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Abstract: The replacement of the silica glass crucible by oxygen-free crucible materials in silicon
Czochralski (Cz) growth technology could be a key factor to obtaining Cz silicon, with extremely
low oxygen contamination < 1 × 1017 at/cm3 required for power electronic applications. So far,
isostatic pressed graphite or nitrogen-bonded silicon nitride (NSN) crucible material, in combination
with a chemical vapor deposited silicon nitride (CVD-Si3N4) surface coating, could be identified as
promising materials by first short-term experiments. However, for the evaluation of their potential for
industrial scale Cz growth application, the knowledge about the long-term behavior of these crucible
setups is mandatory. For that purpose, the different materials were brought in contact with silicon
melt up to 60 h to investigate the infiltration and dissolution behavior. The chosen graphite, as well as
the pore-sealed NSN material, revealed a subordinated infiltration-depth of ≤1 mm and dissolution
of ≤275 µm by the silicon melt, so they basically fulfilled the general safety requirements for Cz
application. Further, the highly pure and dense CVD Si3N4 crucible coating showed no measurable
infiltration as well as minor dissolution of ≤50 µm and may further acts as a nucleation site for
nitrogen-based precipitates. Consequently, these novel crucible systems have a high potential to
withstand the stresses during industrial Cz growth considering that more research on the process
side relating to the particle transport in the silicon melt is needed.

Keywords: Czochralski growth; silicon; crucible; oxygen concentration

1. Introduction

For some types of microelectronic devices, like insulated-gate bipolar transistors
(IGBT), silicon wafers with significantly low oxygen contamination are indispensable [1,2].
Therefore, silicon crystals used for this application are typically grown by the Floating zone
(Fz) technique, revealing an oxygen content far below 1 × 1016 at/cm3 [3,4]. However, from
an economical point of view, Czochralski (Cz) material would be preferred by electronic
device manufacturers due to its lower process cost and the availability of larger crystal
diameter up to 300 mm. The major drawback of the Cz technique is basically the limita-
tion to silicon material with a significant increased oxygen content, typically higher than
1 × 1017 at/cm3. These examples of intense oxygen incorporation, even by application of
an additional magnetic field (MCz), are mainly caused by melting up the silicon feedstock
in the state of the art silica glass (SiO2) crucibles [4,5]. Hence, one promising approach
would be the replacement of SiO2 by oxygen-free crucible materials.

Only a few approaches to reduce the oxygen concentration during the Cz growth
process by optimization of the crucible concept and materials were reported in literature
during the 1980s. By application of a dense CVD-Si3N4 coating on a SiO2 glass crucible, Doi
et al. could demonstrate a reduction of oxygen concentration to 5 × 1016 atoms/cm3 [6].
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Oxygen-free crucible systems were achieved by Watanabe et al. [7] and Matsuo et al. [8].
By graphite and Si3N4-based crucibles in combination with a CVD-Si3N4 surface coat-
ing, the oxygen concentration in monocrystalline silicon ingots could be reduced below
2 × 1016 atoms/cm3. Nevertheless, due to the Si3N4 coating dissolution by the silicon melt,
it becomes saturated by nitrogen, which cannot be degassed from the melt. Consequently,
nitrogen-related precipitates like Si3N4 needles were formed by exceeding the nitrogen
solubility limit of the melt [9]. By transportation of these particles to the solid–liquid
interface and incorporation into the growing silicon ingot, an increase in dislocation density
or even multi-crystalline growth occurred.

More recently, several new concepts for graphite [10–12] and Si3N4-based [13–18]
crucibles for the growth of multi-crystalline silicon ingots were presented, which underlines
the potential to use these materials in crucible setups during Si crystal growth.

In our previous work [19], we reconsidered this approach by evaluating several
isostatic pressed graphite materials and nitride-bonded silicon nitride (NSN) in combination
with a chemical vapor-deposited (CVD) Si3N4 inner surface coating, according to their
general applicability as crucible materials for Cz silicon growth. The crucible materials
were characterized according to their performance and interaction with liquid silicon in lab
scale melting experiments with moderate melt holding times up to 4 h.

