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Abstract: Two non-redundant, high-quality sets of protein X-ray crystal structures from the Protein
Data Bank (room temperature, 288–298 K, and low temperature, 95–105 K) were compared to struc-
tural predictions conducted using ColabFold/AlphaFold2. In particular, the relationship between
B-factors and pLDDT values, which estimate the degree of prediction confidence, was investigated. It
was observed that there is basically no correlation between these two quantities and, consequently,
that the level of confidence in predictions does not provide information about the degree of local
structural flexibility of globular proteins.
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1. Introduction

Structural biology has always been on a relentless pursuit to unravel the intricate
details of molecular architecture and its implications for function [1]. For decades, tradi-
tional experimental techniques like X-ray crystallography, nuclear magnetic resonance, and
cryo-electron microscopy have paved the way for groundbreaking discoveries. However,
despite their invaluable contributions, these techniques come with inherent limitations,
often centered around resolution constraints, laborious sample preparation, and time-
intensive analysis. This is changing thanks to artificial intelligence (AI)—a transformative
force that is reshaping many scientific disciplines, including structural biology.

AlphaFold2, developed by DeepMind, stands as a paragon in this AI-driven revolution,
showcasing unprecedented accuracy in predicting protein structures [2]. Its success in
the 14th Critical Assessment of Structure Prediction (CASP14) elucidated the potential of
machine learning models in decoding the protein folding problem, a challenge that had
remained enigmatic for nearly half a century. The beauty of AlphaFold2 lies not just in its
predictive precision but also in its capability to offer estimations of prediction confidence
that limit the risk of overinterpretation.

Yet, the accessibility to such high-level AI models remained a barrier for many re-
searchers, a gap that ColabFold sought to bridge [3], making predictions considerably
faster and available to a broader spectrum of scientists irrespective of their computational
expertise.

Evolutionary Scale Modeling (ESM) provides an additional approach, leveraging evo-
lutionary data to create embeddings that capture protein sequence relationships and their
structural implications through a large language model [4]. This melding of evolutionary
biology with deep learning showcases the potential synergy of interdisciplinary integration
in advancing our understanding of biomolecular systems.

Nevertheless, it is crucial to exercise prudence and avoid undue excitement [5]. In-
deed, AI has the potential to generate unforeseen advancements that are now beyond
our collective imagination. Consequently, it becomes imperative to undertake a rigorous
assessment of AI-driven computational models to ensure their reliability and accuracy [6].
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Several articles have recently emerged that have started to examine this particular issue.
Numerous critical aspects of the AlphaFold2 models have been examined by Akdel and
colleagues [7]. It was remarked that only half of the chalcogen bonds observed in high-
resolution crystal structures are discernible in the corresponding models deposited in the
AlphaFold protein structure database [8]. Additionally, Holcomb and colleagues have
explored the potential application of these models in computational docking [9]. Buel and
Walters have observed that AlphaFold2 appears to be unsuitable for predicting the structure
of mutants [10]. Recently, Podvalnaya and colleagues were able to phase a protein crystal
structure with an AlphaFold2 model [11]. Stevens and He examined the reliability of loops’
structure predictions [12]. The performance of AlphaFold2 in predicting VHH structures
has been compared to those of several other methods [13]. It is plausible to anticipate
that a multitude of further studies of this kind will be undertaken and disseminated in
future research.

This communication is centered on protein flexibility and on the information that
ColabFold/AlphaFold2 models can provide on it.

All molecules, including proteins, are flexible, which has an obvious impact on both
their thermodynamic stability and on their reactivity [14–20]. In crystal and cryo-EM
structures, the local flexibility of globular proteins is monitored though the B-factors [21,22].
Regions characterized by high B-factors are considered to be more flexible and less rigid.

