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Abstract: In order to explore the mechanism of the influence of Sn contents on the relevant properties
of Cu–Sn alloys, the structure, elasticity, electronic, and thermal properties of Cu–Sn alloys doped
with different proportions of Sn (3.125 at%, 6.25 at%, and 9.375 at%) were established using the
first-principles calculation based on density functional theory. Firstly, their lattice constants and Sn
concentration comply with Vegard’s Law. From the mixing enthalpy, it can be seen that Sn atoms can
be firmly dissolved in the Cu matrix, and the structure is most stable when the Sn content is 3.125 at%.
In addition, the introduction of mismatch strain characterized their solid solution strengthening
effect. The elastic and electronic properties showed that when the Sn content is 6.25 at%, the Cu–Sn
alloy has the best plasticity and the highest elastic anisotropy; when the Sn content is 3.125 at%, the
Cu–Sn alloy is the most stable and has stronger bulk and shear modulus, which was mainly due to a
stronger Cu-Cu covalent bond. Finally, the Debye temperature, thermal conductivity, and melting
point were calculated. It is estimated that the thermal conductivity of Cu–Sn alloy is relatively good
when the Sn content is low.

Keywords: first-principles; Cu–Sn alloys; solution strengthening; elastic properties; electronic
properties

1. Introduction

As one of the important engineering structural materials, Cu–Sn (bronze) alloys have
important application values in the fields of aerospace, marine, electrical appliances, and
other fields due to their excellent wear resistance, corrosion resistance, thermal conductivity,
and electrical conductivity, as well as sufficient strength and ductility [1–4]. The mechanical
properties of Cu–Sn alloys are closely related to the content of the alloying element Sn.
Due to different phase compositions, Cu–Sn alloys with different Sn content have different
applications. When the Sn content is between 3 and 4 wt.%, it is mainly used for elastic
components, wear-resistant parts, and antimagnetic parts; when the Sn content is between
5 and 11 wt.%, it is mainly used for bearings, shaft sleeves, turbines, etc. [5]. Therefore, Sn
content is a key factor affecting the mechanical properties of Cu–Sn alloys.

In recent years, the first-principles calculations have become a powerful complement
to solve the difficulties in the production and preparation process of Cu alloys and conduct
extensive development and prediction of new Cu alloys, bridging the gap between theory
and experiment. Wen et al. [6] studied the energy, elasticity, and electronic properties
of Fe–Cu disordered solid solution alloys (Cu doping ratios of 25 at%, 37.5 at%, and
50 at%, respectively), and found that the elastic stability of Fe–Cu disordered solid solution
was positively correlated with the Cu content. Zhou et al. [7] calculated key physical
parameters such as elastic constants, bulk modulus, heat capacity, Debye temperature,
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and volumetric thermal expansion coefficient of Cu6Sn5 and Cu5Zn8 alloy phases. The
calculated results were in agreement with experimental data, indicating that both Cu6Sn5
and Cu5Zn8 alloy phases were elastic anisotropic, and that Cu6Sn5 had a low bulk modulus.
Rong et al. [8] calculated the elastic properties and anisotropy of Cu3Sn, indicating that in-
depth discussion of the anisotropy of intermetallic compounds with preferential growth and
large volume fraction in the joint will be of great significance for accurately characterizing
the mechanical behavior of the entire joint. In summary, the first-principles method can
accurately study and predict the mechanical properties of copper alloys. However, currently,
the calculation of Cu–Sn alloys mainly focuses on the specific phase structure of copper
alloys, and there are few studies on the effect of Sn content on the properties and properties
of copper alloy disordered solid solutions. Therefore, under the premise of ensuring the
basic stability of the fcc structure, it is necessary to establish a model of Cu–Sn disordered
solid solution to study the effect of tin solute on its related properties.

In this study, the phase stability, mechanical properties, and electronic properties of
Cu–Sn alloys with Sn content of 3.125 at%, 6.25 at%, and 9.375 at% have been systematically
studied using a first-principles calculation method. The lattice constant, mixing enthalpy,
yield stress, elastic constant, elastic modulus, density of state, differential charge density,
and Debye temperature were calculated. This provides a theoretical basis for the subsequent
research on Cu–Sn alloys and the design, development, and wide application of new copper
alloys. It is worth mentioning that, according to the Cu–Sn phase diagram, the solid solution
limit of Sn in Cu matrix is 15.8 wt.% (9.2 at%) [9]. When the Sn content is greater than
15.8 wt.%, in addition to solid solution, the δ-phase (Cu41Sn11) occurs, which adversely
affects the properties and applications of the material [10,11]. The generation of the δ-phase
should be avoided or reduced as much as possible in the practical production applications.
Therefore, the δ-phase was not discussed in this study.

2. Calculation Method and Details

The calculations were all performed using the CASTEP (Cambridge Serial Total-Energy
Package) [12–14] code, which is based on the first-principles plane-wave pseudopotential
method of density functional theory (DFT) [15] to perform quantum mechanical calcula-
tions. The ultrasoft pseudopotential (USPPs) was used to evaluate the interaction between
valence electrons and ions. In this case, the valence electron configurations of Cu and
Sn are 3p63d104s1 and 4d105s25p2, respectively. In addition, the generalized gradient
approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) is used to approximate the ef-
fect of the exchange–correlation energy on the calculated results [16]. In this calculation,
2 × 2 × 2 supercells based on fcc structure were established by Perl Script enumeration of
alloy structures. According to the Lowest Energy Principle, the stability models (Cu31Sn,
Cu30Sn2, and Cu29Sn3) of Cu–Sn alloys with Sn contents of 3.125 at%, 6.250 at%, and
9.375 at% were screened out, respectively, as shown in Figure 1 and Table 1. The detailed
modelling methodology is shown in Appendix A.1.

Crystals 2023, 13, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. Crystal structure of Cu–Sn alloys (a) Cu31Sn, (b) Cu30Sn2, and (c) Cu29Sn3. 

Table 1. Cu–Sn alloys’ model components. 