However, considering the fact that, in an industrial Cz process the crucible is typically
in contact with the silicon melt at much longer timescales ranging from ~30 h to >100 h, the
knowledge about the long-term behavior and stability of the crucible setups is mandatory.
For that purpose, so called dipping experiments as well as directional solidification (DS)
runs were carried out with extended melt holding time up to 60 h. By detailed investigation
of the dissolution behavior as well as the infiltration depth in combination with the resulting
material morphology after the processes, the capability of the novel crucible setups to safely
contain the silicon melt over long times scales was evaluated. Further, the minimum
required thickness of the CVD-Si3N4 coating should be discussed. Additionally, the DS
crystallization experiments allowed the evaluation of the crucible behavior in contact with
larger Si melt volumes over longer time scales and the Si ingot quality with respect to the
formation of Si3N4 based precipitates. In conclusion, the experimental results obtained
in this work will help to further evaluate the use of these novel crucible setups during
industrial Cz silicon growth processes and to identify which developments will still be
necessary during perspective research.

2. Materials and Methods

For the dipping experiments, bare shaped NSN and graphite (blank and coated with
CVD Si3N4 coated) samples (65 × 40 × 10 mm3) were brought in direct contact with liquid
silicon at defined process conditions for various time scales.

The NSN samples were achieved by the slip casting of a water-based slurry containing
silicon powder (provided by Wacker Chemie AG, Munich, Germany) and Si3N4 powder
(provided by Alzchem Trostberg GmbH, Trostberg, Germany), followed by a heat treatment
in nitrogen atmosphere. This method allows the formation of a Si3N4 material with
sufficient mechanical strength at relatively low temperatures about 1450 ◦C, but with an
increased porosity up to 60%. For that reason, an additional pore sealing coating based
on a polysilazane slurry [20,21] was developed and applied on the inner surface of NSN
crucibles, finalized by a second nitridation step. For graphite samples, isostatic pressed
material with low porosity and high mechanical strength (SGL Carbon GmbH, Wiesbaden,
Germany) was used; hence, it has already shown excellent stability against the silicon melt
in our previous tests [19].

The setup of the dipping experiments is described in Figure 1. In a first step, high
purity silicon feedstock was melted in uncoated graphite crucibles (Ø 97/87 × 122 mm).
The ratio of weighted silicon portion to the dipped surface of the NSN and graphite samples
was chosen in that way, that it corresponds to the ratio of silicon volume to crucible contact



Crystals 2023, 13, 14 3 of 13

area in an industrial scale 32-inch Cz crucible setup. For CVD Si3N4-coated graphite
samples, the ratio was doubled due to the only one-side coating.
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Figure 1. Schematic drawing of the experimental setup for investigating the dissolution of crucible
and coating materials in liquid silicon. The dashed green line marks the preparation position of the
vertical cross-section.

Furthermore, the chosen experimental setup excludes any kind of nitrogen contam-
ination of the silicon melt, besides from the dipped materials itself. After a short melt
homogenization period, the different samples were dipped into the silicon melt for 4 h, 8 h
16 h, 25 h and 40 h. After the extraction from the melt, the liquid silicon in the crucible was
crystallized in a directional solidification process. The dipped samples were treated with a
solution of HF, HNO3 and CH3COOH (volume ratio 6:81:13) to remove solidified silicon
residues. After the etching and cleaning procedure, the dipped samples were embedded in
epoxy resin, and vertical cross-sections were prepared. For the investigation of the dissolu-
tion of uncoated graphite vertical cross-sections were additionally cut from the crucibles
after the dipping experiment. The resulting decrease of material/coating thickness and the
infiltration depth of liquid silicon was determined by optical microscopy.

Besides the systematic investigation of the interaction with liquid silicon at small
sample scale, the novel crucible setups were also tested in laboratory scaled DS silicon
growth experiments. Therefore, crucibles (Ø 121.5/106.5 × 110 mm) with a spherical
bottom design in various configurations were prepared to evaluate their potential for Cz
application (see Figure 2).
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NSN-based crucibles were produced analogously to the NSN dipping samples. Addi-
tionally, the inner surface of the crucibles was covered either with a CVD Si3N4 coating,
a pore sealing coating Si3N4/Si/polysilazane (70/18/12 wt.%) or a combination of both.
Further, isostatic pressed graphite crucibles, which have already shown good resistance
against melt infiltration in our previous investigations [19], were used in uncoated and
CVD-coated variants.