ColabFold/AlphaFold2 does not predict B-factors but computes a score for each
residue named pLDDT, which indicates the estimated level of confidence of the predicted
structure [2]. It is the predicted value of the Local Distance Difference Test (lDDT), which
is the score that evaluates local distance differences of all atoms in a model [23]. Being
based on internal coordinates—it compares the inter-atomic distances of one structure
to the same distances in the other structure—it does not require the superposition of the
two structures that are compared and it is, consequently, a robust tool for the assessment
of structure predictions without manual intervention. pLDDT values range from 0 to 100
and pLDDT ≥ 90 indicates residues predicted with extremely high confidence, whereas
residues with 90 > pLDDT ≥ 70 are classified as confident. Residues with 70 > pLDDT ≥ 50
are considered to be predicted with low confidence, and those whose pLDDT is less than
50 are predicted with extremely low confidence, which could mean that the prediction is
impossible [2,24].

A correlation between pLDDT and conformational disorder has been recently observed.
Ordered protein regions have, in general, pLDDT values larger than 80 while low pLDDT
values are often observed in intrinsically disordered regions—pLDDT values below 50 are
present in approximately half of them [25]. This is not surprising, since AlphaFold2 was
designed to reproduce experimental observations. These AI-based methods, such as the
well-known ChatGPT, reproduce the information encapsulated in the enormous amounts
of data that were utilized in their training. The inherent scope of these methods allows for
greater confidence in predicting the positions of well-ordered atoms/residues compared to
disordered atoms/residues, for which structural information is limited.

Atoms that oscillate little around a unique equilibrium position exhibit a sharp and
distinct electron density and their positions can be determined with high accuracy and
small B-factors. On the contrary, atoms that oscillate with high amplitude around two or
more equilibrium positions exhibit a blurry electron density and their position can be
determined with lower accuracy and large B-factors. B-factors have actually been used,
despite not being portable amongst structures [21], to estimate the positional standard
errors of individual atoms in protein crystal structures [26,27]. It can be expected that
the positions of well-ordered atoms are more reproducible than those of atoms that are
more flexible. Consequently, one can expect that AlphaFold2 can predict the position of
well-ordered atoms better than the positions of less-ordered atoms, and this should be
reflected in greater pLDDT values for well-ordered atoms and in lower pLDDT values for
less-ordered atoms. In other words, one may postulate that diminished levels of confidence
may be associated with local molecular flexibly.
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In order to verify the hypothesis that pLDDT values relate to local conformational
flexibility, in this study, the B-factor and the pLDDT values were systematically compared.
Two distinct sets of protein crystal structures were compiled using the data archived in
the Protein Data Bank (PDB) [28–30]. These sets consist of high-quality structures that
are both non-redundant. One set comprises structures obtained at ambient temperature
within the range of 288–298 K, while the second set encompasses structures obtained at
low temperature within the range of 95–105 K. Both the B-factors in their original form as
deposited in the Protein Data Bank (PDB) and the B-factors normalized to have a zero mean
and unit variance were used. Nevertheless, it was observed that the B-factors exhibited no
correlation with the pLDDT value. This suggests that the pLDDT values do not convey
any substantive physical information, but rather serve only their intended purpose of
estimating the confidence in internal predictions.

Obviously, this does not imply that models made with ColabFold/AlphaFold2 are
intrinsically unreliable. It simply means that the prediction confidence suggested by the
pLDDT values is unrelated to local conformational flexibility.

2. Methods

All the X-ray crystal structures were taken from the Protein Data Bank—structures
determined using other techniques were discarded [28–30]. They were divided into
two groups: one, named the “room set”, containing structures determined at room temper-
ature in the 288–298 K range; and the other, named “cryo set”, containing the structures
determined at low temperature in the 95–105 K range. Each group was then processed
as follows.

Structures refined at a resolution lower than 2 Å were discarded as well as the multi-
model of Cα-only refinements. Since individual atomic B-factors must be analyzed, TLS-
refined structures and structures refined using non-crystallographic symmetry restraints
were discarded. Since experimental protein structures must be compared to computational
models, structures containing nucleic acids were discarded as well as structures containing
too many (more than 5%) heteroatoms different to water and structures containing missing
residues—those that are undetectable in the electron density maps.

Redundancy was then reduced at the sequence level by using CD-HIT (maximal
pairwise sequence identity 40%) [31]. Only proteins of up to 150 residues were retained.

