding to the carbide set of samples. One can observe that as
the carbon content in the films increases, the critical angle for total X-ray reflection shifts
towards lower angles. This shift is a consequence of the decreasing film density due to
the elevated concentration of low-mass atoms such as carbon and nitrogen and/or the
inclusion of pores/voids in the films. The dependence between film density and carbon
concentration is presented in Figure 4b, clearly displaying the decreasing trend. The density
decreases from about 7 g/cm3 to about 5.5 g/cm3.
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It’s worth noting that the mass density value of the metallic sample, about 7.0 g/cm3,
is consistent with that of other BCC HEA systems with similar elemental constituents,
which typically falls in the range of 6–8 g/cm3 [74–76]. When nitrogen is added to the
composition of the processing gas, the mass density of the resulting nitride film, N, slightly
increases to about 7.1 g/cm3. However, when methane is added to the composition of the
processing gas, the concentration of the low-mass carbon atoms is increased in the film’s
composition, and the mass density of the carbide and carbonitride films progressively
decreases down to about 5.5 g/cm3. This is a common trend [77], which can be accentuated
by the development of pores/voids.

3.4. Surface Morphology

Surface morphology investigations confirm the X-ray diffraction findings. Figure 5a
presents AFM images of the sample surfaces covering a 5 µm2 area. Figure 5b,c further
highlight the correlation between the carbon concentration of the films and the correspond-
ing average surface roughness, Ra, and surface porosity, P, respectively, calculated from the
AFM data. The surface morphology of the metallic sample exhibits a surface roughness
and porosity of approximately Ra = 2.4 nm and P = 2.3%, respectively. The addition of
carbon and/or nitrogen to the composition of the films initially leads to an abrupt decrease
in the surface roughness to about Ra = 0.4 nm (sample C1) and Ra = 0.5 nm (sample N),
accompanied by a sharp decrease in the surface porosity to about P = 0.95% and P = 0.68%,
respectively. This is followed by a progressive increase in the surface roughness when the
carbon concentration is enhanced, reaching approximately Ra = 12.1 nm (sample C4) and
Ra = 15.5 nm (sample CN4), respectively, and an increase in the surface porosity up to
about P = 11.4% (sample C4) and P = 16.1% (sample CN4), respectively.
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3.5. Nanoindentation

Figure 6a presents representative load–displacement curves recorded during nanoin-
dentation tests of the carbonitride coatings. The dependence on the film’s carbon con-
centration of the hardness (H) and elastic modulus (E), corresponding to the carbide and
carbonitride sets of samples, is presented in Figure 6b,c.

The hardness and the elastic modulus corresponding to the metallic sample is
H = 6.65 ± 0.20 GPa and E = 138.9 ± 5.0 GPa, respectively. The addition of a small fraction of
carbon (9%) or nitrogen (13%) to the metallic film composition led to an increase in H and E
to about H = 11.3 ± 0.67 GPa and E = 150.7 ± 6.1 GPa (sample C1), and H = 11.7 ± 0.70 GPa
and E = 190.7 ± 6.2 GPa (sample N), respectively. With further increases in the C concen-
tration, the hardness progressively increased up to H = 16.83 ± 0.28 GPa (sample C4) and
H = 16.97 ± 0.28 GPa (sample CN4) The elastic modulus slightly increased up to a maxi-
mum value of E = 202.15 ± 1.2 GPa (sample C4) and E = 227.94 ± 6.8 GPa (sample CN4)
after reaching a local minimum value of 126.3 ± 5.6 (sample C3) and 152.08 ± 1.3 (sample
CN2) for the carbide and carbonitride set of samples, respectively.