The averaged CVD Si3N4 coating thickness on graphite crucibles was determined to
be 150 µm at the crucible wall to >400 µm at the bottom, while for NSN crucibles, it was
170 µm at the walls to >700 µm at the bottom. The increasing coating thickness towards the
crucible bottom is caused by the high reactive precursor gases and the geometric limitation
of gas flux conditions during CVD application. The CVD coating reveals a good wear
resistance, which allows the handling of the crucible without delamination or chipping of
the coating.

The crucibles were heated up in vacuum conditions, and the silicon was melted within
a period of 6 h. Afterwards, the liquid silicon was contained up to 60 h at 20 mbar in the
different crucible setups, followed by a 7 h crystallization step (growth rate = 1–1.5 cm/h).
After silicon solidification, 2 mm thick vertical slices were cut out of the center of the
crucible as well as from the Si crystal. The crucible parts were etched analogously to the
dipping samples to remove attached silicon and to expose the remaining CVD coating. The
characterization of the structure and morphology of the CVD coating was carried out by
optical and scanning electron microscopy (SEM).

Furthermore, the silicon samples were investigated by infrared (IR) transmission
microscopy to observe the particles and precipitates formed in the silicon crystal.

3. Results and Discussion
3.1. Dipping Experiments

For investigation of the infiltration behavior of liquid silicon in the coating and crucible
materials at long time scale, dipping experiments with a variation of contact time to the
silicon melt (4 h up to 40 h) were performed. Among others, this is important, hence the
Si infiltration in C-based materials results in a silicon carbide (SiC) formation inducing
a volume increase, which can lead to an intense crack formation in graphite materials
with minor mechanical strength [19,22]. The resulting averaged infiltration depth, which
was measured at vertical cross-sections through the various kinds of dipped samples, is
summarized in Figure 3.
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Figure 3. Averaged infiltration depth of liquid silicon after dipping in silicon melt between 4 h and
40 h.

First, the relatively dense graphite material (~11% porosity) shows only a minor
infiltration depth of about 600 µm, even after 40 h in contact with liquid silicon. In
combination with a sufficient mechanical strength of the chosen graphite material, this
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prohibits any crack formation according to the occurring SiC formation within the infiltrated
zone. The NSN material shows a significant higher affinity to silicon infiltration due to its
high porosity of ~60 % combined with a good wettability by liquid silicon. In consequence,
a 10 mm thick NSN sample was completely infiltrated by silicon melt, already after a
dipping of 8 h. Therefore, the NSN material cannot be used as Cz crucible material in
this untreated condition. However, if a polysilazane-based sealing coating is applied, a
significant reduction of the infiltration depth after 40 h from >10 mm to about 1 mm could
be achieved, which is close to the result of the graphite sample. Finally, in case of the CVD
Si3N4 coating on graphite, no infiltration in the range of the detection limit (<10 µm) could
be observed at all, even at long time scale.

Beside the infiltration, also the dissolution behavior of the crucible (NSN, graphite)
and coating (CVD Si3N4) materials was examined by the dipping experiments. Residues
of solidified silicon were removed from the dipped sample surface by an etching process
and the averaged dissolved layer thickness was determined by vertical cross-sections. The
results of the averaged dissolved layer thickness in dependence on the dipping time are
shown in Figure 4.
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Figure 4. Measurement of dissolved layer thickness of NSN with and without polysilazane sealing as
well as CVD Si3N4.

For unsealed NSN samples, an averaged dissolved layer thickness of about 25 µm can
be observed after a 4 h dipping, which nearly corresponds to the N solubility limit in the
given silicon melt volume. With an increase of dipping time above 15 h also the averaged
dissolved layer thickness increases. After 40 h nearly 200 µm of the NSN material was
dissolved in the silicon melt. NSN samples with an additional pore sealing (polysilazane +
Si3N4 + Si) reveal a higher dissolved layer thickness than the uncoated NSN material. This
indicates that the sealing coating has a lower resistance to dissolution in liquid silicon than
the NSN material itself. Nevertheless, the application of a pore sealing coating is basically
indispensable to avoid complete crucible infiltration in case of CVD coating failure in terms
of cracks or delamination.