All these data mining procedures resulted in 22 structures in the room set and 308 struc-
tures in the cryo set (see supplementary material Table S1).

Since it is well known that B-factors reflect numerous structural features [21], ranging
from atomic oscillation around the equilibrium position to conformational disorder, and
since they depend on the crystallographic resolution too, it is necessary to normalize them
when different crystal structures are compared. Here, the normalized BN-factors were
computed as

BNi =
Bi − Bave

Bstd
(1)

where Bave and Bstd are the average value of the B-factors of the n protein atoms and the
standard deviation of their distribution, respectively.

Bave =
n

∑
i=1

Bi (2)

Bstd =

√
(Bi − Bave)2

n − 1
(3)

Thanks to this normalization, the BN-factors have zero mean and unit variance in each
protein crystal structure.

The construction of all computational models was accomplished via ColabFold [3],
employing AlphaFold2 [2] for the purpose of structure prediction, employing a total of
three prediction cycles. ColabFold exhibits enhanced computational efficiency compared to
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the original version of AlphaFold2 due to the use of a faster homology search methodology
(MMseqs2) [32]. In all other aspects, ColabFold remains comparable to AlphaFold2. The
use of templates sourced from the Protein Data Bank was permitted, followed by the
application of Amber energy minimization. The model that achieved the highest ranking
was selected for the purpose of comparing it with the experimental structure.

An invaluable feature of AlphaFold2 is the residue-based estimation of the prediction
confidence. This is the pLDDT, which ranges from 0 to 100—though I have never seen this
extreme value in reality. According to the AlphaFold2 manual, when the pLDDT value
exceeds 90, it indicates that the predictions for both main-chain and side-chain atoms are
regarded reliable. On the other hand, if the pLDDT value falls between 70 and 90, there is a
higher likelihood of mistakes occurring essentially in the side-chain atoms. If the value of
pLDDT falls in the range of 50 to 70, mistakes may occur in the main-chain atoms, and if the
value of pLDDT is less than 50, the predictions might be considered very untrustworthy,
indicating that making accurate predictions becomes unfeasible.

Secondary structures were assigned using Stride [33] and DSSP [34] and, since the
results were substantially independent of the assignment procedure, those only produced
using Stride are discussed.

Atomic solvent-accessible surface areas, measured in squared Å employing NAC-
CESS [35], were used to monitor the level of solvent accessibility (SASA_atom) of each
individual atom. Using the same tools, the relative solvent-accessible surface areas were
calculated for residues when all of their atoms are taken into account (rel_SASA_residue).
It is a dimensionless quantity, it spans from 0 to around 100, and it is defined as the ra-
tio (multiplied by 100) between the solvent-accessible surface area of residue X and the
solvent-accessible surface area of the same residue in a G-X-G three-peptide in the extended
conformation.

Crystal packing contacts were identified as previously described [36] with an inter-
atomic distance threshold of 4.5 Å.

3. Results and Discussion

Some correlation between pLDDT and conformational disorder has been recently
observed, since ordered protein regions have, in general, pLDDT values larger than 80 while
low pLDDT values are often observed in intrinsically disordered regions [25]. Moreover,
long segments of residues with poor confidence in the predicted structure are thought to be
conformationally disordered [7]. This is of crucial importance because structural flexibility
is essential to the thermodynamic stability and reactivity of proteins [14–20].

The pLDDT parameter, which has a range of 0 to 100, is used to estimate prediction
confidence [2]. When the value is less than 50, it indicates that the forecast is not achievable,
or that it is totally unreliable. Structural moieties with values in the 50–70 range should
be carefully examined since they may significantly differ from the experimental structure.
Particularly for the main-chain atoms, values in the 70–90 range suggest that the structure
is probably comparable to an experimental structure. Values greater than 90 eventually
suggest that the structure is probably almost exactly the same as the experimental structure.

Since B-factors in crystal and cryo-EM structures monitor protein flexibility [21,22], it
is important to calculate the degree of correlation between B-factor and pLDDT values to
confirm whether computational models offer a straightforward way to gain knowledge
about local flexibility in globular proteins.

