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Abstract: Terahertz (THz) technology is an emerging field that is promising for future applications.
Nonlinear optical (NLO) materials can effectively convert incident light into the THz frequency range
using optics methods. Ionic-type organic π-conjugated NLO crystals containing electron donor-π-
acceptor motifs have long attracted attention for their possibility to achieve large nonlinear optical
coefficients. In this paper, an overview of the recent progress in ionic-type organic NLO crystals for
highly efficient THz wave generation is presented. The substitution design strategies of cations and
anions, for increasing optical nonlinearities and reducing absorptions in different structure series,
are summarized. In addition, the progress in crystal growth and their THz output performance are
also discussed.
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1. Introduction

Organic nonlinear optical (NLO) crystals have attracted increasing attention for their
promising applications in terahertz (THz) photonics, such as electromagnetic waves, THz
generation, and detection [1–5]. Compared with inorganic crystals (e.g., ZnGeP2, LiNbO3,
GaSe, etc.), organic NLO crystals generally show good optical nonlinearity, an ultrafast
response time, as well as various design possibilities [6–15].

Ionic-type organic NLO crystals are constructed from cations and anions that are differ-
ent from molecular-type NLO crystals, and it is known that cations are the main source of
the nonlinearities [16–18]. In this kind of crystal structure, the D-π-A structure is the basic
framework of the cation, which is composed of the electron donor (D) part and an electron
acceptor (A) part, connected via a π-conjugated bridge. Based on the D-π-A structure,
molecules can exhibit large first-order hyperpolarizabilities, which are beneficial for ob-
taining large macroscopic nonlinear optical susceptibilities, when the molecules crystallize
in non-centrosymmetric space groups. Although the contribution of anions to the micro-
scopic first-order hyperpolarization is negligible, different anions can regulate the stacking
form of cationic chromophores in the crystal, as well as induce a non-centrosymmetric
arrangement [19]. Typical anions include alkyl-substituted benzenesulfonate anions (e.g.,
T, TMS) and halogenated substituted benzenesulfonate anions (e.g., CBS, BBS). DAST
(Supplementary Materials) is one of the most famous crystals and contains a T anion with a
great nonlinear optical coefficient (d11 = 210 ± 55 pm/V) at 1.9 µm fundamental frequency
light [20]. However, inherent defects, such as an easy deliquescence, strong absorption near
1 THz, and poor mechanical properties, have for a long time limited the further practical
application of DAST as a commercial optical device.

Based on the excellent properties of DAST, a series of derivatives of DAST have also
been developed by introducing different counter anions [21–26]. To explore this kind of
ionic-type organic nonlinear optical crystal for THz generators with improved properties,
the following points are usually considered: (i) large macroscopic second-order optical non-
linearity; (ii) good phase matching between light waves and terahertz waves; (iii) reducing
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self-absorption in the THz region; and (iv) stable physical and chemical properties [27,28].
In recent years, researchers have found that the combination of strong electron donors
and acceptors, which can produce strong hydrogen bonds between electronegative groups
and the molecular skeleton, is very beneficial for suppressing the THz absorption modes
of organic electro-optic salt crystals [27,29]. Through this strategy, the contribution of
π-π stacking interactions and hydrogen bonds to the secondary bond interactions can be
controlled, not only achieving the purpose of restraining the molecular vibration mode in
the crystalline state, but also obtaining a favorable spatial arrangement [29].

In this review, we summarize the selection of cations and anions in different ionic-type
NLO crystal series that have been proven THz generation in recent five years. The effects
of different substitution groups on macroscopic optical nonlinearity and physicochemi-
cal properties are discussed. Moreover, the progress in crystal growth and THz output
applications is also briefly summarized.

2. Discussion
2.1. Pyridinium-Based THz Crystals

Benchmark DAST (C23H26N2O3S, Cc) has an extremely large nonlinear optical coeffi-
cient d11 = 210 ± 55 pm/V at 1.9 µm [20]. The DAS cation (Figure 1) with strong -N(CH3)2
donor group exhibits a large maximum first-order hyperpolarization, i.e.,
βmax = 159 × 10−30 esu, corresponding to the maximum absorption wavelength (λmax) of
475 nm in methanol solution [30]. However, the obvious absorption peak of DAST crystal
in the terahertz-wave region (~1 THz), centrosymmetric hydrate, and difficulties in crystal
growth have long hindered progress in its practical use [31,32]. The discovery of DAST
opens up new horizons for terahertz-wave sources and recent work has made much efforts
in the development of novel crystals with improved properties.
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value of βmax in the optimized DHP cation with two phenolic -OH groups is 121 × 10−30 esu 
and the maximum absorption wavelength (λmax) of DHP-TFS is approximately 406 nm in 
methanol. Compared with DAST (475 nm in methanol), the maximum absorption wave-
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These two pyridinium-based crystals with phenol groups exhibit a yellow color, probably 
indicating enlarged bandgaps and a broadened pump wavelength region. 