Number of Sn 
Atoms 

Structure 
Mass Ratio of Sn 
Contents (wt.%) 

Atomic Ratio of Sn 
Contents (at%) 

0 Cu 0 0 
1 Cu31Sn 5.864 3.125 
2 Cu30Sn2 11.075 6.250 
3 Cu29Sn3 16.195 9.375 

The BFGS (Broyden–Fletcher–Goldfarb–Shanno) [17] minimization algorithm was 
then chosen to optimize these structures by full relaxation to bring the system to a more 
stable state. Then, after convergence tests, the maximum truncation energy of the plane 
wave basal energy was set to 450 eV, and the k-point sampling network in the Brillouin 
zone was generated based on the Monkhorst–Pack scheme and set to 5 × 5 × 5. In the geo-
metric optimization and electronic property calculations, the convergence tolerances for 
the total energy, maximum force, maximum stress, and maximum displacement were set 
to 1 × 10−5 eV/atom, 0.03 eV/Å, 0.05 GPa, and 0.001 Å. For the calculation of elastic proper-
ties, the convergence tolerances for total energy, maximum force, and maximum displace-
ment were set to 2 × 10−6 eV/atom, 0.006 eV/Å, and 2 × 10−4 Å, respectively, and the number 
of steps and maximum strain amplitude for each strain were set to 4 and 0.003. 

3. Results and Discussion 
3.1. La ice Constant 

The la ice constant can reflect the structure of the crystal and its internal composi-
tion, which is the basic parameter of the crystal structure and the basis for the study of the 
material structure [18]. The optimized la ice constants of Cu, Cu31Sn, Cu30Sn2, and Cu29Sn3 
are shown in Table 2. To verify the accuracy of the calculation results, the la ice constants 
of the pure copper model were compared with the experimental result [19] reported in 
other literature, which showed a difference of 0.387%. In general, the difference of the 
la ice constant is within 1%, which means that the obtained pseudopotential can be con-
sidered as a good pseudopotential [20], thus indicating that the model, conditions, and 
parameters are more reasonable. Figure 2 shows the calculated values of the la ice con-
stant as a function of solute concentration, which was fi ed linearly to obtain the following 
equation: 

a (Å) = 3.629 + 1.144c with R = 0.99995 (1)

The result from E. Sidot [21] is also reported in Figure 2, where the same linear re-
gression calculation was performed on these data. The relevant equation is as follows: 

a (Å) = 3.615 + 1.054c with R = 0.9997 (2)

The results show that the la ice constants of Cu–Sn alloys are proportional to the 
solute concentration, in full compliance with Vegard’s law. As can be seen from Figure 2, 

Figure 1. Crystal structure of Cu–Sn alloys (a) Cu31Sn, (b) Cu30Sn2, and (c) Cu29Sn3.



Crystals 2023, 13, 1532 3 of 21

Table 1. Cu–Sn alloys’ model components.

Number of Sn Atoms Structure Mass Ratio of Sn
Contents (wt.%)

Atomic Ratio of Sn
Contents (at%)

0 Cu 0 0
1 Cu31Sn 5.864 3.125
2 Cu30Sn2 11.075 6.250
3 Cu29Sn3 16.195 9.375

The BFGS (Broyden–Fletcher–Goldfarb–Shanno) [17] minimization algorithm was
then chosen to optimize these structures by full relaxation to bring the system to a more
stable state. Then, after convergence tests, the maximum truncation energy of the plane
wave basal energy was set to 450 eV, and the k-point sampling network in the Brillouin
zone was generated based on the Monkhorst–Pack scheme and set to 5 × 5 × 5. In the
geometric optimization and electronic property calculations, the convergence tolerances
for the total energy, maximum force, maximum stress, and maximum displacement were
set to 1 × 10−5 eV/atom, 0.03 eV/Å, 0.05 GPa, and 0.001 Å. For the calculation of elastic
properties, the convergence tolerances for total energy, maximum force, and maximum
displacement were set to 2 × 10−6 eV/atom, 0.006 eV/Å, and 2 × 10−4 Å, respectively, and
the number of steps and maximum strain amplitude for each strain were set to 4 and 0.003.

3. Results and Discussion
3.1. Lattice Constant

The lattice constant can reflect the structure of the crystal and its internal composition,
which is the basic parameter of the crystal structure and the basis for the study of the
material structure [18]. The optimized lattice constants of Cu, Cu31Sn, Cu30Sn2, and
Cu29Sn3 are shown in Table 2. To verify the accuracy of the calculation results, the lattice
constants of the pure copper model were compared with the experimental result [19]
reported in other literature, which showed a difference of 0.387%. In general, the difference
of the lattice constant is within 1%, which means that the obtained pseudopotential can be
considered as a good pseudopotential [20], thus indicating that the model, conditions, and
parameters are more reasonable. Figure 2 shows the calculated values of the lattice constant
as a function of solute concentration, which was fitted linearly to obtain the following
equation:

a (Å) = 3.629 + 1.144c with R = 0.99995 (1)

Table 2. Experimental and theoretical lattice parameters (a, b, c and α, β, γ), mixing enthalpy ∆H
(kJ/mol) for Cu–Sn alloys.

Structure Source a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) ∆H (kJ/mol)

Cu
Exp· at 25 ◦C 3.615 - - 90 - - [20]

Present 3.629 - - 90 - -
Error 0.387% - - - - -

Cu31Sn Present 3.664 - - 90 - - −3.25
Cu30Sn2 Present 3.700 - - 90 - - −2.69
Cu29Sn3 Present 3.736 - - 90 - - −1.79

The result from E. Sidot [21] is also reported in Figure 2, where the same linear
regression calculation was performed on these data. The relevant equation is as follows:

a (Å) = 3.615 + 1.054c with R = 0.9997 (2)

The results show that the lattice constants of Cu–Sn alloys are proportional to the
solute concentration, in full compliance with Vegard’s law. As can be seen from Figure 2,
the calculated data agreed well with the slope of the experimental data, although the
calculated results do not fully agree with the experimental results in terms of intercept



Crystals 2023, 13, 1532 4 of 21

(equal to the lattice constant of pure Cu). The focus of this study is on the trend of lattice
constant change, rather than the absolute value of lattice constant. The discrepancies
between the calculated and experimental values of the pure Cu lattice constant are mainly
due to thermal expansion and the limitations of the GGA [20]. Therefore, the optimized
lattice constants can be used for subsequent calculations.
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3.2. Enthalpy of Mixing

From the energy point of view, the mixing enthalpy ∆Hmixing is usually introduced
to describe the dissolution of the solute atom Sn in the Cu matrix, which expresses the
relationship between the energies of two binary alloys with the same structure. However,
the most stable structure of the element Sn in the ground state is not the fcc structure.
The Birch–Murnaghan equation reveals the internal structure and properties of solids by
investigating their rate of change of volume and modulus of elasticity at different pressures.
The energy–volume (E-V) curve can be obtained by fitting this equation to obtain the total
static energy of the pure element, which can then be substituted to obtain the enthalpy
of mixing. In this calculation, in order to obtain the equilibrium volume V0 and the static
energy E0 of the element Sn in the fcc structure, the energy–volume (E-V) curve in the
ground state was fitted by the Birch–Murnaghan equation of state with the following
empirical equation [22]:

E(V) = E0 +
9V0B0

16


[(

V0

V

) 2
3
− 1

]3

B′0 +

[(
V0

V

) 2
3
− 1

]2[
6− 4

(
V0

V

) 2
3
] (3)

where E0 and V0 are the static energy and equilibrium volume of each atom at steady state,
respectively, while B0 and B′0 are the first-order derivatives of the bulk modulus and bulk
modulus with respect to the pressure, respectively.