Additional information on the coatings mechanical properties can be obtained through
analyzing the elastic strain to failure factor (H/E ratio) and the plastic deformation resis-
tance factor (H3/E2 ratio). Based on a theory proposed by Leyland [78], the tribological
property of films can be characterized using H/E and H3/E2 ratios. A high H/E ratio is
related to the highest elastic strain a film can accumulate prior to a plastic deformation. A
high H/E value means better film toughness and, thus, superior wear resistance. The plas-
tic deformation resistance factor, H3/E2, is considered more sensible to the wear resistance
property of a material, and it represents the contact yield stress, i.e., the capability of the
material to resist elastic deformation. The higher the H3/E2 is, the larger the load born on
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the material is, and hence the higher the wear-resistance behavior could be. Also, H3/E2

can better predict the change in friction coefficient than H/E for film materials [79].
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the carbon concentration of (b) hardness, H; (c) elastic modulus, E; (d) H/E ratio; and (e) H3/E2 ratio
corresponding to the carbide and carbonitride sets of samples.

The dependences on the film’s carbon concentration of the H/E and H3/E2 ratios,
corresponding to the carbide and carbonitride sets of samples, are presented in Figure 6d,e,
respectively. A maximum value of 0.11 and 0.16 is reached by H/E and H3/E2, respectively,
corresponding to a carbon-to-metal ratio, x, of about 0.3 in the carbide film (sample C3)
and a maximum value of 0.08 and 0.10 for a carbon-to-metal ratio of about 0.2–0.3 in the
carbonitride films (samples CN2 and CN3). Note that the maximum values of the H/E and
H3/E2 ratios are comparable to those observed for other HEA ceramics [80].

Comparing the H/E and H3/E2 values between the two sets of samples, one can
observe a significant difference occurring at approximately x = 0.3. The C3 sample exhibits
much higher H/E and H3/E2 values compared to those of the CN3 sample. It is expected
to observe significant differences in the tribological behavior between these two samples.

3.6. Tribology

The evolution of the friction coefficient, µ, over the sliding distance for both the
carbide and the carbonitride sets of samples is presented in Figures 7a and 7b, respectively.
Generally, after a running-in period of 5–10 m of sliding distance, the friction coefficient
reaches a steady state and remains constant. The mean value of µ calculated over the last
20 m of sliding distance, along with the corresponding calculated value of the wear rate,
K, is presented in Table 3. Figure 8a,b depict the evolution of the mean value of µ and K,
respectively, as functions of the carbon-to-metals atomic concentration ratio of the films.
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In general, the carbonitride samples exhibit higher coefficients of friction compared 
to carbide samples with the same carbon content. The largest difference is observed 
between the samples C3 and CN3, containing a fraction of 0.3 of atomic carbon relative to 
the sum of metal atoms. The coefficient of friction is twice as large for the carbonitride 
sample, while the wear rate values are comparable. In consequence, the CN3 sample 
exhibits the appropriate characteristics for applications requiring a low wear rate and a 
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Table 3. Wear rate (K) and the friction coefficient (µ) of the investigated specimens.

Sample K
(10−6 mm3/Nm) µ Sample K

(10−6 mm3/Nm) µ

M 382.4 0.80 N 184.7 0.65
C1 266.2 0.58 CN1 32.8 0.60
C2 27.5 0.5 CN2 27.0 0.55
C3 7.2 0.23 CN3 7.7 0.43
C4 5.5 0.23 CN4 6.3 0.21
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As expected, both the coefficient of friction and the wear rate decrease with increasing
carbon content, reaching low values, specific of carbides [73,81]. The metallic sample
exhibits a wear rate coefficient of K = 382.4 × 10−6 mm3/Nm and an average friction
coefficient of µ = 0.80. The addition of carbon or nitrogen to the content of the metallic
sample leads to a decrease in K to 266.2 × 10−6 mm3/Nm and 184.7 × 10−6 mm3/Nm, and
of µ to 0.58 and 0.65 (samples C1 and N), respectively. The further addition of carbon to
the content of the films lowers K down to 5.5 × 10−6 mm3/Nm and 6.3 × 10−6 mm3/Nm
and lowers µ to 0.23 and 0.21 (samples C4 and CN4), respectively.