Figure 1. Chemical structure of DAST.

Hydroxyl (-OH), as a classical electron donor, shows a high tendency to form a non-
Coulomb interionic assembly with benzenesulfonate anions, which can contribute more
hydrogen bonds to the crystalline states. Newly developed pyridinium derivatives with
phenol groups, e.g., OHP and DHP cations (Figure 2 and Table 1), have provided ex-
cellent properties through two push-pull-type aromatic rings with one or two hydroxyl
groups [28,33]. Based on quantum chemical calculations with density functional theory
(DFT) [34], the OHP cation exhibits large microscopic optical nonlinearity with a non-
resonant maximum first-order hyperpolarizability βmax of 125 × 10−30 esu, corresponding
to the maximum absorption wavelength (λmax) of 392 nm in methanol (10−3 M) (OHP-TFS).
Through quantum chemical calculation with the DFT at the B3LYP/6-311+G (d, p) level,
the average value of βmax in the optimized DHP cation with two phenolic -OH groups is
121 × 10−30 esu and the maximum absorption wavelength (λmax) of DHP-TFS is approxi-
mately 406 nm in methanol. Compared with DAST (475 nm in methanol), the maximum
absorption wavelengths of OHP-TFS and DHP-TFS are blue-shifted by 83 nm and 69 nm,
respectively. These two pyridinium-based crystals with phenol groups exhibit a yellow
color, probably indicating enlarged bandgaps and a broadened pump wavelength region.
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2.2. Quinolinium-Based THz Crystals 

Figure 2. Chemical structures of pyridinium-based OHP-TFS and DHP-TFS.

In order to reduce the vibrational amplitude in the crystal, the TFS anion with strongly
electronegative -CF3 is introduced to increase the interaction and reduce the void volume
(or increase the density), which can form strong hydrogen bonding interactions between
phenolic groups on cations [27]. In OHP-TFS crystal, the OHP cations are perfectly aligned
in parallel, as shown as Figure 3a,b, which leads to maximizing the value of the diagonal
effective hyperpolarizability tensor to a level equivalent to that of DAST, indicating that
OHP-TFS would also exhibit a strong SHG intensity [28]. As shown in Figure 3c, the
catechol group causes DHP cations and TFS anions to form two strong hydrogen bonds,
with distances of 1.86 Å and 2.14 Å, respectively. The DHP-TFS crystal exhibits a parallel-
type cation-anion assembly (Figure 3d), which is similar to the classic DAST, and the
average value of (IDHP-TFS/IDAST)0.5 is ≈ 0.7 under the fundamental light ≥1500 nm [33].
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Table 1. Comparison of the mentioned pyridinium-based THz crystals.

Crystal Name Space Group λmax(nm)
in Methanol βmax (Cation) SHG Intensity Ref.

DAST Monoclinic Cc 475 159 × 10−30 esu d11 = 210 ± 55 pm/V at 1.9 µm [20]
OHP-TFS Triclinic P1 392 125 × 10−30 esu ~DAST [28]
DHP-TFS Triclinic P1 406 121 × 10−30 esu ~0.49 × DAST, ≥1500 nm [33]
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2.2. Quinolinium-Based THz Crystals

Quinolinium is one of the strong acceptors [35–37]. In the last five years, various quinolinium-
based NLO crystals have been developed. Generally, quinolinium-based cations include two
types, namely, halogen-free and halogen-containing quinolinium-based electron acceptors.