The enthalpy of mixing can then be calculated by the following equation:

∆Hmixing
(
CuxSny

)
=

Etotal
(
CuxSny

)
− xEatom(Cu)− yEatom(Sn)

x + y
(4)

where ∆Hmixing
(
CuxSny

)
, Etotal

(
CuxSny

)
, Eatom(Cu), and Eatom(Sn) represent the mixing

enthalpy, the static total energy of the Cu–Sn alloy, the static total energy of pure Cu and
solute atom Sn, respectively, and x and y are the quantities of pure Cu and solute atom Sn,
respectively.
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Some scholars [23] pointed out that when evaluating the solid solubility of elements
from the mixing enthalpy, if the contribution of entropy after heating is considered, there
may be an uncertainty of approximately 0.05 eV/atom. It is shown that when the difference
in radius between solute and solvent atoms |∆R| < 15%, a solid solution with larger solid
solution will be formed when other conditions are similar; conversely, when |∆R| 15%,
the larger the |∆R|, and the smaller the solid solution. As for the electronegativity, if the
difference in electronegativity between the group elements is small, a larger solid solution
degree will be formed; if the difference is large, it is easier to form stable intermetallic
compounds, and even if a solid solution can be formed, its solid solution degree is not
large. In this study, the radius difference |∆R| between Cu and Sn is about 23.44%, which
indicates a small solid solubility, while the electronegativity difference between the two
is 0.06, indicating a large solid solubility. Therefore, the magnitude of solid solubility
should be the result of a combination of multiple factors, which is related to the crystal
structure, electron concentration, and temperature, in addition to the atomic size and
electronegativity [24]. The more negative the mixing enthalpy, the stronger the chemical
bond and the better the stability. As can be seen from Table 2, the mixing enthalpies
of Cu31Sn, Cu30Sn2, and Cu29Sn3 are all negative, and the negative value of the mixing
enthalpy of Cu31Sn is the largest, which is−3.25 kJ/mol, indicating that 3.125 at%, 6.25 at%,
and 9.375 at% Sn atoms can be solid-soluble in the Cu matrix, and Cu31Sn (3.125 at%) has
the strongest chemical bond and the most stable structure.

3.3. Solid Solution Strengthening

Substitution of some atoms in the copper-based solid solutions by solute atoms will
cause lattice distortion. At this point, a strain field is formed around the solute atoms, which
hinders the movement of dislocations, leading to solid solution strengthening [18]. Several
mechanisms have been proposed to describe the interaction between mobile dislocations
and solute atoms, including the size effect [25], modulus effect [26], Suzuki effect [27],
and electrostatic interaction [28]. Among them, the size effect and the modulus effect are
of more importance since the effect of solid solution strengthening of copper substrates
is difficult to present in a quantitative form using conventional experimental methods.
Therefore, in this study, based on first principles, we introduce the parameter mismatch
strain, which is the local lattice distortion around the solute atom and the size effect
mentioned earlier, as a measure of the strength of the solute atom strengthening by the
characteristic strain generated by the size difference between some solute atoms represented
by elastic inclusions and the pores of the host material in an elastic continuous medium
model. The mismatch strain is defined as follows:

ε =
d− d0

d0
(5)

where d is the distance between the host atom (Cu) and the first nearest neighbor of the
solute atom (Sn), and d0 is the distance between the host atom (Cu) and the host atom
(Cu). At zero pressure, the lattice constant is optimized to a0, when the atomic positions
are relaxed, and the distance d within the cell is measured. Then, the lattice constant is
fixed to a0, the atomic positions are fixed to the ideal fcc lattice position, and the distance
d0 within the cell is measured. For the first nearest neighbor solvent atom, the relationship
between d0 and the lattice constant is d0 = a0/

√
2. The mismatch strain ε for the first

nearest neighbor in the Cu–Sn alloys is shown in Table 3. This parameter is determined
based on the average value of the distance between the first nearest neighbor atoms in
Cu31Sn, Cu30Sn2, and Cu29Sn3 [20]. According to the Cottrell model [25], the maximum
interaction force Fm between solute atoms and edge dislocations is:

Fm =

√
3

2

(
1 + ν

1− ν

)
Gb2|ε| (6)
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where v is the Poisson’s ratio, G is the shear modulus, b is the Burns vector, and ε is the
mismatch strain. In Friedel’s theory [29], the interaction forces between atoms generate a
critical decomposition shear stress ∆τs, which is defined as

∆τs =

√
2Fm

3/2

b3

√
c
G

(7)

where c is the concentration of solute atoms. Substituting Fm in Equation (6) into Equation (7)
and then using the Taylor factor M, one obtains the yield stress ∆σs increased by solid
solution strengthening of the polycrystalline alloy with the following relation:

∆σs = M
3

3
4

2

(
1 + v
1− v

)3/2
G|ε|3/2√c (8)

In Cu–Sn alloys, the value of M is 3.06 [30]. Table 3 summarizes the misfit strain ε
induced by solid solution of Sn atom into the Cu matrix and the contribution of solid
solution strengthening to the yield stress of Cu–Sn alloys. The Poisson’s ratio v and shear
modulus G in Equation (8) are obtained from Table 4; Table 5 below.