In contrast to the NSN material, the CVD Si3N4 coating exhibits a significant weaker
material dissolution (see Figure 5), which predestines the CVD coating as ideal crucible
functional surface coating. In case of 8 h of melt contact, the averaged dissolved layer
thickness is in the range of the detection limit of 10 µm and increases with increasing
dipping time to 25 µm for 25 h and 50 µm for 40 h. This decelerated dissolution behavior
compared to NSN can be connected to the high density and exceptionally low open porosity
of the CVD Si3N4, of which properties have already been proposed to reduce dissolution in
silicon melt [23]. Also at higher Ar pressures, in this case at 500 mbar (see Figure 4), the
dissolution process of CVD Si3N4 is rather slow. This could be beneficial if the Ar pressure
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during the Cz process will be set to higher values (combined with the addition of nitrogen
in the atmosphere), in order to increase the chemical stability of the Si3N4 [17].
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Figure 5. Vertical cross-section of isostatic pressed graphite samples, uncoated as well as with CVD
Si3N4 coating, and sealed NSN dipped in liquid silicon for 40 h. The orange dotted line marks the
silicon melt level. The yellow dashed line represents the original sample surface and indicates the
dissolution of material during melt contact. The green dot dashed line marks the silicon infiltration
zone.

The dissolution of the uncoated isostatic graphite material during the dipping pro-
cedure was significantly lower than for CVD Si3N4 coated graphite or NSN samples. In
these cases, no dissolution, except directly below the Si melt level (see Figure 5), could be
observed, meaning the averaged dissolved layer thickness must be below the detection
limit of about 10 µm. This could be mainly attributed to the formation of a SiC layer [22,24],
which leads to the passivation of the surface against further dissolution [25].

Besides the global material dissolution, which happens along the dipped sample
surface, a more pronounced dissolution was observed at the region where silicon melt,
graphite/Si3N4 and the argon atmosphere coincide. This could be clearly seen at ver-
tical cross-sections, which are exemplarily shown in Figure 5 for uncoated and CVD
Si3N4-coated graphite as well as uncoated, sealed NSN samples after 40 h of melt contact.

The isostatic pressed graphite material shows the smallest maximum dissolved layer
thickness in the triple area of about 100 µm, followed by the CVD Si3N4 coating
(150 µm) and sealed NSN (600 µm). As expected, this trend is in good correlation to
the measurements of the averaged dissolved layer thickness over the whole dipped sample
surface (see Figure 4).

This observation is mainly important for the prediction of the necessary CVD coating
thickness. To ensure a closed CVD coating layer over the whole crucible surface for the
entire silicon crystal growth process, the coating thickness must exceed the maximum
dissolved layer thickness at the melt surface.

The phenomena of enhanced dissolution of different ceramic crucible and coating
materials directly below the melt level are basically described in literature for iron con-
taining melt systems [26] and also for quartz glass crucibles in contact with liquid silicon
during a standard Cz growth process [27]. This effect is mainly caused by the Marangoni
convection. By wetting the coating or crucible material surface by the silicon melt, the
dissolution process is initiated, and a local change of melt composition and surface tension
occurs. These gradients of concentration and surface tension are the driving forces for the
Marangoni convection, and an enhanced mass flow advances the further dissolution of the
crucible or coating material [26,28]. Furthermore, the depth of the resulting groove and,
consequently, the dissolution rate of the crucible and coating materials seem also to depend
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on the material properties. The dissolution rate Vdissolution [mm/h] by the Marangoni
enhanced dissolution can be described with the following Equation (1) [26].

Vdissolution = 360 · ρmelt
ρcrucible

· β · (Cs − C0) (1)

where ρmelt is the density of the silicon melt, ρcrucible the density of graphite, NSN or
CVD Si3N4, β the mass transfer constant, Cs the saturation concentration of the dissolved
phase (C or N) and C0 the initial concentration of the dissolved phase in the melt. This
also explains basically the smallest maximum dissolved layer thickness in the triple area
for CVD Si3N4 compared to NSN. The CVD coating exhibits a significant higher density
than the NSN material and, consequently, Vdissolution is reduced for the CVD coating. For
graphite materials it must be considered that according to the use of a graphite crucible
for the dipping experiments C0 of C may significantly higher than it is the case for N. This
results in a decrease of the dissolution rate for the graphite samples.