In general, the carbonitride samples exhibit higher coefficients of friction compared to
carbide samples with the same carbon content. The largest difference is observed between
the samples C3 and CN3, containing a fraction of 0.3 of atomic carbon relative to the sum
of metal atoms. The coefficient of friction is twice as large for the carbonitride sample,
while the wear rate values are comparable. In consequence, the CN3 sample exhibits the
appropriate characteristics for applications requiring a low wear rate and a medium-to-high
coefficient of friction.
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3.7. Corrosion

The electrochemical performance of the investigated systems and their behavior after
1 h and 12 h immersion in NaCl is presented in Figures 9 and 10, respectively. Nyquist
impedance plots recorded after 1 h of immersion (Figure 9a) reveal a distinct AC polariza-
tion response in the case of metallic coating compared to that corresponding to carbide
samples, ascribed to higher charge transfer resistance. This assumption is sustained by the
Bode magnitude plot (Figure 9b). One can remark that the carbide samples, C1–C4, exhibit
similar impedance modulus, |Z|, over the applied frequencies range. However, after 12 h
of immersion, a significant drop of |Z| is observed for all investigated systems (Figure 9d),
which can be attributed to electrolyte intake. This effect is more pronounced in the case of
metallic coating (M) and can be correlated with its higher crystallinity, as demonstrated by
the XRD investigations.
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The recorded impedance patterns corresponding to carbonitride samples are presented
in Figure 10. We note that contrary to carbide samples, the measured impedance spectra
obtained for carbonitride samples exhibit significant variations in the low-frequency region.
After 1 h of immersion in 0.9% NaCl, the investigations revealed different behaviors for
the analyzed coatings as a function of their carbon composition. We can see that after 12 h
of immersion, the nitride coating showed the highest charge transfer resistance among all
measured samples, apart from the metallic system previously discussed.

The results showed an evident influence of carbon concentration on impedance mag-
nitude (Figure 10c,d): a higher amount of carbon leads to lower protective coatings and,
consequently, a lower charge transfer resistance. The as-demonstrated electrochemical
behavior induced by structural changes can be attributed to the different chemical com-
position and microstructure, as reported in literature [82,83]. The EIS results presented by
Yang et al. [84] showed a deterioration in corrosion resistance due to new diffusion channel
formation for electrolyte ingress, caused by carbide precipitates as well as inter-columnar
voids that developed during film growth, more pronounced with increasing carbon con-
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tent [83], as demonstrated by surface porosity data deduced from AFM data and confirmed
through cross-sectional SEM investigations, not shown here.
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In order to gain a clearer understanding of the interfacial changes at both the electrolyte–
coating interface and electrolyte–substrate interface, the EIS data were fitted using an
equivalent electrical circuit (EEC). This circuit considered several elements, including the
electrolyte resistance (Rel), the coating capacitance (CPEcoat), resistance associated with
the current flow through the pores (Rpor), a capacitance associated with the double layer
formed during immersion (CPEdl), and a charge transfer resistance (Rct). A constant phase
element (CPE) was used in this case to model the deviations from the ideal behavior due
to surface disorder, inhomogeneity, geometric irregularities, defects, or electrode poros-
ity [85,86]. The EEC used is presented as an inset in Figure 11. The low values of goodness
of fit, χ2, obtained during the fitting procedure, which is in the range of 10−4–10−3, demon-
strate that the proposed model can effectively describe the physical behavior of the systems
under investigation. Figure 11 presents the evolution of resistivity (ρ) as a function of the
coating’s composition, with values obtained after 1 h and 12 h of immersion. The ρ value
was calculated based on the charge transfer resistance obtained from the impedance fitting
procedure normalized to the thickness of each coating. As shown, ρ gradually decreases
for both the carbide (C1–C4) and carbonitride (CN1–CN4) samples, suggesting a reduction
in corrosion resistance of increasingly crystalline coatings caused by carbon addition.

