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Abstract: Some multi-materials produced via SLM and containing 316L steel may exhibit defects
and cracks in the interfacial zone. There is a lack of research on 316L/NiTi multi-materials with an
interlayer produced via SLM. This study aims to investigate the influence of a high-entropy alloy
(HEA)—CoCrFeNiMn interlayer on the defects’ formation, microstructure, phase, and chemical
compositions, as well as the hardness of the interfacial zone. It was concluded that using of high-
entropy alloy as an interlayer in the production of 316L/HEA/NiTi multi-material via SLM is
questionable, since numerous cracks and limited pores occurred in the HEA/NiTi interfacial zone.
The interfacial zone has an average size of 100–200 µm. Microstructure studies indicate that island
macrosegregation is formed in the interfacial zone. The analysis of phase, chemical composition,
and hardness demonstrates that a small amount of FeTi may form in the island macrosegregation.
The increase in iron content in this area could be the reason for this. The interfacial zone has a
microhardness of about 430 HV, and in the island macrosegregation, the microhardness increases
to about 550 HV. Further research could involve an in-depth analysis of the phase and chemical
composition, as well as examining other metals and alloys as interlayers.

Keywords: additive manufacturing; selective laser melting; multi-material; SS316L/NiTi; HEA
interlayer; interfacial zone

1. Introduction

Recently, there has been a significant increase in the use of additive manufacturing
(AM) in high-tech industries such as petrochemical, mechanical engineering, electrical
power, biomedicine, etc. [1,2]. This is mainly due to the ability of this technology to produce
complex products at lower costs in comparison to traditional methods [3]. One type of AM,
known as selective laser melting (SLM), can be utilized to produce metal products [4–6], as
well as multi-materials with variable chemical compositions [7,8]. The implementation of
this approach enhances the performance characteristics of these products [9].

In recent years, there has been significant research on multi-materials containing
stainless steel obtained via SLM [10–12], and several studies have examined defects in the
interfacial zone in these multi-materials. In the interfacial zone of 316L/CuSn10 multi-
materials, dendritic cracks propagate orthogonally to the 316L region from the melting
zone [13,14]. Defects and cracks are observed in the interfacial zone of 316L/IN718 multi-
materials and carbides such as NbC and TiC [15,16]. Cracks occur in the interfacial zone of
316L/Ni50.83Ti49.17 multi-material, possibly caused by the presence of brittle intermetallic
compounds (Fe2Ti, FeNi3, Ti2Ni) [17].

It should be noted that the 316L/NiTi multi-material obtained via SLM is of great
interest [18]. However, this multi-material, like the other multi-materials with 316L men-
tioned above, may exhibit defects and cracks in the interfacial zone. The cause of these
cracks may be attributed to phase formation. Traditional technologies employ interlayers
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to reduce such effects in multi-materials production. In the 316L/NiTi multi-materials,
interlayers such as Ta, Ni, FeNi alloy, and high-entropy alloy (HEA) reduce the amount of
brittle intermetallic compounds (IMCs) [19–22].

During the laser welding of NiTi to 316L, a non-uniform chemical composition distri-
bution occurs, and the crystallization mode changes from planar to dendritic form. The
addition of the Ta interlayer results in an increase in the formation of TaCr2 and Ni3Ta
and a decrease in the brittle IMCs (TiFe2, TiCr2, TiFe, etc.) in the weld joint [19]. A similar
situation occurs when a Ni interlayer is used, leading to the formation of mainly Ni-rich
IMCs (Fe3Ni and Ni3Ti) instead of brittle IMCs (Fe2Ti, Cr2Ti, and Ti2Ni) [20]. During
electron beam welding, when Ni and FeNi interlayers are used, the microstructure of the
weld zone has two different regions that consist of austenite and the IMCs (Fe2Ti, Ni3Ti).
The volume fraction of the IMC regions is different [21]. During laser welding, when
an HEA (CoCrFeNiMn) interlayer is added, island macrosegregations are formed by the
Marangoni effect. After the addition of the HEA interlayer, its elements get into the weld,
which reduces the formation of brittle IMCs [22].

Currently, there is a lack of research on 316L/NiTi multi-materials with an interlayer
produced via SLM. Consequently, this study is aimed at investigating the influence of
an HEA—CoCrFeNiMn interlayer on the defects’ formation, microstructure, phase, and
chemical composition, as well as the hardness of the interfacial zone between the HEA
and NiTi.

2. Materials and Methods
2.1. Starting Materials

Metallic spherical powders of 316L, HEA CoCrFeNiMn, and NiTi alloys were utilized
to obtain the multi-material 316L/HEA/NiTi samples via SLM (Table 1 and Figure 1).
The 316L (SferaM LLC, Metlino, Russia) and NiTi (TLS Technik GmbH&Co., Bitterfeld,
Germany) metallic powders were manufactured through atomization. To obtain HEA
powder, mechanical alloying was carried out via a Fritsch Pulverisette 4 planetary mill
(Fritsch GmbH, Idar-Oberstein, Germany). Following mechanical alloying, the particles
were spheroidized employing a Tekna TEK-15 system (Tekna, Sherbrooke, QC, Canada).
The particle size distribution of the powders was measured using a laser diffraction parti-
cle size analyzer, Analysette 22 NanoTec Plus (Fritsch GmbH, Idar-Oberstein, Germany,
Table 2).