2.2.1. Halogen-Free Cations

HMQ is a classical cation with two strong electron donors (-OH and -OCH3), which
was first reported as an efficient cation of THz crystal in 2012 [38]. This HMQ cation
exhibits a larger first-order hyperpolarization, βmax = 145 × 10−30 esu, than that of the OH1
molecule (104× 10−30 esu), and the maximum absorption λmax (439 nm) of the HMQ cation
is also larger than OH1 (426 nm) [39]. More recently, quinolinium-based cations have been
designed by learning from the structure of HMQ (Figure 4 and Table 2). Another successful
cation is OHQ with only one -OH substitution, which was first reported in 2015 [40]. By
using quantum chemical calculation based on finite field DFT using B3LYP/6-311+G*,
OHQ retains a relatively small hyperpolarizability along the main charge-transfer direction
(118× 10−30 esu), and the maximum absorption wavelength of OHQ-based crystal (425 nm)
is blue-shifted by 14 nm compared with HMQ-based crystals (439 nm) in methanol.
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2.2.2. Halogen-Containing Cations

To further enlarge the microscopic nonlinearity, halogen substitutions are selected
for quinolinium-based electron acceptors, as shown in Figure 5 and Table 2. There are
different substitution sites on the quinolinium ring. Through halogen substitution, σ-
hole engineering can be applied to organic crystals [41]. Through the introduction of
the -Cl group into the quinolinium-based electron acceptor cations, the HM7ClQ cation
with increased first-order hyperpolarization was obtained [42]. The maximal first-order
hyperpolarizability βmax of HM7ClQ-based cations is ~170 × 10−30 esu, and the maximum
absorption wavelength of HM7ClQ chromophore is 450 nm in methanol, which is red-
shifted compared with nonhalogenated HMQ (Figure 4) chromophore (439 nm). However,
unlike other halogen groups (e.g., -Cl, -Br, and -I), the -F group cannot produce σ-holes
in this cation series. Through finite field (FF) quantum chemical calculation at B3LYP/6-
311+G(d) level, the first hyperpolarizability βmax of HM6FQ only amounts to 140 × 10−30

esu, which is very similar to that of the nonfluorinated HMQ cation (145 × 10−30 esu), and
the maximum absorption wavelength of the HM6FQ (444 nm) cation is almost the same as
nonfluorinated HMQ cations (439 nm) in methanol [43].
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2.2.3. Effects of Halogen-Containing Anions on the Spatial Arrangement

Under the control of the TFS anion, the first hyperpolarizabilities of the HMQ cation in
HMQ-4TFS crystals and the polar axis of the crystal are almost in the same direction; namely,
the molecular-ordering angle is close to zero, as shown in Figure 6a [29]. The π-π stacking
distance of HMQ cations in HMQ-4TFS is 3.62 Å, which is longer than HMQ-T, indicating
an attenuation of the strength of π-π interactions. With the help of the 4TFS anion, the SHG
intensity of HMQ-4TFS is proven comparable to DAST under the fundamental wavelength of
1250 nm. As shown in Figure 6b, OHQ cations are perfectly arranged in parallel with the help
of CBS anions, and the molecular order angle is zero. In OHQ-CBS crystal, the cation layers
and anion layers are connected by hydrogen bonds with a distance of 1.82 Å, and the SHG
intensity of OHQ-CBS is about 1.2 times that of DAST at 1500 nm [44]. In OHQ-TFO crystal,
the ordering angle θp between the polar axis and the direction of the maximal first-order
hyperpolarizability βmax is rather small (θp = 12.1◦) (Figure 6c) [45]. In OHQ-TFO, the non-
planar shaped -OCF3 can produce a large steric hindrance, as well as reduce the π electron
density of aryl atoms on anions, preventing edge-to-face π-π cation–anion interactions and
leading to an enhanced macroscopic optical nonlinearity (SHG ~2.3 × DAST at 1150 nm). As
shown in Figure 6d, HM7ClQ cations are arranged head-to-tail in the same direction with the
help of CBS anions. HM7ClQ-CBS crystal with both anions and cations chlorinated exhibits
a large SHG intensity, about 1.2 times that of a DAST crystal at wavelength >1400 nm [42].
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2.2.4. Effects of Halogen-Free Anions on the Spatial Arrangement