In order to achieve this goal, a high-quality set of non-redundant protein must be
examined. However, as the temperature at which experiments are conducted has significant
effects on flexibility, two non-redundant sets of protein structures were built: one at room
temperature (288–298 K) and the other at a low temperature (95–105 K). In both cases,
only proteins up to 150 residues were retained. The latter is larger because, in modern
times, diffraction measurements are usually conducted at 100 K. However, no particular
discrepancies were found between the two sets of data, as can be seen below.
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Furthermore, B-factors were normalized to have mean values equal to zero and a
standard deviation equal to one because they are not very transferable from structure
to structure and may depend on a variety of parameters, such as the crystallographic
resolution [21,37]. However, no particular differences were found, by using raw B-factors
of normalized B-factors, as can be seen below.

Pearson correlation coefficients were used to quantify the degree of correlation between
pLDDT and B-factors. I start by quickly going over the examination of the relationship
between the B-factor and pLDDT for every protein atom in each structure. Subsequently, I
focus only on atoms for which the structure is highly confidently predicted (pLDDT > 70).
Then, in order to rule out the impacts of data aggregation, I concentrate on 48 distinct types
of atoms. Eventually, normalized B-factors are used for the analyses where all atoms of all
proteins can be mixed into a unique large set of data.

Pearson correlation coefficients between B-factors and pLDDT values were computed
for all atoms in each structure. Their distributions are shown in Figure 1a for both room-
temperature and low-temperature structures. They are very similar and symmetric around
0. For room-temperature structures, they range from −0.431 to +0.242 with a mean value
of −0.056 (±0.036). For low-temperature structures, they range from −0.612 to +0.364
with a mean value of −0.067 (±0.009). In both cases, the average correlation coefficient is
negative, indicating that the smaller B-factors tend to be observed at increasing pLDDT
values. However, the correlation is extremely week.
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 Figure 1. (a) Distribution of the correlation coefficients between B-factors and pLDDT values for
all atoms in structures determined at room temperature (continuous line) or at low temperature
(broken line). (b) Like (a), but only for the Cα atoms, for which a high degree of confidence in their
position is expected (pLDDT > 70). (c) Example of high correlation coefficient between B-factors and
pLDDT values; regression lines for all points (long line) or only those with pLDDT > 70 (short line)
show the relationship between B-factors and pLDDT values for the main-chain atoms of structure
2py0 (chain A); only the following atoms were considered: they belong to loop residues with a
rel_SASA_residue >5, their SASA_atom >2 Å, and they are close (<4.5 Å) to at least one atom of another
chain of the crystal structure. (d) Relationship between the normalized B-factors and the pLDDT
values of Cα atoms, for which a high degree of confidence in their position is expected (pLDDT > 70).
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The same analysis was conducted with a smaller group of atoms. Just one atom, the
Cα atom, was kept for each residue since the pLDDTs are linked to residues rather than
atoms and because residues include a variety of atom types, some of which are even quite
distinct from one another. In addition, atoms whose position was predicted with low
confidence (pLDDT < 70) were discarded, since it is reasonable to assume that B-factors
cannot monitor positional flexibility for completely incorrect positions—this would be
experimentally observed in regions where there is no electron density.

The distributions of correlation coefficients, shown in Figure 1b, are not very different
from those of Figure 1a. They are quite symmetric around 0. For room-temperature
structures, they range from −0.493 to +0.286 with a mean value of −0.069 (±0.044). For
low-temperature structures, they range from −0.685 to +0.401 with a mean value of −0.105
(±0.012). Therefore, both mean values are negative, indicating that B-factors tend to be
smaller at larger pLDDTs, but their absolute values are very small and close to 0, indicating
that such a correlation, if it exists, is very weak.

The correlation between B-factors and pLDDT values has been examined individually
for 48 atom types, according to the following categorizations:

• Main- or side-chains atoms (two categories).
• Secondary structure of the residue to which it belongs (three categories: helix, strand, loop).
• Solvent accessibility of the residue to which it belongs (two categories: accessible if

rel_SASA_residue > 5 and inaccessible if relative rel_SASA_residue ≤ 5).
• Atomic solvent accessibility (two categories: accessible if atomic SASA_atom > 2 Å2

and inaccessible if SASA_atom ≤ 2 Å2).
• Presence of interatomic contacts with other chains in the crystal structure, either within

the same asymmetric unit or crystal packing contacts (two categories: presence or
absence of inter-chain contacts).