Table 1. Chemical composition of 316L, HEA, and NiTi metallic powders.

Alloy Fe, % Cr, % Ni, % Co, % Mn, % Mo, % Ti, %

316L base 16.5–18.5 10–13 - 2 (max) 2–2.5 -

HEA 20 20 20 20 20 - -

NiTi - - 50 - - - 50
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Table 2. The particle size distribution of 316L, HEA, and NiTi metallic powders.

%
316L HEA NiTi

<µm <µm <µm

10 20 18 21

50 39 53 38

90 70 103 67

2.2. The SLM Process Parameters

During the fabrication of the multi-material 316L/HEA/NiTi samples via SLM, the
HEA alloy was built onto the 316L alloy, followed by the NiTi alloy onto the HEA. HEA
samples were successfully obtained via SLM, and the energy density for this alloy was
selected on the basis of this study [23]. For 316L and HEA alloys, the SLM parameters were
chosen based on energy density according to existing data [24,25]. The SLM 280HL machine
(SLM Solutions, Germany) was used for the manufacturing of the samples (Table 3).

Table 3. Process parameters of SLM for the multi-material 316L/HEA/NiTi samples.

Alloy Scanning
Speed, mm/s

Laser Power,
W

Hatch
Distance,

µm

Layer
Thickness,

µm

Energy
Density,
J/mm3

316L 760 275 100 50 72.37

HEA 650 360 120 50 92.31

NiTi 750 200 100 30 88.89

2.3. Characterizations

The microstructure was studied using a Leica DMi8 M optical microscope (Leica
Microsystems, Wetzlar, Germany). Etching of the materials was performed utilizing Kroll’s
reagent comprising 83% distilled water, 14% HNO3, and 3% HF. In this study, a multi-
material sample was analyzed. As different areas of the specimen necessitate varying
etchants, a universal etchant does not exist for all three alloys. The focus was placed
on the NiTi zone and Kroll’s etchant. The chemical composition was analyzed using a
Mira 3 scanning electron microscope (TESCAN, Brno, Czech Republic) with an energy-
dispersive X-ray spectroscopy module. The phase composition was evaluated by X-ray
microdiffraction with a beam width of 100 µm on a Rigaku SmartLab diffractometer (CuKα

radiation, Rigaku Corporation, Tokyo, Japan). Microhardness was measured using a
Vickers MicroMet 5101 microhardness tester (Buehler Ltd., Lake Bluff, IL, USA).

3. Results and Discussion
3.1. The Defect Analysis in the HEA/NiTi Interfacial Zone

The results of the defect analysis in the different zones are presented in Figure 2. The
pure alloy zones exhibit no cracks and a few spherical pores. The minimal number of
defects indicates that suitable printing parameters have been selected for pure alloys. The
HEA/NiTi interfacial zone displays cracks and a pore. Presumably, the cracking may be
attributed to the influence of the phase formation in the interfacial zone. As noted in the
literature review, phase formation in the interfacial zone can lead to the formation of IMCs,
which can be the cause of cracking. It has also been found that the using of an interfacial
layer only reduces the amount of IMCs, but does not remove them completely. It can
therefore be assumed that even with the presence of the HEA interlayer, brittle IMCs can
occur in the multi-material. The interfacial zone exhibits significant mixing of the HEA and
NiTi alloys and has an average size of 100–200 µm.
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Figure 2. The results of the defect analysis in the different zones: (a) HEA, (b) HEA/NiTi interfacial
zone, (c) NiTi.

3.2. The Phase Composition Analysis of the Multi-Material 316L/HEA/NiTi Sample

The results of the phase composition analysis are shown in Figure 3. In the pure alloy
zones, the phase composition is consistent with these alloys: austenite (gamma-phase) in
the 316L zone, a solid solution with an FCC structure in the HEA zone, and a B2 austenitic
phase in the NiTi zone. The HEA/NiTi interfacial zone contains the B2 austenitic phase,
along with a small amount of the intermetallic compound FeTi and solid solutions (Fe, Ni).
It is hypothesized that the presence of a small amount of FeTi in the interfacial zone leads
to the development of cracks, as this IMC causes embrittlement. It should be noted that
the phase analysis of the interfacial zone was conducted using microanalysis mode, which
could affect the accuracy of the results. Due to the small size of the analyzed area, the phase
diagrams may not display all the phases. For instance, as stated in the following section,
the presence of FeCr is assumed based on the chemical composition analysis, but it is not
observed on the phase diagram.
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3.3. The Microstructural and Chemical Composition Investigations, along with Hardness Analysis
of the HEA/NiTi Interfacial Zone