The amplitude plots of the impedance data recorded after 1 and 12 h of immersion
are further compared in Figure 12. Thus, the electrochemical evolution of the coatings
during the testing period was mainly investigated in the low frequency range, which is
indicative of the interfacial changes that can occur between the electrolyte and the substrate.
The results demonstrated a maximum decrease of 90% in impedance magnitude for the
metallic coating (M), calculated at the lowest excitation frequency (0.5 Hz). In the case
of carbides, the decrease in the impedance magnitude as a function of immersion time
was 6% for the C1 sample, which exhibited an amorphous structure, while the maximum
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decrease (~47%) was observed for the C4 sample, which showed a crystalline columnar
microstructure. The penetration of the electrolyte through pores (inter-columnar voids) can
initiate the corrosion process of the substrate [83,87]. The N coating proved to maintain
its electrochemical protection for the substrate even after 12 h of immersion, since only a
19% decrease in impedance magnitude was calculated in this case at the lowest excitation
frequency (Figure 12b). A relatively similar decreasing tendency was observed for CN
coatings; a maximum of 80% decrease was seen for the CN4 sample. This dependence of
the corrosion assessment on the structural transition from an amorphous to a crystalline
structure was also noted in the case of carbide coatings.
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4. Discussion

The deposition rate slightly decreases when reactive gases (CH4 and N2) are added
to the composition of the processing gas (Ar) due to the poisoning effect of the surface of
the sputtering targets. This effect results from the partial covering of the target’s surface



Crystals 2023, 13, 1565 15 of 21

by ceramic material [47,88]. Additionally, the sputtering efficiency of targets by the gas
mixture ions is lower compared with that of pure argon ions, primarily because of the
lower mass of N2 and CH4 ions [89].

Through adding only a small fraction of carbon (9%) or nitrogen (13%) to the metallic
film composition, the crystallographic structure changes from a BCC solid solution to an
amorphous one, as observed for samples C1 and N. With further increases in the carbon
concentration of the C1 sample, i.e., the C2–C4 samples, or through adding carbon to the
composition of the nitride sample N, i.e., the CN1–CN4 samples, FCC-structured solid solu-
tion phases are formed in both cases, well-identified by a few diffraction lines, such as (111),
(200), (220), (311) [67–69]. Consequently, the addition of carbon and nitrogen to the metallic
sample leads to a BCC-to-FCC phase transition via an intermediary amorphous phase. The
formation of the amorphous phase is attributed to the disorder generated by the conflict
between the BCC and FCC structures [90–94]. The metal atoms preferentially combine with
the nitrogen and carbon atoms to form metal nitrides, carbides, or carbonitrides because
the bond energy between metal atoms and nitrogen or carbon (Me-N, Me-C) is greater than
the bond energy between the metals (Me-Me) [75,76]. Ti, Cr, Al, and Nb in the film can
form FCC-structured nitrides, while Ti, Cr and Nb can form a FCC-structured carbides with
nitrogen and carbon, respectively. The increase in carbon content promotes the formation
of FCC carbides and carbonitrides with comparable lattice parameters, as demonstrated
through XRD investigations, promoting long distance ordering, effectively improving the
crystallinity of the film when carbon content is increased. This effect is sustained by the
high entropy effect, which increases the solid solubility between the elements, promoting
the formation of a single-phase crystallographic structure and inhibiting the formation of
complex intermetallic compounds. An obvious increase in crystallite size with increasing
carbon concentration is observed for both sets of samples, proving that carbon promotes
the ordering of high-entropy crystal lattices. Similar observations have been reported for
other multi-element high-entropy ceramics [26,72,76,77,81].

For low concentration of carbon (C1, C2, CN1, and CN2 samples), the FCC struc-
tures are predominantly (200) textured. However, for higher carbon concentrations (C3,
C4, CN3, and CN4 samples), the out-of-plane preferential orientation is reduced, and
the intensity of other diffraction lines corresponding to other orientations, such as (111),
becomes comparable.