The T anion group is one of the classical anions, not only in pyridium-based DAST,
but also in quinolinium-based compounds. With the help of T anions, the earliest classical
HMQ and OHQ chromophores can be induced in asymmetrically crystal space groups,
with the SHG intensity separately reaching 0.63 and ~1 times that of DAST under 1.9 µm
and 1245 nm fundamental light [38,40]. Due to this, T anions are also introduced in combi-
nation with newly designed halogen-containing cations. The molecular arrangement of the
recently developed HM6FQ-T crystal with the classical T anion is shown in Figure 7a, in
which the hydrogen bond distances induced by -F substitutions are <3 Å (2.16 Å for F . . . H
on anionic benzene ring carbon, 2.80 Å for F . . . H on anionic methyl carbon, and 2.83 Å for
F . . . H on anionic benzene ring carbon). The molecular-ordering angle θp of HM6FQ-T is
15.3◦, showing a large SHG intensity of about 0.63 times DAST at 1150–1900 nm. Under
the action of the anion T, HM7ClQ cations are connected head-to-tail in the same direction,
as shown in Figure 7b. The molecular ordering angle θp between the direction of the first
hyperpolarizability βmax and the polar axis of HM7ClQ-T crystals is very small (θp = 8.2◦),
and the corresponding order parameter is cos3θp = 0.97, which is close to the maximum
value cos3θp = 1, while the SHG intensity is comparable to DAST at >1400 nm.
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Table 2. Comparison of the mentioned quinolinium-based THz crystals.

Crystal Name Space Group λmax(nm)
in Methanol βmax (Cation) SHG Intensity Ref.

HMQ-4TFS Monoclinic Pn 439 145 × 10−30 esu ~DAST at 1250nm [29]
OHQ-CBS Triclinic P1 425 ~118 × 10−30 esu 1.2 × DAST at 1500 nm [44]
OHQ-TFO Monoclinic Pc 425 ~118 × 10−30 esu ~2.3 × DAST at 1150 nm [45]

HM7ClQ-CBS Orthorhombic Pna21 450 ~170 × 10−30 esu ~1.2 × DAST at >1400 nm [42]
HM6FQ-T Monoclinic Pn 444 140 × 10−30 esu 0.63 × DAST at 1150–1900 nm [43]
HM7ClQ-T Orthorhombic Pna21 450 ~170 × 10−30 esu ~DAST at >1400 nm [42]

2.3. Benzothiazolium-Based THz Crystals
2.3.1. Halogen-Free Cations

The benzothiazolium-based cations with large first-order hyperpolarizability mainly
include PMB, HMB, and HDB cations (Figure 8, Table 3) [46–48]. PMB cation consists of a
strong electron-donating dialkylamino group, and the calculated first-order hyperpolar-
izability of the PMB cation is about 274 × 10−30 esu, which is much larger than that of
DAST crystal (159 × 10−30 esu). Correspondingly, the maximum absorption wavelength of
the PMB cation is 523 nm, presenting a redshift of 48 nm compared with DAST (475 nm).
Combined with classical electron donor -OH and -CH3/OCH3, the HMB cation and HDB
cation show large maximum absorption wavelengths of 438 nm and 566 nm in methanol.
In addition, the OHB cation in OHB-TFO only contains one hydroxyl donor, showing a
not very large first-order hyperpolarizability of 100 ± 7 × 10−30 esu, while the maximum
absorption wavelength in methanol solution is 419 nm [49].
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2.3.2. Halogen-Containing Cations

The maximum absorption wavelength of PFB (Figure 9, Table 3) chromophore in
methanol is 533 nm, which is slightly higher than that of nonfluorinated benzothiazolium-
based chromophore PMB (523 nm) [50].
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2.3.3. Effects of Halogen-Free Anions on the Spatial Arrangement

PMB-T crystal can form series-type cation-anion assembly through strong bidentate-like
hydrogen bonds between the PMB cationic terminal HO- group and the sulfonate on T anions
(Figure 10a,b) [46]. At the reference wavelength of 1800 nm, PMB-T exhibits a large SHG
intensity comparable to DAST. The strongest hydrogen bonds were formed between the phe-
nolic hydroxyl group on the cations and the sulfonate group on the anions (–O–H ····− OS–),
with a distance of 1.902 Å (Figure 10c) for HMB-TMS [47]. The molecular order angle of the
HMB-TMS crystal is close to zero, showing a large SHG intensity similar to that of DAST at
1250 nm. Two kinds of strong hydrogen bonds are formed between the phenolic group (-OH)
of the HDB-T cation and the sulfonate group (-SO3