Usually, the correlation coefficients are small and close to 0. Occasionally, they are
surprisingly large. For example, in the PDB entry 2py0 (chain A), the correlation coefficient
is equal to −0.925, very close to the minimal possible value, if the attention is focused on the
main-chain and solvent-accessible atoms involved in inter-chain contacts and belonging to
solvent-accessible residues located in loops. However, this is essentially due (see Figure 1c)
to the presence of a small group of atoms with pLDDT ≈ 60 and B-factor ≈ 25 Å2 and
another set of atoms grouped at larger pLDDT values (≈95) and smaller B-factors (≈10 Å2).
The regression line (B = 49.51 − 0.41 pLDDT), therefore, simply links the two groups of
atoms and does not indicate a genuine relationship between the two variables. If the
analysis is limited to the atoms of the second, larger group, the correlation coefficient
is much closer to 0 (0.292) and the regression line even has a slope with different sign
(B = −7.10 + 0.18 pLDDT).

Due to the effect of resolution and other variables, B-factors are not portable and
must be normalized for quantitative comparisons between different crystal structures [20].
The normalized BN-factors (see Methods) were computed for all Cα atoms, the positions
of which were predicted with high confidence (pLDDT > 70). There is no correlation
between BN-factors and pLDDT values (see Figure 1d). Despite the fact that the correlation
coefficient is negative (−0.020), indicating that BN-factors decrease as pLLDT values rise,
the regression line (B = 0.010 − 0.003 pLDDT) is essentially flat and horizontal. Note
that only the information retrieved from the structures determined at low temperatures is
shown in Figure 1d, though room-temperature structures provide the same findings.

4. Conclusions

Understanding protein stability and reactivity requires knowledge of globular protein
flexibility [14–20]. Since residues predicted with low confidence may be more flexible than
residues predicted with high confidence, it was recently suggested that AI-based protein
structure predictions made using AlphaFold2/ColabFold might provide information on
protein flexibility [25]. This might be possible thanks to the pLDDT values, which were
designed to estimate the degree of confidence of the predictions [2,3]. In fact, pLDDT
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values larger than 80 are usually associated with ordered protein regions, while intrinsically
disordered regions have low pLDDT values, often lower than 50 [25]. For this reason,
the pLDDT values can be compared to the B-factors, which reflect local flexibility [21,22].
Unfortunately, the comparison detailed in the present scientific communication revealed
no relationship between pLDDT and the B-factor. This is not to say that AI-based models
are unreliable; rather, it just means that, in contrast to experimental structures, they are
unable to provide direct information on local flexibility for time. This limitation does not
lessen their value in structural biology, but it should be considered as a future challenge for
AI-based structural bioinformatics. Nevertheless, it is plausible to assume that they may
provide some insights into dynamics by allowing structure-based predictions of B-factor
values [38–41].

This does not mean that artificial intelligence cannot be involved in the study of protein
flexibility and dynamics. Machine learning, in particular, has been used to construct force
fields based on the analysis of large amounts of data obtained through traditional and
expensive molecular fdynamics methods [42]. For example, in recent times, several research
groups have collaborated in order to develop coarse-grained molecular potentials that are
founded upon statistical mechanics by using artificial neural networks [43]. Based on a
series of molecular dynamics simulations of approximately 9 ms for twelve proteins and
polypeptides with different folds, a potential was constructed that allows for coarse-grained
simulations, which are much faster than traditional methods based on examining all atoms.
Even if the results of this study are still of modest practical use, it is reasonable to think
that this is the way in which artificial intelligence can make a revolutionary contribution to
the stage of protein flexibility.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cryst13111560/s1. Table S1. List of the protein crystal structures
examined in the present study. They are identified by the four-letter Protein Data Bank identification
code, followed by the chain identifier.
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