Figure 3 shows the relationship between the Sn content and the yield stress values
in Cu–Sn alloys, comparing the calculated results with the analytical results of some
experimental results [31–33]. The experimental values are distributed on both sides of
the calculated results. In fact, the yield stress values depend on two major factors. On
the one hand, it depends on the intrinsic factors of the material, including the bonding
bonds and the influence of the microstructure dominated by four major strengthening
mechanisms: solid solution strengthening, strain strengthening, dispersion strengthening,
and grain size strengthening; on the other hand, the yield stress values are also affected by
some extrinsic factors such as the temperature, the strain rate, and the state of stress [31].
As shown in Table 3, different processing methods and heat treatment conditions lead to
different yield stress results when the solute atomic concentration is the same. The first-
principles calculations used in this study simulate the relevant properties of the material at
a nearly ideal 0 K condition, which differs from the experimental conditions. Hence, the
yield strength values are somewhat deviated, but observing the overall trend in Figure 3,
the yield stress values of the Cu–Sn alloys increase with the increase of the Sn content.
The mismatch strain data obtained from this calculation, to a certain extent, can provide
theoretical guidance for the solid solution strengthening effect of Cu–Sn alloys, which is of
reference value for the development of new copper alloys with very high yield strength.
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Table 3. Theoretical results of mismatch strain caused by Sn atoms in Cu and the contribution
of solution strengthening to the yield stress of Cu–Sn alloys. It also includes some solid solution
strengthening experimental values.

c (at%) ε (%) ∆σs(MPa) Notes

Present
3.125

1.97
233.52

6.25 330.24
9.375 404.46

Exp.

2.753 68.5 ± 4.8 As-cast [31]

5.639
133.4 ± 3.5 As-cast [31]

458 SLM [32]

8.668
139.2 ± 16.6 As-cast [31]

436 ± 3 SLM [33]
328 ± 4 SLM + annealing [33]

3.4. Elastic Properties

The elastic constants of metallic materials usually express their mechanical properties,
especially the stability and stiffness of the material [8]. They express the stress condition
required to maintain a certain deformation.

In this study, the elastic constants will be obtained by the “stress-strain” method [34],
and for cubic crystal, the system has three independent elastic constants: C11, C12, and
C44 [35].

Table 4 summarizes the elastic constants obtained from this calculation and compares
the single-crystal elastic constants Cij of pure Cu with the experimentally reported and
previously calculated values. As can be seen from Table 4, the Cij of Cu31Sn, Cu30Sn2,
and Cu29Sn3 do not satisfy the cubic crystal structure relationship because the number
of independent elastic constants will increase after geometric optimization of the model
obtained with supercell disordered modeling, whose crystal structure symmetry is slightly
broken due to the quasi-random distribution of solute atoms. Therefore, in the present
study, we used the symmetry-based projection (SBP) technique [36,37] to correct the elastic
tensor of Cu31Sn, Cu30Sn2, and Cu29Sn3. We usually take the average of the relevant elastic
parameters to obtain the elastic constants of these quasi-random systems [35]. The relation
is as follows:

C11 =
(C11 + C22 + C33)

3
(9)

C12 =
(C12 + C13 + C23)

3
(10)

C44 =
(C44 + C55 + C66)

3
(11)

The average values of the relevant elastic parameters calculated for Cu31Sn, Cu30Sn2,
and Cu29Sn3 are shown in Table 4.

For stable structures, the elastic constants Cij should satisfy the corresponding Born
stability criterion [38]. For the cubic crystal system, the elastic constants should satisfy the
following criteria: C11 − C12 > 0, C11 + 2 C12 > 0 and C44 > 0. Observing Table 4, it can
be found that the calculated elastic constants of the alloys satisfy the stability criterion,
indicating that the Cu–Sn alloys are stable at 0 K. These results are consistent with the
actual situation and correspond to the previously calculated mixing enthalpy results.

From the elastic constants, the corresponding bulk modulus B, shear modulus G,
Young’s modulus E, and Poisson’s ratio υ can be obtained using the Voigt–Reuss–Hill
approximation [39]. The Voigt, Reuss, and Hill approximations of the elastic modulus are
denoted by the subscripts V, R, and H, respectively. For cubic structures, the modulus of
elasticity can be defined as:

BV = BR = (C11 + 2C12)/3 (12)
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GV = (C11 − C12 + 3C44)/5 (13)

GR = 5(C11 − C12)C44/[4C44 + 3(C11 − C12)] (14)

In the V-R-H model, B and G in the Hill model are obtained by taking the average of B
or G in the Voigt and Reuss models,

BH =
1
2
(BV + BR) (15)

GH =
1
2
(GV + GR) (16)

Meanwhile, the relationship between Young’s modulus E and Poisson’s ratio υ can be
obtained,

E =
9BG

3B + G
(17)

υ =
3B− 2G
6B + 2G

(18)

Calculated values of elastic parameters for Cu and Cu–Sn alloys (Cu31Sn, Cu30Sn2, and
Cu29Sn3) are presented in Table 5. In order to verify the reliability of the calculated results,
the calculated values of the elastic parameters for copper in Table 4; Table 5 were compared
with the previously reported experimental values [40–42] and theoretical values [43,44].
The elastic parameters obtained in this study are in better agreement with the reference
values, indicating that the calculated parameters and method have high reliability and
certain reference values.

Table 4. Elastic constants Cij of Cu–Sn alloys. The present calculation results are compared with
experimentally reported and other theoretical values.

Structure Source
Elastic Constants of Crystals (GPa)

C11 C12 C13 C22 C23 C33 C44 C55 C66

Cu Present 184.5 116.7 77.1
Exp.at 4.2 K a 176.2 124.9 81.8
Exp.at RT b 170 122.5 75.8
Exp.at RT c 168.1 121.5 75.1

Cal. d 176 118.2 81.9
Cal. e 183.5 125.9 80.9

Cu31Sn Present
Present (SBP)

182.98
182.93

109.79
109.73 109.69 183.01 109.71 182.80 78.13

78.13 78.13 78.13

Cu30Sn2
Present

Present (SBP)
158.44
158.27

130.77
129.82 128.96 159.97 129.74 156.39 61.33

61.34 61.35 61.35

Cu29Sn3
Present

Present (SBP)
160.51
160.69

107.29
106.89 106.40 161.68 106.97 159.88 75.63

75.62 75.62 75.62

a Experimental data reported in Ref. [40]. b Experimental data reported in Ref. [41]. c Experimental data reported
in Ref. [42]. d Calculated data reported in Ref. [43]. e Calculated data reported in Ref. [44].

Figure 4a shows the changes in BH, GH, and E of Cu, Cu31Sn, Cu30Sn2, and Cu29Sn3
as the content of Sn increases. In general, the bulk modulus BH is used to characterize
the incompressibility of a material. The higher the BH value, the less likely the material
is to compress under external forces. The shear modulus GH is defined as the ability of a
material to resist shear deformation. If the shear modulus GH is larger, it indicates that
the directional bonding between atoms is more significant. The Young’s modulus E is a
physical quantity used to describe the stiffness of a material. As the Young’s modulus E
increases, the hardness of the material also increases.
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Table 5. The calculated bulk modulus BH (GPa), shear modulus GH (GPa), Young’s modulus E (GPa),
Poisson’s ratio υ, Pugh’s ratio GH/BH, Cauchy pressure C12-C44, dislocation strain energy W, and
universal elastic anisotropy AU for Cu–Sn alloys. The present calculation results are compared with
experimentally reported and previously computed values.

