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Abstract: This study delves into the innovation of mini light-emitting diode (mini-LED) backlight
module designs, a significant advancement in display technology. The module comprises a substrate,
a receiving plane, and an LED structure, which uses a blue light with specific spectral characteristics.
When combined with a red-green quantum dot (QD) film, it produces white light. For improved
illumination uniformity, the Mini-LED structure was optimized with a focus on the thickness and
concentration of layers, especially the TiO2 diffusion layer. A comprehensive design methodology
using LightTools (8.6.0) optical simulation software was employed, linked with MATLAB (R2022a)
for varied parameters and using the double deep Q-network (DDQN) algorithm via Python as
a reinforcement learning agent. This approach facilitated optimal architecture design based on
illumination uniformity. Also, the bidirectional scattering distribution function (BSDF) was employed
to calculate the scattering properties of the backlight module’s surface, providing accurate simulation
results. The DDQN algorithm enhanced the learning design, reducing simulation runs by 76.7%
compared to traditional methods. The optimized solution achieved an impressive illumination
uniformity of 83.8%, underscoring the benefits of integrating advanced algorithms into display
technology optimization.

Keywords: double deep Q-network; mini LED backlight module; quantum dot

1. Introduction

In recent years, the rapid advancement of technology has prominently featured light-
emitting diode (LED) devices across various domains, such as high-power electronics;
lighting; and, notably, display technology [1–3]. Within the realm of display technology,
LEDs have become integral to the manufacturing of LED displays. The miniaturization
trend of LEDs has greatly enhanced display experiences, elevating resolution, energy
efficiency, and color quality [4–6]. Such progress has steered the display industry towards
more streamlined designs.

Recent innovations in mini-LED backlight modules now surpass traditional liquid
crystal displays (LCDs), boasting superior attributes like heightened contrast, precise
local dimming control, expansive color gamut, reduced light leakage and flickering, and
enhanced energy efficiency [7–9]. These qualities significantly uplift the viewer’s experience.
However, mini-LED technology is not devoid of challenges [4]. Its reliance on a more
extensive array of smaller LED chips complicates their use and increases the manufacturing
cost. Moreover, the augmented heat output from mini-LED backlighting calls for robust
heat dissipation systems, ensuring display stability [10]. Limitations in size and density
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can compromise resolution and pixel density, especially in high-resolution and larger
displays [11]. Issues like uneven brightness or backlight leakage arise due to smaller chip
sizes, posing challenges in maintaining brightness uniformity [8,12].

Currently, many mini-LED technologies are married with quantum dots (QDs) to cre-
ate white light backlight modules [13,14]. QDs, known for their narrow spectral linewidth
and high color purity, enable a wider color gamut, culminating in an enriched color experi-
ence [15]. In addition to their excellent photovoltaic properties, QDs still face unresolved
issues. It is well known that the ionic structure of QDs is unstable, leading to chemical, op-
tical, or thermal instabilities; as a result, achieving long-term stability remains a significant
hurdle for their large-scale utilization. Furthermore, the high-energy radiation from QDs to
blue LEDs can cause thermal bursts and photodegradation of PQDs, limiting their practical
applications. Consequently, enhancing the stability of QDs has emerged as a critical focus
in the current research. Over the past few years, various techniques have been proposed
to improve PQD stability, including co-doping or hybridization with other cations and
surface passivation. In 2022, Lee et al. succeeded in significantly stabilizing QDs by coating
their surfaces with Al2O3 using an atomic layer deposition (ALD) passivation protection
technique [16]. This effective encapsulation method increases resistance to oxygen and
humidity by using an additional substrate to isolate the QDs from each other. On the
application side, common QD coating technologies include QD photoresist (QDPR) and
inkjet printing. Huang et al. employed inkjet printing technology for QD deposition onto
mini-LEDs, achieving a unique three-in-one mini-LED display [17]. Lee et al. employed
QDPR to create a color conversion layer (CCL). This was combined with blue and quantum
well hybrid UV hybrid µ-LEDs equipped with DBR. The result was a full-color display
array featuring high uniformity and a wide color gamut [15].

The task of designing backlight modules demands the adjustment of numerous param-
eters. Traditionally, optical simulation software like MATLAB (R2022a) has been pivotal
for fine-tuning of parameters and module enhancement [18]. Yet, these traditional optical
simulations can be laborious, demanding intricate calculations and comprehensive model
constructions. The need to pinpoint optimal parameter configurations via optimization
algorithms leads to hefty computational demands and prolonged computation durations.
Such hurdles render traditional optical simulations less than ideal for intricate optical
system design.