−) on the anion (Figure 10d). The hydrogen
bond distances between H atoms in hydroxyl groups and O atoms in sulfonic groups are
1.884 and 2.044 Å for the two different oriented HDB cations, respectively. HDB cations stack
with each other at an angle of 16.46◦ through face-to-face π-π stacking interactions, and each
layer is in the same direction at an angle of 66.91◦ along the c-axis in HDB-T (Figure 10d) and
with an X-shaped arrangement. In this way, the microscopic nonlinearity can be effectively
accumulated, and the SHG intensity of HDB-T reaches 1.5 times that of OH1 at 2090 nm [48].
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2.3.4. Effects of Halogen-Containing Anions on the Spatial Arrangement

The chemical structures of PMB-based crystals are shown in Figure 11a. In PMB-4TFS
crystal, there are double hydrogen bond donors at both ends of the PMB cations and double
hydrogen bond receptors at both ends of TFS anions [27]. Anions and cations can be
connected head-to-tail, to form a large number of hydrogen bond interactions, i.e., Ar-H
(cation) . . . F (anion)-SO3

− (anion) . . . H-O (cation), as shown in Figure 11b. Regarding
the TFO anion, the molecular order angle for PMB-TFO is 56◦, leading to a V-shaped
arrangement (Figure 11c) [51]. The SHG signal of PMB-TFO is comparable to that of DAST
under a wavelength of ≥1400 nm. As shown in Figure 11d, under the regulation of CBS
anions, the cations in the PFB-CBS crystal structure are also cross-arranged in the same
direction (X-shaped arrangement) and the SHG intensity ratio (η/ηDAST)0.5 is 0.82 [50].
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Figure 11. (a) Chemical structures of benzothiazolium-based NLO crystals; (b) PMB-4TFS double
head-to-tail hydrogen bond assembly [27]; (c) arrangement of PMB cations in PMB-TFO [51]; and
(d) arrangement of PFB-CBS crystals along the c-axis [50].
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Table 3. Comparison of the mentioned benzothiazolium-based THz crystals.

Crystal Name Space Group λmax(nm)
in Methanol βmax (Cation) SHG Intensity Ref.

PMB-T Monoclinic Cc 523 274 × 10−30 esu ~DAST at 1800 nm [46]
HMB-TMS Monoclinic Pn (m) 438 >162 × 10−30 esu ~DAST at 1250 nm [47]

HDB-T Monoclinic P21 566 - 1.5 × OH1 at 2090 nm [48]
OHB-TFO Monoclinic Cc 419 100 ± 7 × 10−30 esu 0.3 × DAST at 1500 nm [49]
PFB-CBS Monoclinic Cc 533 ~274 × 10−30 esu ~0.67 × DAST at 1800 nm [50]

PMB-4TFS Monoclinic Cc 523 274 × 10−30 esu - [27]
PMB-TFO Monoclinic Cc 523 274 × 10−30 esu ~DAST at ≥1400 nm [51]

2.4. Indolium-Based THz Crystals
2.4.1. Classical Cations

As shown in Figure 12 and Table 4, EHPSI-4NBS was designed with hydroxypiperi-
dine as a strong electron donor, and the calculated βmax amounts to 123 × 10−30 esu,
corresponding to a maximum absorption wavelength of 549 nm in methanol [52]. An-
other indolium-based NLO crystal, OHI-T (Figure 12), also contains hydroxyl as an elec-
tron donor, and the maximum absorption wavelength of the OHI cation in methanol is
437 nm, which is slightly larger than OH1 (λmax = 426 nm) and quinolinium-based OHQ
(λmax = 425 nm) (Figure 4) [53].
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2.4.2. Effect of Anions on the Spatial Arrangement

With the help of the NBS anion, the molecular order angle of EHPSI-4NBS is 2.5◦,
which represents the chromophore being perfectly arranged in parallel (Figure 13a). The
introduction of the T anion induces the OHI cations to arrange in the same direction and
effectively accumulate the microscopic first-order hyperpolarization via strong hydrogen
bonds (1.787 Å) (Figure 13b). Therefore, this nearly perfect cation arrangement leads to
a strong macroscopic second-order nonlinear response of OHI-T ~0.7 × OH1 at 2.09 µm.
OHI-T has a wide transmission range from 504 nm to 2100 nm with a large bandgap
(2.47 eV) [53].
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direction in OHI-T [53].