Structure Source Modulus υ GH/BH C12-C44 W/J·m−1 AU

BH (GPa) GH (GPa) E (GPa)

Cu Present 139.7 55.7 147.5 0.32 0.40 39.6 0.367 0.83
Exp.at 4.2 K 142 51.5 137.8 0.34 0.36 1.80 [40]
Exp.at RT 138.3 47.7 128.3 0.35 0.35 1.81 [41]
Exp.at RT 137.0 47.1 126.7 0.35 0.34 1.84 [42]

Cal. 137.4 54.0 143.3 0.33 0.39 1.42 [43]
Cal. 145.1 53.5 142.9 0.34 0.37 1.40 [44]

Cu31Sn Present 134.13 57.63 151.23 0.31 0.43 31.60 0.387 0.72
Cu30Sn2 Present 139.01 34.43 95.42 0.39 0.25 68.48 0.236 3.06
Cu29Sn3 Present 124.81 49.99 132.31 0.32 0.40 31.27 0.349 1.40
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As can be seen from Figure 5a, the order of values for GH and E is: Cu31Sn > Cu >
Cu29Sn3 > Cu30Sn2. Cu31Sn has the highest GH value (57.63 GPa) and the highest E value
(151.23 GPa), while Cu30Sn2 has the lowest GH value (34.43 GPa) and the lowest E value
(95.42 GPa), indicating that among these Cu–Sn alloys, Cu31Sn has the most significant
directional bonding, the strongest shear deformation resistance, and the highest hardness.
On the contrary, Cu30Sn2 has the weakest shear deformation resistance and the highest
plasticity. In addition, in Cu–Sn alloys, the bulk modulus presents a “downward-upward-
downward” trend with the increase of Sn content. Compared with pure Cu, an increase in
Sn content will reduce its incompressibility.

The lattice distortion will occur when Sn is solidly dissolved into the Cu matrix. The
elastic stress field caused by this deformation increases the crystal energy, which is defined
as the strain energy of the dislocation [45],

W ≈ Gb2 (19)

where G is the shear modulus and b is the Burgers vector. For fcc crystals, b2 = 0.5a2.
The greater the dislocation strain energy, the poorer its plastic deformation ability, and
the higher its tensile strength. The dislocation strain energy of Cu–Sn alloys is shown in
Figure 4. With the increase of Sn content, the dislocation strain energy presents a trend of
first increasing, then decreasing, and then increasing, indicating that its plastic deformation
ability first decreases, then increases, and then decreases. This trend is the same as that
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of shear modulus G and Young’s modulus E, which can be explained by the dislocation
motion theory.
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Cu–Sn alloys.

Elastic modulus and Poisson’s ratio are important indicators that can reflect the me-
chanical properties of materials to a certain extent. However, to have a better understanding
of their mechanical properties, in any service environment, it is also necessary to associate
their bonding properties with toughness. Poisson’s ratio υ, GH/BH [46], and Cauchy enact
pressure on C12-C44 [47] to evaluate the ductility trend of the material. According to Pettifor
and Pugh criteria, ductile materials should meet: υ > 0.26, GH/BH < 0.57, C12-C44 > 0; con-
versely, brittle materials: υ < 0.26, GH/BH > 0.57, C12-C44 < 0. From Table 5 and Figure 4b,
these Cu–Sn alloys meet the toughness criteria and have ductility. With the increase of
Sn content, the ductility presents a “downward-upward-downward” trend, with Cu30Sn2
having the largest υ (0.39), C12-C44 maximum (68.48), GH/BH minimum (0.25), indicating
that Cu30Sn2 has the best ductility.
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It is well known that elastic anisotropy is one of the causes that induce microcrack-
ing in materials [1]. Therefore, it is necessary to study its elastic anisotropy to evaluate
the mechanical durability of Cu–Sn alloys. Among others, Ranganathan and Ostoja-
Starzewski [48] improved the concept of the universal anisotropy index (AU) to study the
degree of anisotropy in different directions of bonding between atoms in different crystal
planes, which can be expressed as

AU = 5
GV
GR

+
BV
BR
− 6 (20)

AU takes into account the contributions of both shear and bulk modulus, where the
deviation of AU from 0 determines the degree of crystal anisotropy, and as can be seen
from Table 5, Cu30Sn2 exhibits a higher degree of anisotropy compared to Cu, Cu31Sn, and
Cu29Sn3. Furthermore, this degree of anisotropy can be visually represented, as it is in
Figure 5.

The Young’s modulus E is not only color-coded in all directions by Elastic POST [49],
but also its specific magnitude is shown in a two-dimensional plot. The Cu–Sn alloys
examined in this study belong to the cubic crystal system, and the directional dependence
of its Young’s modulus can be obtained from the calculated flexibility constant [50], which
can be expressed as

1
E
= S11 − (2S11 − 2S12 − S44)

(
l2
1 l2

2 + l2
2 l2

3 + l2
3 l2

1

)
(21)

where E is the Young’s modulus, Sij is the elastic flexibility coefficient, and l1,l2, and l3 are
the directional cosines.

Observing the three-dimensional diagram of Young’s modulus anisotropy of Cu–Sn
alloys in Figure 5a–c, the degree of elastic anisotropy of Cu30Sn2 can be described in more
detail using the ratio of directional elastic modulus in Planar Projection, Figure 5d–f. The
greater the deviation of this ratio from 1, the higher the elastic anisotropy of the surface [48].
For cubic crystal systems, the directional elastic modulus satisfies the following conditions:
[100] = [010] = [001] 6= [110]. E (100)/E (110) represents the directional Young’s modulus
elastic anisotropy in the (110) plane. According to Figure 5d–f, the Young’s moduli of
Cu31Sn, Cu30Sn2, and Cu29Sn3 in the <100> direction are 120 GPa, 50 GPa, and 85 GPa,
respectively; the Young’s moduli in the <110> direction are 205 GPa, 175 GPa, and 190 GPa,
respectively. The deviation between E (100)/ E (110) and 1 for Cu30Sn2 is the largest (0.714),
followed by the deviation between E (100)/E (110) and 1 for Cu29Sn3 (0.553), and the deviation
between E (100)/ E (110) and 1 for Cu31Sn (0.415) is the smallest. This indicates that the
Young’s modulus anisotropy of Cu–Sn alloys satisfies the following requirements: Cu30Sn2
> Cu29Sn3 > Cu31Sn, which is the same as the order of AU .