However, new methodologies, specifically deep reinforcement learning (DRL), promise
solutions [19]. DRL amalgamates deep learning and reinforcement learning, mastering
optimal decision making through environment interaction. Compared to its predecessors,
DRL showcases superior adaptability, equipping itself to navigate more intricate challenges
and adjust in fluid environments [19,20]. Its continual improvement via trial, feedback, and
error equips it to manage uncertainties [21]. Huang et al. harnessed DRL for an efficient
model optimization approach tailored for Micro-LED backlight modules [22].

While Deep Q-Network (DQN) remains popular in DRL, it has its limitations, es-
pecially in overestimating target values in highly correlated scenarios [23]. There is also
a risk of overfitting [24,25]. To counter this, the double deep Q-network (DDQN) was
conceptualized. The DDQN uses two discrete Q-networks—action selection and action
value evaluation, enhancing algorithm stability and accuracy [26,27]. Building upon the
DDQN, Han et al. introduced a DRL framework rooted in separate graph scheduling,
which amalgamates the DDQN’s flexibility and real-time responsiveness [28]. Salh et al.
explored the merger of generative adversarial networks and deep distributed Q-networks
(GAN-DDQNs) for intelligent scheduling in Internet of Things (IoT) contexts, elevating the
module training’s stability and intelligence [29,30].

In this study, a mini-LED display module, integrated with QD as the color conversion
layer, incorporated DRL for improved computational speeds. Using the DDQN algorithm,
the study achieved notable time and labor savings. Furthermore, utilizing artificial intel-
ligence model inferences, the team produced an efficient, slim, luminous, and uniform
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mini-LED backlight module. With the merging of these pioneering technologies, significant
advancements in display technology are anticipated.

2. Experiment and Algorithm Design
2.1. Mini-LED Module Design

The mini-LED backlight module is a leading development in current display tech-
nology. As shown in Figure 1a, the module primarily consists of a substrate, a receiving
plane, and a structured LED design. This study’s mini-LED backlight module employs
blue light characterized by a Gaussian distribution of wavelength spectrum, a spectral peak
of 450 nm, and a full width at half maximum (FWHM) of 18 nm. In combination with a
red and green QD mixing film, it produces white light through light mixing. To achieve
greater illumination uniformity, we initially designed and optimized a single mini-LED
package structure, as depicted in Figure 1a. The 8× 12 mil blue LED wafer is enveloped in a
30 µm thick QD layer. This transparent layer of optical material, mixed with red and green
QDs, serves to convert white light color. A protective transparent layer coats the QD layer,
guarding the unstable QDs against forms of degradation such as self-aggregation while
providing a mixing distance. Lastly, an atomized layer, composed of a transparent adhesive
and TiO2 scattering particles, is situated on top of the LED to widen the angle of divergence.
We established four parameters—the transparent layer’s width and thickness, the diffusion
layer’s thickness, and the TiO2 particle concentration in the diffusion layer—as adjustable
for synchronized optimization to achieve the best uniformity parameter combination,
demonstrated in Table 1. To ensure the accuracy of the optical simulation, we established a
single LED model based on the above conditions and compared it with actual LED samples
possessing the same parameters. We found that the simulation results closely resembled
the actual products’ light-emitting fields, indicating the simulation’s reliability. Figure 1b,c
demonstrate the impact of the TiO2 particle concentration in the diffusion layer, which can
be divided into three stages. In the first stage, if the diffusion particle concentration is too
low, the fogging effect is inadequate, leading to a small LED dispersion angle, poor gap
brightness, and poor uniformity. However, upon reaching a certain critical concentration,
the excessive diffusion concentration of particles suppresses the LED’s frontal light output,
decreasing the uniformity. Given that we aim for the thickness of a single LED in this
backlight module to be under 300 µm, this study will develop an optimization method for
the four-variable design of the architecture.
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Figure 1. (a) Schematic diagram of mini-LED backlight module and single packaged LED.
(b) Illuminance uniformity with variable concentration of TiO2 in the diffusion layer. (c) The schematic
diagram of the changing process while increasing the concentration of TiO2 in the diffusion layer.
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Table 1. Tunable parameters in the LightTools environment model for reinforce learning.