2.5. Benzoindolium-Based THz Crystals
2.5.1. Cations with Classical Electron Donor

P-BI is the only benzoindolium-based NLO crystal that has been proven with terahertz-
wave generation in the recent five years, and there is an obvious absorption peak around
2 THz [54]. Considering the very strong electron acceptor capability, one of the rational
strategies to reduce the absorption, as well as achieve a transparency–nonlinearity balance,
is to select oxygen-containing donor groups with moderate electron donating ability. Based
on this strategy, MBI with a classical CH3O- electron-donor (Figure 14 and Table 4) was
recently designed. MBI successfully exhibits a maximum absorption wavelength of 443 nm
in methanol, which is blue-shifted compared with DAST (λmax = 475 nm) but still exceeds
the OH1 benchmark crystal (λmax = 426 nm).
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Table 4. Comparison of the mentioned indolium-based, benzoindolium-based, and benzimidazolium-
based THz crystals.

Crystal Name Space Group λmax(nm)
in Methanol βmax (Cation) SHG Intensity Ref.

EHPSI-4NBS Monoclinic Pn 549 123 × 10−30 esu - [52]
OHI-T Monoclinic Pn (m) 437 - ~0.7 × OH1 at 2090 nm [53]

MBI Monoclinic Cc (m) 443 - ~0.8 × OH1 at 2090 nm [55]

HMI-TMS Monoclinic Pn 364 ~76 × 10−30 esu
0.06–0.12 × DAST at

1300–1800 nm [56]

2.5.2. Effect of the Iodide Anion on the Spatial Arrangement

A structural packing diagram of the MBI crystal with an I− anion along the c-axis is
shown in Figure 15a,b. In the same cation layers, the molecules are arranged in the same
direction, with almost in a “head-to-tail” style. The angle between the adjacent cation layers
is 72.47◦. Based on this spatial arrangement, the SHG intensity reaches 0.8 times OH1 under
2090 nm fundamental light. The short-wave cutoff edge of MBI is 639 nm. Compared with
the reference crystal DAST (680 nm), MBI can exhibit a wide transmission region and cover
a wide pump wavelength range [55].
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2.6. Benzimidazolium-Based THz Crystals
2.6.1. Benzimidazolium-Based Cation

As shown in Figure 16, the HMI cation has the same electron donor (HO-, CH3O-) as
quinolinium-based HMQ (Figure 4). The maximum absorption wavelength of HMI-based
compounds in methanol is only 364 nm, which is rather small compared with many other
ionic-type NLO compounds for THz use [56].
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2.6.2. Anion of HMI-TMS

In an HMI-TMS crystal, with the help of a typical TMS anion, the HMI cations are
almost perfectly aligned, maximizing the diagonal component of the second-order non-
linear optical susceptibility. Compared with other series of compounds mentioned above,



Crystals 2023, 13, 144 12 of 19

HMI-TMS exhibits a wider band gap (~2.95 eV) than OH1 (2.17 eV) [57] and still maintains
a large macroscopic optical nonlinearity (the square root of IHMI-TMS/IDAST is 0.25–0.35 at
the fundamental wavelengths from 1300 to 1800 nm). Notably, HMI-TMS results in lower
near-infrared refractive index and improved phase matching at around 800 nm [56].

2.7. Crystal Growth

It is of great significance to investigate the crystal growth of high-quality crystals with
suitable size and morphology, in order to obtain qualified optical devices. There are different
growth methods for organic crystals, such as the solution method, Bridgman–Stockbarger
method, and the capillary method [58]. Among them, the solution method is most widely
used. Starting with the crystal growth of DAST, extensive studies have been devoted to
improving the growth methods and conditions for high-quality crystals. In 1999, a DAST
crystal with a size of 5.0 × 4.0 × 0.5 mm3 was obtained through a slow cooling method,
using the “new technology of slope nucleation growth” [59]. In 2008, through the use of
constrained spontaneous nucleation and a newly optimized cooling curve, a good optical
quality of DAST crystals, with the largest size of 28 × 28 × 8 mm3, was obtained [60].
Additives have also been considered to improve the morphologies. A DAST crystal with a
size of 11 × 8 × 1.2 mm3 was grown by slow cooling under the control of oleic acid [61].
Recently, DAST crystals were obtained through the seed crystal immobilization method
(23× 22× 9 mm3 for high-concentration solutions and 25× 22× 2 mm3 for low-concentration
solutions) [62]. Based on crystal growth technology such as DAST, the crystal growth of the
mentioned THz crystals, which have been discovered in recent years, can be introduced.