3.5. Electronic Properties

The electronic structure can explain the source of mechanical properties at a micro-
scopic level. To further grasp the phase stability and bonding characteristics of the Cu–Sn
alloys, the relevant electronic properties of the solid solution were investigated based on
structural optimization. Figure 6 shows the total density of states (TDOS) and the partial
density of stats (PDOS) of the Cu–Sn alloys in the energy range of −12 eV to 6 eV. From
Figure 6, it can be seen visually that the distribution of density of states and their trends are
relatively similar for the Cu–Sn alloys. First, the TDOS below the Fermi energy level (0 eV)
is contributed mainly by the Cu-3d states, with partial contributions from the Sn-5s and
Sn-5p states, while the TDOS above the Fermi energy level mainly originates from the Sn-5s
and Sn-5p states, while partly from the Cu-3p states. It is well known that the DOS values
(N(EF))) at the Fermi energy level are related to the phase stability, where the smaller the
N(EF), the more stable the corresponding phase is [51]. The N(EF) values of Cu31Sn, Cu30Sn2,
and Cu29Sn3 are 7.0843, 9.1978, and 8.6509 electrons/(eV·f.u.), respectively. The order of
N(EF) values is Cu31Sn < Cu29Sn3 < Cu30Sn2. As discussed earlier, the enthalpy of mixing
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indicates that Cu31Sn is the most stable. Second, all Cu–Sn alloys have non-zero TDOS
values at the Fermi energy level, which indicates the metallic character of these Cu–Sn
alloys. Thirdly, the peak values of the Cu-3d state undergo splitting at −4 eV to −2 eV. As
the Sn content increases, the three peaks gradually change from uniform to non-uniform in
Cu31Sn, Cu30Sn2, and Cu29Sn3, with a decrease at −4 eV and an increase at −2 eV. This
is mainly attributed to the characteristics of the crystal structure and the symmetry of
coordination, resulting in the crossing or overlapping of energy levels, which in turn affects
the state and degree of peaks in DOS.
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2, and 3 indicate the peak splitting of the Cu-3d state.

The differential charge density can directly characterize the nature of chemical bonding
between different atoms and the electron gain and loss. Figure 7 shows the differential
charge density diagram for Cu–Sn alloys in the range of−0.250 to 0.047 e/Å3, where the red
region indicates the accumulation of electrons and the blue region indicates the depletion
of electrons. As shown in Figure 7, in the Cu–Sn alloys, a large number of electrons gather
between the Cu and Sn atoms, and the Cu atoms have a significant loss of charge in the
outer layers, which can be clearly observed as a “sea of electrons” phenomenon, thus
indicating the existence of metallic bonds [52]. As shown in Figure 7, the distribution of
electron clouds around Cu atoms is in the shape of petal, with directionality. The petal
distributions are closely related to the shapes of d orbitals [53]. Moreover, the electron cloud
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is in the shape of petal, indicating that polarization is relatively severe, resulting in uneven
distribution of electrons. It is speculated that there may be other bonds in the Cu matrix
besides metal bonds. In addition, some electrons accumulate between Cu and adjacent
Cu atoms, which indicates the presence of metallic bonds and Cu-Cu covalent bonds in
Cu–Sn alloys. Among them, compared with Cu and adjacent Cu atoms, Cu and adjacent Sn
atoms direction, the blue area around Cu is larger and dense, indicating a serious electron
loss and the formation of stronger Cu–Sn covalent bonds. By the non-uniformity of the
charge causes anisotropy in the relevant properties of the material (e.g., elastic properties).
Observing Figure 7, it is found that the blue area around Cu in Cu30Sn2 is large and dense
compared to Cu31Sn and Cu29Sn3, and the non-uniformity of the charge is more significant,
thus its elastic anisotropy is the highest, reflecting the highest Young’s modulus elastic
anisotropy of Cu30Sn2 discussed earlier. With the addition of the alloying element Sn, the
distribution of electron clouds around the atoms changes subsequently, and the electron
cloud of the Sn element has a red sphere shape, indicating the accumulation of electrons in
the alloying element.
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On the other hand, the atomic Mulliken charge (AMC) can adequately describe the
charge transfer between Cu and Sn atoms. If the atom has a negative AMC, it indicates that
this atom gains charge; otherwise, this atom loses charge. In Cu29Sn3 and Cu31Sn, most
of the Cu atoms gain charge from Sn atoms or other Cu atoms, and some lose charge. In
Cu30Sn2, most of the Cu atoms gain charge from Sn atoms or other Cu atoms, and a few
have no gain or loss of electrons. Bond population (BP) and the bond length L are also
important parameters to assess the bonding properties. In general, the shorter the bond
length L and the larger bond population (BP), the stronger the bond, and a bond with a BP
value of zero is a perfect ionic bond; otherwise, it is a covalent bond. A larger absolute BP
value indicates a stronger covalent bond. Positive and negative BP values indicate bonding
interactions and antibonding interactions in the bond, respectively [54,55]. As shown in
Table 6, the BP values of Cu–Sn bonds and Cu-Cu bonds in these Cu–Sn alloys are much
larger than zero, thus indicating the presence of Cu–Sn covalent bonds and Cu-Cu covalent
bonds. Furthermore, it can be found that Sn-Sn bonds do not exist in these Cu–Sn alloys.
Therefore, Sn atoms are prone to displacement and will first form vacancies at Sn sites [47].
It was shown that bond population (BP) is also an important indicator of the mechanical
properties of the material. In general, the phase stability, shear modulus and hardness
of Cu–Sn alloys are positively correlated with the strength of the covalent bond, and this
relationship can be obtained by bond population (BP), and the stronger the covalent bond,
the larger bond population (BP). The strong phase stability, shear modulus and hardness
of Cu31Sn obtained in this study can be attributed to the formation of a stronger Cu-Cu
covalent bond.
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Table 6. Atomic Mulliken charge (AMC), bond population (BP) analysis and mean bond length
(Å) for Cu–Sn alloys. The numbers in brackets for the atom represent the number of Cu or Sn ions,
whereas the number in brackets for the bond represents the number of Cu–Cu and Cu–Sn bonds.