The surface morphology of the metallic sample is dominated by large spherical grains,
yielding an average surface roughness value of about Ra = 2.4 nm and a surface porosity
of about P = 2.3%. The mass density of the deposited material is about 7.0 g/cm3. Upon
the addition of a small amount of carbon (sample C1) or nitrogen (sample N), the sur-
face morphology changes from granular to glassy, which is characteristic of amorphous
materials. This transition is in agreement with XRD investigations that concluded that
samples C1 and N are amorphous. Consequently, the surface roughness decreases down to
0.45 nm (sample C1) and 0.57 nm (sample N), respectively, accompanied by a decrease in
surface porosity to approximately 0.96% and 0.68% and a slight increase in mass density
(7.1 g/cm3 in the case of sample N). Upon further increasing the carbon concentration
(samples C2–C4) or adding carbon to the nitride sample (CN2–CN4), the crystallites and
grains grow larger, leading to an increase in surface roughness up to 12.1 nm and 15.5 nm
for the carbide and carbonitride samples, respectively. Cross-sectional scanning electron
microscopy (SEM) investigations, (Figure S1 in Supplementary Materials), confirmed a
higher density of low carbon samples (M, N, C1 CN1), in agreement with Figure 4b, and
demonstrated a columnar growth of carbide and carbonitride samples, especially the
C2–C4 and CN2–CN4 samples. Consequently, with the increase in carbon concentration,
the crystallinity of the samples is improved, the columnar growth is stimulated, and larger
inter-columnar voids develop inside the coatings, leading to increased surface porosity up
to about 11.4% (sample C4) and 16.1% (sample CN4), accompanied by a strong decrease
in mass density down to 5.5 g/cm3. In general, the carbo-nitride samples exhibit higher
surface roughness, surface porosity, and volume porosity and lower mass density when
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compared to carbide samples with the same carbon content (Figure 5a,b). High-porosity
samples are generally expected to provide lower corrosion protection for the substrate due
to the increased pathways for corrosive agents to penetrate and reach the substrate.

The addition of carbon and nitrogen leads to an increase in hardness. The difference
between metallic and carbide or carbonitride coatings arise from the introduction of strong
covalent-like carbon and nitrogen bonds, resulting in the formation of carbide or carboni-
tride phases in the films. These phases contribute to improved mechanical performance,
specifically an increase in hardness. According to Archard’s law [95], the wear rate varies
inversely proportional to the hardness of the alloy.

Since the hardness of the high-entropy carbide and carbonitride films is increased
due to the formation of the ceramic phases, the wear rate of the carbide and carbonitride
samples is reduced [75,81]. However, in sliding contacts, the tribological behavior of a
coating is influenced not only by film hardness but also by factors such as surface chemistry,
material transfer between surfaces, film roughness, and the size and hardness of any debris
in contact [96]. Generally, nitrides exhibit a higher coefficient of friction compared to their
corresponding carbides [23]. In line with this, our carbonitride samples exhibit a higher
coefficient of friction compared with the carbide samples with the same carbon content. The
most significant difference is observed between the samples C3 and CN3, both containing
30% carbon relative to metallic constituents, with CN3 having a coefficient of friction twice
as large, while the wear rate values are comparable. We note that the large difference in
tribological behavior between samples C3 and CN3 was predicted through the analysis
of H/E and H3/E2 ratios in Section 3.5, which showed that the C3 sample exhibits much
higher H/E and H3/E2 values compared to those of the CN3 sample, while for other
concentrations of carbon, they present comparable values (Figure 6d,e).

With a µ = 0.43 and K = 7.7 × 10−6 mm3/Nm, the CN3 sample presents the best
characteristics for applications requiring a low wear rate and medium-to-high coefficient
of friction.