2.7.1. Spontaneous Nucleation Method
Cooling Method

The slow cooling method is one of the most widely used crystal growth technologies
for organic crystals. Apart from DAST crystal, newly discovered pyridinium-based NLO
crystals, such as OHP-CBS, have also been grown using a slow cooling method in a mixed
solvent of methanol and acetonitrile (1:1 mol/mol) at a saturation temperature of 40 ◦C
(Figure 17a), and such a large growth surface of bulk OHP-CBS crystal is sufficient for
an optical device [63]. For quinolinium-based THz crystals, the slow cooling method has
also been proven as an effective method. With suitable growth conditions, the newly
developed OHQ-CBS, with a largest area of 45 mm2, can be obtained in solvent mixtures
with methanol and acetonitrile at 40 ◦C (Figure 17b). In addition, HMQ-4TFS [29] and
halogenated HM6FQ-T [43] can also be grown using the slow cooling method in methanol
(Figure 17c,d). HMQ-4TFS crystals were grown with a cooling range from 40 to 30 ◦C.
When the first HMQ-4TFS nucleation appeared, the solution remained at the nucleation
temperature for several days, and then dropped to room temperature.
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Benzothiazolium-based PMB-T crystal plate with a large area of 50 mm2 (Figure 18a)
was also obtained through the slow cooling method in methanol acetonitrile mixed solution
(1:1 mol/mol) with a saturation temperature of 40 ◦C and cooling rate of 0.1 ◦C/d. In
particular, as shown in Figure 18b, benzothiazolium-based OHB-TFO crystal grown by the
slow cooling method in ethanol presents a plate shape, which is suitable for most optical
experiments [49]. However, the morphology (triangular) of OHB-TFO still needs to be
improved, and the square shape of the single crystal is ideal for obtaining a larger aperture
size in optical experiments. Regarding indolium-based EHPSI-4NBS (Figure 18c), a large
crystal is not easy to produce, due to the influence of the rotation and vibration of the ethyl
group, and the size of the obtained EHPSI-4NBS is 5 × 2 × 0.38 mm3 [52].
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Slow Evaporation Method

The slow evaporation method is a classical technique for obtaining crystals; however,
a suitable evaporation condition is not very easy to achieve for large-sized crystals with
high quality, and not many qualified crystals have been obtained by this method. Plate-like
benzothiazolium-based PMB-4TFS was grown though slow evaporation in a methanol and
acetonitrile mixed solution (1:1 mol/mol), and the crystal area of PMB-4TFS amounted
to 10 mm2 (Figure 19a) [27]. To choose a suitable solvent to grow benzothiazolium-based
HDB-T single crystals with large sizes, the solubility curves of HDB-T in a single methanol
and methanol acetonitrile mixed solution (1:1 mol/mol) were measured [48]. HDB-T has a
higher solubility in a mixed solvent, and the crystal morphology is suitable, with the size of
HDB-T reaching 3× 2× 0.8 mm3 (Figure 19b). Another indolium-based OHI-T (Figure 19c)
crystal can be grown by slow evaporation at room temperature and the crystal size can
reach 7 × 4 × 1 mm3, with a rocking curve of 144 arcsec, indicating high quality [53].
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2.7.2. Seed Method

To grow large-sized crystals, the seed method is commonly used, which is represented
by DAST. In this method, not only the solubilities of compounds, but also the quality
of the seeds is very important. Benzothiazolium-based HMB-TMS crystals grown using
the cooling method at 50 ◦C can be directly used in optical experiments without optical
polishing, through simple cleaving (Figure 20a). The suitable growth range of MBI is
50–45 ◦C in methanol solution, and MBI crystal was grown using the seed method with
a largest size of 10 × 8 × 6 mm3 (Figure 20b). The rocking curve of a 0.8 mm-thick MBI
(b-plate) crystal was measured, and the FWHM was 44 arcsec, indicating a good optical
quality and sufficient for optical measurement.
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2.8. THz Wave Generation

THz radiation generation technology via NLO crystals mainly includes optical rectifi-
cation (OR) and difference frequency generation (DFG) [64,65]. In recent years, the newly
developed crystals have exhibited different absorption characteristics in the working region
through rational design of substitution.