Species Atom Charge Number AMC Bond BP Length (Å)

s p d Total

Cu31Sn Cu(1) 0.51 0.77 9.72 11.01 −0.01 Cu-Cu(12) 0.27 2.50443
Cu(12) 0.51 0.78 9.72 11.01 −0.01 Cu-Cu(48) 0.23 2.5588
Cu(3) 0.51 0.81 9.72 11.03 −0.03 Cu-Cu(12) 0.2 2.57028
Cu(12) 0.53 0.81 9.73 11.06 −0.06 Cu-Cu(24) 0.21 2.57028
Cu(3) 0.51 0.74 9.73 10.98 0.02 Cu-Cu(24) 0.19 2.59082
Sn(1) 0.65 2.42 0 3.08 0.92 Cu-Cu(24) 0.21 2.59218

Cu-Cu(12) 0.19 2.61121
Cu-Cu(24) 0.16 2.67706
Cu–Sn(12) 0.17 2.67706

Cu30sn2 Cu(24) 0.53 0.82 9.73 11.07 −0.07 Cu-Cu(8) 0.26 2.54638
Cu(6) 0.51 0.77 9.73 11 0 Cu-Cu(16) 0.26 2.54639
Sn(2) 0.71 2.42 0 3.13 0.87 Cu-Cu(44) 0.26 2.54828

Cu-Cu(26) 0.2 2.61677
Cu-Cu(22) 0.2 2.61678
Cu–Sn(8) 0.18 2.68531

Cu-Cu(45) 0.16 2.68531
Cu-Cu(12) 0.18 2.68532
Cu-Cu(4) 0.16 2.68532
Cu–Sn(3) 0.18 2.68533

Cu29sn3 Cu(12) 0.54 0.85 9.74 11.13 −0.13 Cu-Cu(12) 0.24 2.56039
Cu(10) 0.52 0.82 9.73 11.07 −0.07 Cu-Cu(24) 0.26 2.56039
Cu(3) 0.5 0.71 9.74 10.96 0.04 Cu-Cu(12) 0.23 2.62491
Cu(1) 0.5 0.66 9.75 10.92 0.08 Cu-Cu(59) 0.21 2.64287
Sn(3) 0.79 2.46 0 3.25 0.75 Cu-Cu(48) 0.19 2.67471

Cu–Sn(12) 0.14 2.72284

3.6. Debye Temperature

The Debye temperature (θD) is an important parameter of crystalline materials. On
the one hand, it can reflect the thermal properties of the material, and on the other hand,
it can be used as a link between the thermal and mechanical properties of the material.
At low temperatures, the acoustic vibration is the only factor that triggers the vibration
excitation, so at low temperatures, the Debye temperature calculated by the elastic constant
is equivalent to the Debye temperature determined by the specific heat measurement. Thus,
it can be calculated by the following equation [56,57],

θD =
h
k

[
3n
4π

(
NAρ

M

)] 1
3
νm (22)

where h, k, and NA are Planck’s constant, Boltzmann’s constant, and Avogadro’s constant,
respectively, n is the total number of atoms per unit cell, ρ is the density, M is the molecular
weight, and νm is the average speed of sound, which can be defined as [57,58],

νm =

[
1
3

(
2

νt3 +
1

νl
3

)]− 1
3

(23)

where νl and νt are the longitudinal and transverse sound velocities, respectively, and can
be obtained from the shear modulus G, the bulk modulus B, and the density ρ, which are
related as follows,

νl =

(
B + 4

3 G
ρ

) 1
2

(24)
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νt =

(
G
ρ

) 1
2

(25)

The calculated Debye temperatures, sound velocities and densities of pure Cu, and Cu–
Sn alloys are shown in Table 7, which shows that the calculated sound velocities and Debye
temperatures of Cu are in good agreement with the experimental values and previous
calculations by scholars. In general, the higher the Debye temperature, the higher the
melting point of the corresponding crystal and the stronger the covalent bond, the more
stable the structure. As shown in Table 7 and Figure 8, among the Cu–Sn alloys, the Debye
temperature of Cu31Sn is the highest, the corresponding covalent bond strength is the
strongest, and the stability is the best, which is exactly in line with the results discussed in
Table 2 and Figure 4a.
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In addition, the lattice thermal conductivity κph is also one of the most fundamental
physical properties of the material, which characterizes the thermal conductivity of the
material and is of great significance for exploring the application of the material at high tem-
peratures. In general, we consider the minimum value of the lattice thermal conductivity
kmin [59], which is related by the equation,

kmin =
kB

2.48
n

2
3 (2νt + νl) (26)

where kB is the Boltzmann constant, n is the number of atoms per unit volume, and vl and
vt are the longitudinal and transverse velocities of sound, respectively.

Melting point is also an important parameter of the material and is currently a hot
issue of research, playing a crucial role in predicting new intermetallic compounds for
high-temperature applications. It can be obtained by the following empirical equation [60],

Tm = 354 + 4.5
2C11 + C33

3
(27)

In addition to the speed of sound (νl , νt, νm) and Debye temperature θD, the density
ρ, the minimum value of lattice thermal conductivity kmin, and the melting point Tm of
the Cu–Sn alloys are included in Table 7. It can be found that the minimum value of
lattice thermal conductivity and melting point of Cu–Sn alloys follow the following pattern:
Cu31Sn > Cu29Sn3 > Cu30Sn2. The above calculation results indicate that Cu–Sn alloys
are good thermally conductive materials, and it is tentatively predicted that the thermal
conductivity of Cu–Sn alloy is relatively good when the Sn content is low. However, there
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are few reports on the experimental Debye temperature and other thermal properties of
Cu–Sn alloys. Therefore, it is hoped that the results of the present calculations can provide
a reference value for subsequent studies of Cu–Sn alloys.

Table 7. The calculated and experimental results of density (ρ), transverse, longitudinal, average
sound velocity (νt, νl , νm in m/s), Debye temperatures (θD, K), the minimum thermal conductivity
(kmin in Wm−1K−1) and melting point (Tm in K) of Cu–Sn alloys.

Structure Source ρ νt νl νm θD κmin Tm Refs.

Cu Present 8.828 2512 4923 2815 367 1.06 1184
Exp. 8.937 1353 [61]
Exp. 343 [62]
Cal. 9.353 2639 5209 2958 391 1.16 1330 [63]
Cal. 8.930 2277 4723 2560 335 [47]

Cu31Sn Present 8.815 2557 4892 2861 369 1.19 1177
Cu30Sn2 Present 8.787 1980 4587 2237 286 0.88 1066
Cu29Sn3 Present 8.754 2390 4677 2678 339 0.96 1077

4. Conclusions

The lattice constants, phase stability, solution strengthening, elastic properties, elec-
tronic properties, and Debye temperature of Cu–Sn alloys with different Sn contents
(Cu31Sn, Cu30Sn2, Cu29Sn3) were studied by first principles. The relevant conclusions are
as follows.