The results of the microstructural and chemical composition investigations, along
with the hardness analysis of the HEA/NiTi interfacial zone, are presented in Figure 4 and
Table 4. The microstructural investigations reveal the development of island macrosegrega-
tion in the interfacial zone, which is attributed to the Marangoni effect [26]. The Marangoni
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effect occurs when the elevated temperature in the central region of the melt pool induces a
reduction in surface tension, resulting in the molten metal flowing backward. A consistent
energy input amplifies the backflow, leading it to return to the center of the melt pool, form-
ing eddy currents [27]. Due to the rapid cooling and insufficient time for distributing the
chemical elements of the HEA interlayer, inhomogeneities occur, leading to the formation
of island macrosegregation in the eddy currents [22]. The microstructure in such regions
consists of randomly distributed crystals around the eddy currents, which can be clearly
seen in Figures 2b and 4b.
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Table 4. Chemical composition of 316L, HEA, and NiTi metallic powders.

Position (from
Figure 4)

Ni,
at. %

Ti,
at. %

Fe,
at. %

Cr,
at. %

Co,
at. %

Mn, at.
%

Hardness,
HV Potential Phases

1 32.7 27.18 15.44 12.19 8.34 3.89 546.9
FeTi, B2, (Fe, Ni),

FeCr
2 33.53 25.96 14.72 12.15 9.2 4.06 564.4

3 28.19 18.56 20.3 16.49 11.06 5.06 542.4

4 19.93 1.16 31.40 23.62 16.37 7.12 191.2 (Fe, Ni), FeCr

5 36.96 33.66 11.48 9.08 6.44 2.39 432.7 B2, FeCr

6 33.48 29.4 13.89 11.43 8.07 3.47 564.8 FeTi, B2, (Fe, Ni),
FeCr7 33.11 24.26 15.51 12.89 9.74 4.22 557.6

8 44.21 44.49 4.65 3.37 4.25 1.03 422.7 B2, FeCr

9 33.62 28.76 14.71 11.18 7.98 3.41 569.4

FeTi, B2, (Fe, Ni),
FeCr

10 30.88 25.14 16.84 13.56 9.08 4.26 546.1

11 29.16 25.27 18.26 14.06 8.65 4.33 558.9

12 33.66 26.88 15.5 11.64 8.19 3.78 559.1

13 38.57 34.77 10.31 7.87 5.87 2.39 445.9 B2, FeCr

From the chemical composition and hardness analyses, it becomes apparent that the
interfacial zone consists predominantly of a B2 phase and that an additional phase is
present, as the interfacial zone is harder than pure NiTi. Chemical composition analysis
suggests that this phase may be FeCr. The microhardness of the interfacial zone is around
430 HV (points 5, 8, and 13). It can be assumed that in the island macrosegregations, the FeTi
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is formed, resulting in an increase in microhardness up to approximately 550 HV (points
1–3, 6–7, and 9–12). Point 4 lies outside the interfacial zone in the HEA zone comprising
Fe, Ni, and FeCr, with a microhardness of approximately 190 HV (comparable to existing
data [28]). The microhardness of pure NiTi was approximately 220 HV (comparable to
existing data [29]). The hardness increases in the interfacial zone may indicate that new
phases occur, which are different from those in the pure alloys. A comparable occurrence
is visible in the interfacial zone during the welding of the NiTi with the stainless steel via
laser welding [30]. The hardness increases in the island macrosegregations could indicate
the presence of IMCs. The increase in iron content within the island macrosegregations,
potentially leading to the formation of FeTi, is visible on the element distribution maps of
the HEA/NiTi interfacial zone (Figure 5).
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4. Conclusions

Some multi-materials, produced via SLM and containing 316L steel, may exhibit
defects and cracks in the interfacial zone. There is a lack of research on 316L/NiTi multi-
materials with a transition layer produced via SLM. This study is aimed at investigating the
influence of a high-entropy alloy (HEA)—CoCrFeNiMn interlayer on the defects’ formation,
microstructure, phase and chemical compositions, as well as the hardness of the interfacial
zone between the HEA and NiTi. The following conclusions are obtained:

(1) The idea of using HEA (CrCoFeNiMn) as an interlayer in the production of 316L/HEA/NiTi
multi-material is questionable, since numerous cracks and limited pores occurred in
the HEA/NiTi interfacial zone. The interfacial zone has an average size of 100–200 µm.

(2) Microstructure studies indicate that island macrosegregation is formed in the in-
terfacial zone due to the Marangoni effect. The analysis of the phase, chemical
composition, and hardness demonstrates that a small amount of FeTi may form in the
island macrosegregation. It can be inferred that the presence of a minor amount of
FeTi in the interfacial zone results in the formation of the cracks, as this intermetallic
compound causes embrittlement.

(3) Further research could involve an in-depth analysis of the phase and chemical compo-
sition to confirm the influence of phase formation in the interfacial zone on emerging
defects. It would also be pertinent to examine other metals and alloys as interlayers
in the 316L/NiTi multi-material.
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