Parameters Symbol Range

Width of transparent layer a 30 µm to 200 µm, step: 10 µm
Thickness of transparent layer b 30 µm to 140 µm, step: 10 µm

Thickness of diffusor layer c 30 µm to 140 µm, step: 10 µm
Weight concentration of TiO2 d 0.1% to 30%, step: 0.1%

2.2. Overall Design Workflow

We present a comprehensive design methodology to achieve the optimal simulation
results, as depicted in Figure 2. Figure 2a outlines the program’s operation and linkage
flowchart. First, we created a mini-LED backlight module as an environment model
using LightTools (8.6.0) optical simulation software and imported the structure’s optical
parameters. We then combined LightTools’ new pickup function with MATLAB to set
four different variables influencing the illumination uniformity. Following the simulation
in LightTools, MATLAB collected mesh data from surface receivers and calculated the
illumination uniformity. Lastly, we implemented the DDQN algorithm via Python to
allow it to act as the reinforcement learning (RL) agent in the experimental process. This
algorithm enabled the agent to interact with the environment, developing an optimization
method for the architecture’s variable design and identifying the optimal solution for
illuminance uniformity by connecting it to LightTools’ simulated illuminance uniformity.
We utilized LightTools to establish the mini-LED backlight module, as shown in Figure 2b.
The architecture primarily comprised three parts: the mini-LED (light source), a structural
sheet, and a surface receiver. We created five absorbing surfaces as a baffle wall to encase
the entire model and simulated a mini-LED backlight module using a 5 × 5 array Mini-LED
array with a structural sheet atop it, investigating the illumination uniformity.
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In our comprehensive optimization framework, we incorporated the optical param-
eter of the structured sheet as the bidirectional scattering distribution function (BSDF).
This function calculates the surface scattering optical properties of the material under
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microscopic conditions [31]. The BSDF combines the bidirectional reflectance distribution
function (BRDF) and bidirectional transmission distribution function (BTDF) [32,33], as
depicted in Figure 3a. The BSDF describes how a ray of light projected onto a material
surface generates scattered light in various directions due to surface properties, with the
scattered light direction changing along with incident light changes. Besides understanding
a material’s BSDF through measuring scattered light, we can also simulate the scattering
effect if the material’s BSDF properties are known. In our model design, the backlight
module’s top layer comprised multiple geometrically small, light-transmitting materials.
Due to light tracing limitations in optical simulation software, the simulation results can
easily become distorted. Therefore, we improved the actual bidirectional scattering distri-
bution function of the light by sending the structural model for measurement to achieve
simulation results closer to the actual conditions, as shown in Figure 3b.
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2.3. Definitions of Action Functions, State Functions, and Reward Functions of DDQN Algorithm

In the traditional DQN algorithm, a single neural network estimates the Q-value of
different actions in each state, a measure used to select the subsequent action. However, the
DQN algorithm’s Q-network uses the same network to select and evaluate the next action’s
Q-value during Q-value updates, leading to overestimation. To solve this overestimation,
DDQN, an enhanced learning algorithm for solving value-function-based reinforcement
learning problems, is introduced, serving as an improvement upon the DQN algorithm.
DDQN uses two neural networks, the online network and the target network, to mitigate
the overestimation issue inherent to DQN. The online network selects the next action, while
the target network evaluates this action’s Q-value. When updating the online network, a
greedy policy selects the subsequent action, and the target network evaluates the Q-value
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using the online network’s optimal action. This process reduces Q-value overestimation by
the online network, enhancing the algorithm’s stability and performance. As illustrated
in Figure 4, the ε-greedy policy calculates action (at) and sends it to the environment
control agent. The environment control agent computes and controls states t, St+1, and
at, as well as reward value (rt) at time t and (t + 1), reporting them back. Each iteration’s
states, at, and rt, are logged through replay memory. Subsequently, the loss function is
computed, determining the new parameter update via the Q network (θt) and target Q
network (θ’t) neural networks. The target Q and loss function are defined as displayed in
Equations (1) and (2):

TargetQ = Rt+1 + γ Maxat+1Q(St+1, at+1; θt) (1)

where Rt+1 is the incentive value at the moment (t + 1), γ is the hyperparameter of the
model, and the loss function (MSE) is defined as in Equation (2) below:

Loss function(MSE) = L(θ) = [(TargetQ − Q(s, a; θt))
2] (2)

After several iterations, the best results are obtained when the loss letter value converges.
The main steps of the DDQN algorithm include:

1. The online and target networks are initialized;
2. At each time step, an action is selected from the online network based on the current

state of the state space (St);
3. The selected action is performed, the next state is observed, and the environmental

feedback is rewarded.
4. The next action from the target network is selected as an action space (at), and its

Q-value is evaluated.
5. The Q estimate for the online network is updated using the next state of the feedback

and the reward function (rt);
6. The target network is regularly updated by copying the parameters from the online

network to the target network;
7. Steps 2 through 6 are repeated until the desired stop condition is reached.