The calculated lattice constants are proportional to the solute concentration, consistent
with the Vegard’s law, and have a linear relationship across the entire Cu–Sn solid solution
region; the Sn atoms of 3.125 at%, 6.25 at%, and 9.375 at% can be solidly dissolved in the Cu
matrix. The negative mixing enthalpy of Cu31Sn (3.125 at%) is the largest, indicating that its
chemical bond is the strongest and its structure is the most stable. In the aspect of solution
strengthening, the mismatch strain parameter is introduced to quantify the effect of solution
strengthening. The calculated values can be used to predict the solution strengthening
effect of Cu-based solid solutions, and are of great significance for developing copper alloys
with ultra-high yield strength.

In Cu–Sn alloys, Cu30Sn2 has the smallest shear modulus and Young’s modulus. Its
variation trend is the same as that of dislocation strain energy (Cu30Sn2 has a minimum
dislocation strain energy of 0.236 Jm−1), indicating that when the Sn content is 6.25 at%,
the plasticity of Cu–Sn alloys is the largest. In addition, Cu30Sn2 has the highest Young’s
modulus and elastic anisotropy.

The electronic structure and bonding properties of the Cu–Sn alloys have been calcu-
lated, and their relationship with the stability and mechanical properties of the alloys is
analyzed and discussed. Three types of bonding existed in Cu–Sn alloys: Cu-Cu covalent
bonds, Cu-Cu metallic bonds, and Cu–Sn covalent bonds, of which Cu31Sn had the best
stability and the highest shear modulus, which depended to a certain extent on the fact that
it had stronger Cu-Cu covalent bonds.

The Debye temperature of the Cu–Sn alloys, the minimum lattice thermal conductivity,
and the melting point all decrease sequentially along the order of Cu31Sn, Cu29Sn3, and
Cu30Sn2. This indicates that Cu–Sn alloys are good thermal conductivity materials. Addi-
tionally, it is tentatively predicted that the thermal conductivity of Cu–Sn alloy is relatively
good when Sn content is low.
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Appendix A

Appendix A.1 Modeling Method:Script

1:
use strict;use Getopt::Long;
use MaterialsScript qw(:all);
my $disorderedStructure = $Documents{“Cu31Sn.xsd”};
my $results = Tools->Disorder->StatisticalDisorder->GenerateSuperCells
($disorderedStructure,2,2,2);
my $table = $results->StudyTable;
print “Number of disorder configurations generated:”.$results->NumIrreducibleConfigurations.
“\n”;

2:
use strict;
use Getopt::Long;
use MaterialsScript qw(:all);
my $disorderedStructure = $Documents{“Cu30Sn2.xsd”};
my $results = Tools->Disorder->StatisticalDisorder->GenerateSuperCells
($disorderedStructure,2,2,2);
my $table = $results->StudyTable;
print “Number of disorder configurations generated:”.$results->NumIrreducibleConfigurations.
“\n”;

3:
use strict;
use Getopt::Long;
use MaterialsScript qw(:all);
my $disorderedStructure = $Documents{“Cu29Sn3.xsd”};
my $results = Tools->Disorder->StatisticalDisorder->GenerateSuperCells
($disorderedStructure,2,2,2);
my $table = $results->StudyTable;
print “Number of disorder configurations generated:”.$results->NumIrreducibleConfigurations.
“\n”;

Note:
This script references the content of the following web site: https://zhuanlan.zhihu.com/
p/50322042.

https://zhuanlan.zhihu.com/p/50322042
https://zhuanlan.zhihu.com/p/50322042
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Table A1. Structures.

Structures Weighting Configuration E (eV/atom)

Cu31Sn 1 32 baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa −45,867.723

Cu30Sn2

1 192 baaaaaaaaaaabaaaaaaaaaaaaaaaaaaa −44,485.574
2 192 baaaaaaabaaaaaaaaaaaaaaaaaaaaaaa −44,484.631
3 16 baaaaaabaaaaaaaaaaaaaaaaaaaaaaaa −44,485.663
4 48 baabaaaaaaaaaaaaaaaaaaaaaaaaaaaa −44,485.603
5 48 bbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa −44,485.427

Cu29Sn3

1 256 baaaaaaaaaaabaaaaaabaaaaaaaaaaaa −43,103.560
2 768 baaaaaaabaaaaaaaaaabaaaaaaaaaaaa −43,102.542
3 768 baaaaaaabaaaaaaaabaaaaaaaaaaaaaa −43,101.536
4 256 baaaaaaabaaaaaaabaaaaaaaaaaaaaaa −43,100.554
5 384 baaaaaabbaaaaaaaaaaaaaaaaaaaaaaa −43,102.624
6 768 baabaaaaaaaaaaaabaaaaaaaaaaaaaaa −43,102.558
7 192 baabaaaaaaaabaaaaaaaaaaaaaaaaaaa −43,103.594
8 192 baabaaaabaaaaaaaaaaaaaaaaaaaaaaa −43,101.576
9 32 baababaaaaaaaaaaaaaaaaaaaaaaaaaa −43,103.623
10 384 bbaaaaaaaaaaaaaaaaaaaaaabaaaaaaa −43,102.360
11 384 bbaaaaaaaaaabaaaaaaaaaaaaaaaaaaa −43,103.366
12 384 bbaaaaaabaaaaaaaaaaaaaaaaaaaaaaa −43,101.419
13 96 bbaaaabaaaaaaaaaaaaaaaaaaaaaaaaa −43,103.483
14 96 bbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaa −43,103.230

Appendix A.2
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Appendix A.3

Table A2. Equilibrium volume V0 (Å3/atom), bulk modulus B0 (GPa), first-order derivative of bulk
modulus with respect to pressure B0

′ and static energy E0 (eV/atom) of Cu and Sn.

Element
Pure

V0 (Å3/atom) B0 (GPa) B0
′ E0 (eV/atom)

Cu 12.04 128.16 4.33 −1476.515
Sn 27.29 54.47 4.40 −95.480
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Appendix A.4

Table A3. Volume V (Å3/atom) and total energy E (eV/atom) of the Cu–Sn alloys.

Structure V (Å3/atom) E (eV/atom)

Cu31Sn 393.47 −45,868.47
Cu30Sn2 405.02 −44,487.20
Cu29Sn3 417.17 −43,105.81
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