2.8.1. Optical Rectification (OR)

Figure 21a shows a THz electric field produced by a 0.31 mm thick OHP-TFS crystal,
with a THz output range of 1.5–15 THz (Figure 21b). With the help of strong hydrogen
bonds, the absorption coefficient of OHP-TFS crystal shows a lower absorption peak than
DAST in the 0.1–4 THz region [28]. Moreover, DHP-TFS with two traditional electron donor
HO- groups shows small overall absorption peaks, and a 0.15 mm-thick DHP-TFS crystal
produces 20 times the THz amplitude of a 1.0 mm-thick ZnTe crystal (Figure 21c) and a
wide THz output range, with the upper cut-off edge being up to 16 THz (Figure 21d) [33].
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0.15 mm-thick DHP-TFS at a 1560 nm wavelength [33].

The peak-to-peak THz amplitudes of HM7ClQ-CBS (0.16 mm) and HM7ClQ-T (0.07 mm)
are, respectively, 22 and 15 times ZnTe (1.0 mm), and the upper cut-off frequency is 8 THz
(Figure 22) [42]. As the crystal structures of HM7ClQ-CBS and HM7ClQ-T are isomorphic,
their THz absorption peak positions and THz spectral characteristics are similar. Unlike
DAST crystal, HM7ClQ-CBS and HM7ClQ-T have no strong absorption near 1 THz for
the formation of more hydrogen bonds. Similarly, OHQ-CBS also shows a rather weak
absorption at 1.1 and 1.6 THz [44].
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The 0.33 mm thick benzothiazolium-based PMB-T terahertz amplitude can reach
430 KVcm−1 at a 1300 nm wavelength, higher than a 0.26 mm thick HMB-TMS at the pump
pulse energy of 240 µJ (Figure 23a,b). PMB-4TFS (Figure 11a) crystals exhibit a similar upper
cut-off frequency to PMB-T, and the introduction of a strong electronegative TFS anion leads
to a strongest terahertz output near 1 THz, which is different from the strong absorption
near 1 THz of DAST. Moreover, indolium-based EHPSI-4NBS achieved a THz output in the
range of 0.1–3.8 THz through optical rectification; and benzoindolium-based crystals P-BI
initially achieved a THz output in the range of 0.1–6 THz, of which the maximum output
was 2–3 THz (Figure 23c) [54].
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2.8.2. Difference Frequency Generation (DFG)

Difference frequency generation is an effective way to realize tunable terahertz ra-
diation. Through this method, DAST has achieved an ultra-wide tunable THz output,
ranging from 0.1 to 20 THz, with a highest output energy of 870.4 nJ/pulse [62]. In addition,
using DFG, the recently developed benzothiazolium-based HDB-T crystal has successfully
achieved a tunable THz radiation from 0.1 to 20 THz, and the highest output signal can
reach 27 mV at 12.3 THz (Figure 24a), showing superiority in 10 to 14 THz [48]. The
OHI-T has also realized an ultra-wide tunable THz output of 0.1–20 THz, as displayed in
Figure 24b. In the range of 2.5–15 THz, OHI-T has a better output performance than the
OH1 crystal (1.32 mm thickness), and the maximum output energy can reach 25.3 nJ/pulse
at 11 THz [53]. A newly discovered benzoindolium-based MBI crystal with classical CH3O-
electron donor, initially achieved an ultra-wide ranged THz output of 2–18 THz under
1.37–1.50 µm dual wavelength laser pumping [55]. Compared with OH1, the THz output of
MBI in the range of 11–18 THz may be more advantageous and the pulse energy achieved a
446 nJ/pulse, with the highest conversion efficiency of 4.96 × 10−5 at 12.3 THz (Figure 24c).
It should be mentioned that better THz output performance can be expected by improving
the quality of these newly discovered crystals and optimizing the pump wavelength and
other experimental parameters.
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3. Conclusions

In this work, the recent development of cations and anions in different series of ionic
organic NLO crystals was briefly summarized. By the control of the secondary bonds
through rational substitution design, various excellent organic nonlinear optical crystals
for efficient terahertz-wave radiation have been discovered. The combination of cation and
anion substitutions with different electronegativity can effectively contribute to suppressing
the molecular vibration in the crystal state, resulting in an improved output spectrum.
However, the practical use of these novel materials has been limited so far, and more works
on their precise physical properties, such as linear and nonlinear coefficients, are urgently
needed, to estimate their application prospects. In addition, it is still a great challenge to
find suitable crystal growth conditions for large-sized crystals with a high quality, which
is a prerequisite for commercialization. Therefore, more efforts should be devoted to the
exploration of novel NLO crystal composition, structure–property relationships, as well as
crystal growth techniques, to promote the motif design efficiency and practical application
of organic NLO crystals for high-power THz radiation.
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