The work flow and definition of the state space, action space, and reward function of
the DDQN algorithm in this work are illustrated in Figure 4 and Table 2, respectively.

Crystals 2023, 13, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. Workflow of DDQN algorithm. 

Table 2. Definition of state space, action space, and reward function. 

State Space (St) Action Space (at) Reward Function (rt) 

State No. State Definition Action No. Action Definition 
Reward 

No. Reward Definition 

S1 The value of a a1, a2 increase a, decrease a u 
Illuminance uniformity = Minimum 

Illuminance/Average Illuminance 

S2 The value of b a3, a4 increase b, decrease b r 
r1 = (Uniformitynew − 73)3/1000 

r2 = (unew − uold)/100 
R (out of range) = −10 

S3 The value of c a5, a6 increase c, decrease c   
S4 The value of d a7, a8 increase d, decrease d   

3. Result  
3.1. Divergent Angle of Single Packaged Mini-LED 

Firstly, to ensure our designed package yields the desired results and to pursue 
higher uniformity, a wider dispersion angle of a single mini-LED is theoretically prefera-
ble in order to minimize the dark area between LEDs. We initially built a model with a 
single-unit structure, adjusting the concentration of TiO2 particles in the diffusion layer. 
Figure 5 displays the simulation results of modifying the TiO2 particle concentration in 
the diffusion layer. As the concentration of TiO2 particles increased, a single Mini-LED 
dispersion angle became enlarged. However, a relatively high particle concentration in-
hibited the frontal emission of mini-LEDs, reducing frontal light intensity, as shown in 
Table 3. This negatively impacts the overall uniformity of the backlight module, requiring 
a balance between dark area elimination and frontal light emission suppression. There-
fore, the weight percentage concentration range of TiO2 selected in our optimization pro-
cess was between 2% and 5%, based on the result of the former testing. Traditional optical 
simulation entails manipulating numerous parameters; hence, we utilized the DDQN 
method in DRL to find the optimal parameter solution. 

Figure 4. Workflow of DDQN algorithm.



Crystals 2023, 13, 1411 7 of 13

Table 2. Definition of state space, action space, and reward function.

State Space (St) Action Space (at) Reward Function (rt)

State No. State Definition Action No. Action Definition Reward No. Reward Definition

S1 The value of a a1, a2 increase a, decrease a u Illuminance uniformity = Minimum
Illuminance/Average Illuminance

S2 The value of b a3, a4 increase b, decrease b r
r1 = (Uniformitynew − 73)3/1000

r2 = (unew − uold)/100
R (out of range) = −10

S3 The value of c a5, a6 increase c, decrease c

S4 The value of d a7, a8 increase d, decrease d

3. Result
3.1. Divergent Angle of Single Packaged Mini-LED

Firstly, to ensure our designed package yields the desired results and to pursue higher
uniformity, a wider dispersion angle of a single mini-LED is theoretically preferable in
order to minimize the dark area between LEDs. We initially built a model with a single-unit
structure, adjusting the concentration of TiO2 particles in the diffusion layer. Figure 5
displays the simulation results of modifying the TiO2 particle concentration in the diffusion
layer. As the concentration of TiO2 particles increased, a single Mini-LED dispersion angle
became enlarged. However, a relatively high particle concentration inhibited the frontal
emission of mini-LEDs, reducing frontal light intensity, as shown in Table 3. This negatively
impacts the overall uniformity of the backlight module, requiring a balance between dark
area elimination and frontal light emission suppression. Therefore, the weight percentage
concentration range of TiO2 selected in our optimization process was between 2% and 5%,
based on the result of the former testing. Traditional optical simulation entails manipulating
numerous parameters; hence, we utilized the DDQN method in DRL to find the optimal
parameter solution.

Crystals 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Simulated light patterns of mini-LED with variable TiO2 concentration in the diffusion 
layer. 

Table 3. TiO2 particle concentration in diffusion layer on the angle-intensity of mini-LED backlight 
module data. 