With increasing carbon concentration, the coatings become less corrosion-protective,
characterized by lower charge transfer resistance during EIS tests. This reflects a clear
influence of the higher carbon concentration on impedance magnitude. The electrochemical
behavior is induced by structural changes that can be attributed to differences in chemical
compositions and the formation of new diffusion channels for electrolyte ingress, caused by
carbide precipitates or inter-columnar void formation during the columnar growth of the
coatings. The corrosion mechanism can be explained by the increase in grain boundaries
and inter-columnar voids which can create pathways for aggressive electrolyte ingress. In-
deed, the AFM-calculated surface porosity and cross-sectional SEM investigations represent
a clear indication of the previous statement.

The evolution of dielectric properties over an extended period can be attributed to
the protective nature of the coatings. It appears that amorphous coatings or those of
low crystallinity can have a beneficial effect on their long-term protective properties. As
the carbon content increases, a porous internal structure forms, due to favored columnar
growth with larger columns terminated with spherical grains, as shown by AFM and XRD
results and confirmed by cross-sectional SEM investigations. Consequently, these structural
changes significantly influence the electrochemical behavior, leading to a sharp decrease in
impedance data over longer immersion periods. As observed, these decreasing tendencies
are proportional with the calculated crystallite sizes and surface porosity. That explains the
higher impedance drop in the case of carbonitride coatings compared to carbide coatings
with the same carbon content.

5. Conclusions

High-entropy coatings of (TiCrAl0.5NbCu)CxNy were fabricated through the co-
sputtering of elemental targets in an Ar + CH4 + N2 reactive atmosphere using a hybrid
HiPIMS/DCMS technique. Two sets of samples were fabricated:

(a) high-entropy carbides, (TiCrAl0.5NbCu)Cx;
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(b) high-entropy carbonitrides, (TiCrAl0.5NbCu)CxN0.13, 0 ≤ x ≤ 0.48.

The structural, mechanical, tribological, and corrosion resistance properties were inves-
tigated. The metallic sample exhibited a single BCC structure. The addition of C or N to the
film’s composition induced a crystallographic phase transition from BCC to FCC via an in-
termediary amorphous phase, occurring at low C (9%) or N (13%) elemental concentrations.
As the carbon fraction within the films was further increased, up to 48%, the crystallinity
of the FCC phases progressively enhanced, and a columnar growth type was stimulated,
resulting in a gradual decrease in the density of the films to approximately 5.5 g/cm3

and a gradual increase in the surface roughness and surface porosity. The hardness and
wear resistance progressively improved, while the corrosion resistance gradually declined.
The samples with x = 0.48 exhibit the highest hardness of about 16.9 GPa and the lowest
wear rate of about 5.5 × 10−6 mm3/Nm. Generally, the carbonitride samples displayed
superior mechanical and wear resistance properties but exhibited lower corrosion resistance
when compared to carbide samples with the same carbon content. We found a very good
agreement between the evolution of H/E and H3/E2 parameters with the carbon content of
the films and the tribological behavior of coatings. Notably, the (TiCrAl0.5NbCu)C0.3N0.13
sample exhibited the most favorable characteristics for applications requiring medium-to-
high friction and wear-resistant surfaces, with a coefficient of friction of about 0.43 and
a wear rate of about 7.7 × 10−6 mm3/Nm. The best corrosion resistance was presented
by the low-carbon carbonitride samples, showing a charge transfer resistivity of about
3 × 108 Ω·cm, which is more than three times larger than that of the metallic HEA.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13111565/s1, Figure S1: Cross sectional SEM images corresponding to
(a) sample M, (b) sample N, (c) sample C4, (d) sample CN4.
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79. Musil, J.; Novák, P.; Čerstvý, R.; Soukup, Z. Tribological and Mechanical Properties of Nanocrystalline-TiC/a-C Nanocomposite
Thin Films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2010, 28, 244–249. [CrossRef]
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