Weight Concentration 

Divergence Angle 
2 2.5 3 3.5 4 4.5 5 

L = 0 141 146 152 156 165 166 167 
L = 90 147 152 161 170 171 168 167 

3.2. Experimental Result for DDQN 
Reward function 1 is defined with respect to a fixed reference value, while reward 

function 2 is designed as “strictly decreasing”, requiring each loss value to be lower than 
the previous one. The RL results are illustrated in Figure 6. The horizontal axis represents 
the number of episodes, and the vertical axis signifies the illuminance uniformity of each 
episode. The reward of all steps is summed up based on our defined rt, encouraging con-
tinuous learning in the RL system. Episodes outside of our defined range are rated as −10. 
Figure 6 represents the trend of illuminance uniformity in the RL system, with the vertical 
axis showing the illuminance uniformity of each episode’s final step after simulation. Fig-
ure 6a reveals no convergence after 150 episodes without super-parameter adjustment. 
Failing to appropriately adjust the epsilon decay and learning rate in the context of rein-
forcement learning can result in situations where the outcomes do not converge as de-
sired. This phenomenon can be attributed to several factors. Firstly, in the realm of explo-
ration versus exploitation, reinforcement learning employs the ε-greedy strategy, wherein 
the epsilon value plays a pivotal role in balancing the trade-off between exploration and 
exploitation. A rapid reduction in epsilon, leading to its quick diminishment to very small 
values, can cause the agent to prematurely cease exploration activities. This, in turn, leads 
to missed opportunities for the agent to acquire superior strategies. Secondly, the learning 
rate constitutes a crucial hyperparameter controlling the magnitude of weight updates 
within the model. An excessively high learning rate can induce oscillations in the model’s 
weights, thus obstructing convergence. Conversely, an overly small learning rate results 
in sluggish convergence, necessitating extended training times to attain satisfactory per-
formance levels. Figure 6b demonstrates a better learning rate with the ϵ-decay setting, 
but some convergence issues occurred after 150 episodes. Adjusting rt by subtracting the 
old and new values by 100 solves this issue, as shown in Figure 6c. Failing to appropriately 

Figure 5. Simulated light patterns of mini-LED with variable TiO2 concentration in the diffusion layer.



Crystals 2023, 13, 1411 8 of 13

Table 3. TiO2 particle concentration in diffusion layer on the angle-intensity of mini-LED backlight
module data.

Divergence Angle
Weight Concentration

2 2.5 3 3.5 4 4.5 5

L = 0 141 146 152 156 165 166 167
L = 90 147 152 161 170 171 168 167

3.2. Experimental Result for DDQN

Reward function 1 is defined with respect to a fixed reference value, while reward
function 2 is designed as “strictly decreasing”, requiring each loss value to be lower than
the previous one. The RL results are illustrated in Figure 6. The horizontal axis represents
the number of episodes, and the vertical axis signifies the illuminance uniformity of each
episode. The reward of all steps is summed up based on our defined rt, encouraging
continuous learning in the RL system. Episodes outside of our defined range are rated
as −10. Figure 6 represents the trend of illuminance uniformity in the RL system, with
the vertical axis showing the illuminance uniformity of each episode’s final step after
simulation. Figure 6a reveals no convergence after 150 episodes without super-parameter
adjustment. Failing to appropriately adjust the epsilon decay and learning rate in the con-
text of reinforcement learning can result in situations where the outcomes do not converge
as desired. This phenomenon can be attributed to several factors. Firstly, in the realm
of exploration versus exploitation, reinforcement learning employs the ε-greedy strategy,
wherein the epsilon value plays a pivotal role in balancing the trade-off between exploration
and exploitation. A rapid reduction in epsilon, leading to its quick diminishment to very
small values, can cause the agent to prematurely cease exploration activities. This, in turn,
leads to missed opportunities for the agent to acquire superior strategies. Secondly, the
learning rate constitutes a crucial hyperparameter controlling the magnitude of weight
updates within the model. An excessively high learning rate can induce oscillations in the
model’s weights, thus obstructing convergence. Conversely, an overly small learning rate
results in sluggish convergence, necessitating extended training times to attain satisfactory
performance levels. Figure 6b demonstrates a better learning rate with the ε-decay setting,
but some convergence issues occurred after 150 episodes. Adjusting rt by subtracting the
old and new values by 100 solves this issue, as shown in Figure 6c. Failing to appropriately
adjust the epsilon decay and learning rate in the context of reinforcement learning can
result in situations where the outcomes do not converge as desired. This phenomenon
can be attributed to several factors. Firstly, in the realm of exploration versus exploitation,
reinforcement learning employs the ε-greedy strategy, wherein the epsilon value plays a
pivotal role in balancing the trade-off between exploration and exploitation. A rapid reduc-
tion in epsilon, leading to its quick diminishment to very small values, can cause the agent
to prematurely cease exploration activities. This, in turn, leads to missed opportunities for
the agent to acquire superior strategies. Secondly, the learning rate constitutes a crucial
hyperparameter controlling the magnitude of weight updates within the model. An exces-
sively high learning rate can induce oscillations in the model’s weights, thus obstructing
convergence. Conversely, an overly small learning rate results in sluggish convergence,
necessitating extended training times to attain satisfactory performance levels.
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Through simulation and optimization, the final optimal solution achieved an illumi-
nation uniformity of 83.8%, as shown in Figure 7. The parameter values were a 40 µm
transparent layer width, 70 µm thickness, 60 µm atomized layer thickness, and a 4.1%
weight percent concentration of TiO2. Compared to the traditional method, which required
32,850 simulations, the use of DRL’s DDQN algorithm reduced this number to just 7744
simulations, representing a time reduction of 76.7%. The DRL-centered agent uses an
enhanced learning design agent characteristic of deep learning solutions, minimizing the
search scope to find the best solution. Consequently, it can deliver more efficient and
better-optimized solutions.
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3.3. QD Color Conversion and Reliability Test of the Mini-LED Backlight Module

Based on the simulation results, the selected parameter values were a 40 µm transpar-
ent layer width, a thickness of 70 µm, an atomized layer thickness of 60 µm, and a 4.1%
weight percent concentration of TiO2. The photoluminescence efficiencies (PLQY) were cal-
culated using electroluminescence (EL) spectroscopy, as shown in Figure 8. Under 450 nm
excitation, the photoluminescence central wavelengths for the green and red QD powders
were 527 nm and 640 nm, respectively, with PLQY of 83.3% and 91.1%. Additionally, the
FWHM values for the green and red powders were 22 nm and 33.5 nm, respectively.
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photo of the QDs.

Once the QD layer is prepared, it is paired with a blue mini-LED to create a display.
This step verifies the optimal parameter outcomes from the simulation. We used a spec-
trophotometer (Minolta CS-1000T), an image generator (Chroma 2403), and a robotic arm
(ABB IRB2600) to measure the display’s reliability. The luminance uniformity exceeded 90%,
and the average center luminance was measured at 1057 cd/m2. A high-temperature and
high-humidity reliability test of the mini-LED backlight module was also conducted. The
module was tested with long-term light aging at a temperature of 60 ◦C and 90% relative
humidity, as depicted in Figure 9. The results indicate that the illumination intensity of the
mini-LED gradually converged to 75.5% after 996 h of testing. For the section concerning
QD composite films, our team has previously published measurement data related to relia-
bility [16]. We utilized ALD passivation protection technology to coat the QD surface with
a protective Al2O3 layer, thereby enhancing its weathering resistance. Measurements were
conducted for various tests, including a current variation test, a long-term light aging test,
and a temperature/humidity test at 60◦/90%. Our paper indicates that, after 1100 h in the
long-term aging test, efficiency was reduced to only 0.225 of its original value, which corre-
sponds to an LT50 of approximately 2300 h. For the 60◦/90% temperature/humidity test,
the LT50 was around 6070 h, demonstrating excellent wavelength stability and reliability.
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4. Conclusions

Conventional optical design methods often emphasize the accuracy of model param-
eters, as they typically involve complex calculations and larger model structures. These
methods can be challenging and difficult to implement, requiring significant time expen-
diture. The environmental control agent technique introduced in this study efficiently
integrates multi-parameter simultaneous tunable combinations into an optimized model.
This enhanced learning model also offers an efficient model optimization design method
for mini-LED backlight modules. Through RDL, the optimal location on the solution plane
can be determined more swiftly and with higher resolution. The optimization results using
the DDQN algorithm were proven to be superior and faster than those from conventional
optical simulations. It took only 23.3% of the total cycle time to find the optimal solution,
and it achieved 83.8% illumination uniformity with the optimized parameter combination.
This method will decrease the limitations of optical system design and analysis. It success-
fully yielded an ultra-thin, high-efficiency, high-brightness, and high-uniformity mini-LED
backlight module based on the inference results of an artificial intelligence model. The com-
bination of these forward-looking technologies is expected to lead to greater breakthroughs
in display technology, thereby providing a better user experience and improved energy
efficiency.
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