Summarized, graphite and NSN with a pore sealing coating as well as CVD Si3N4
showed material loss by dissolution and silicon melt infiltration only in a µm range during
the dipping experiments. Due to the fact a Cz crucible typically exhibits a wall thickness in
a range of 10 to 35 mm, the observed interaction of the crucible and coating materials with
the liquid silicon is no crucial drawback for Cz application.

3.2. Long Term Crystallization Experiments in G0 Scale
3.2.1. Performance and Durability of the Oxygen-Free Crucible Systems

In Figure 6, the top views on the crucible systems containing the resulting silicon
crystal after the experiment are shown. For all crucible systems no melt leakage could be
observed, and regular crystallization of silicon melt could be achieved. Further, all ingots
stick to the crucible/coating system as expected due to the wettability of the graphite,
NSN and CVD Si3N4 materials towards the silicon melt. As expected, Fourier transformed
infrared spectroscopy (FTIR) confirmed that no oxygen was incorporated into silicon ingots
during the DS process.
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experiments with melt holding times of 40 h and 60 h. The red marks indicate crack formation in the
crucible and the crystal.

NSN Crucibles

In case of NSN material, a significant crack formation in the crucibles and in the silicon
crystals occurred, independent of the presence of a CVD Si3N4 coating. Due to the absence
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of melt leakage, and the fact that no strong Si infiltration was observed in cross- sections
of the NSN crucibles (compare Figure 7), it can be assumed that the cracking was caused
by thermal stresses occurring during the cooling after silicon crystallization. The stresses
are induced by the difference in thermal expansion of solid silicon (CTE~2.5 × 10−6 K−1)
and the CVD coating/NSN crucible (CTE~3.3 × 10−6 K−1). So basically, the mechanical
strength of the NSN is not sufficient to absorb the thermal stresses resulting from the CTE
mismatch. Although this may be in general no ideal basic condition for crucible application,
it has to be considered that, in Cz growth, typically only a small portion of the residual
melt solidifies in the crucible after the pulling of the Cz crystal is finished and therefore the
CTE mismatch should not be such a severe issue.
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Figure 7. Vertical cross section of CVD coated NSN crucible bottom part after 40 h melt contact and
silicon crystallization. In the marked areas silicon melt infiltration locally occurred.

By preparation of vertical cross-sections through the center of the crucible/crystal
compound, the silicon infiltration in the different NSN crucible setups were investigated.
For unsealed NSN crucible with CVD coating, no infiltration in coating or crucible could
be detected. This underlines the ability of the CVD coating to inhibit direct melt contact
with the crucible also on long time scales. Furthermore, no significant infiltration of liquid
silicon in the two sealed NSN crucibles (with and even without CVD coating) could be
observed below the silicon melt surface level (see Figure 7). The resulting infiltration depth
on this site was even lower than it was previously observed for the bare shaped samples
in the dipping experiments. This indicates that the pore sealing can be an effective tool to
protect the NSN material from intense melt infiltration.

Above the melt level, a locally increased silicon infiltration depth was found at the top
part of the crucibles in both tested NSN crucible configurations. This could be correlated to
some micro-defects (cracks or voids) of the CVD coating and/or the sealing layer, which
should be avoided by further optimization of the coating procedure.

Graphite Crucibles

As shown in Figure 6, the visual inspection after the crystallization process of the
graphite-based crucibles, with and without CVD coating, shows no obvious crack formation
or deformation. Despite, the graphite material has a higher CTE (~4.1 × 10−6 K−1) than
the NSN/CVD materials, and in consequence, the CTE mismatch between crucible and the
solidified Si is larger in this case; the mechanical strength of the used graphite material is
sufficient to withstand the thermal stresses.

Silicon melt infiltration was not observed in the CVD-coated variant, showing again
that the CVD coating acts as an effective barrier. In the uncoated case, only a small silicon
melt infiltration of some hundreds of µm appears, as it was already observed in the dipping
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experiments. However, the additional mechanical stresses, which occurs due to the SiC
formation within the Si infiltrated zone, are obviously not high enough to induce crack
formation in the graphite material. So, the chosen graphite material is suitable for the
application as Cz crucible material, even in case of coating dissolution, delamination or
failure. But it has to be noted that not all isostatic presses graphite types reveal high enough
mechanical strength, as it was already presented in [19].

CVD Coating

To evaluate the dissolution of CVD Si3N4 coating during the crystallization exper-
iments, a vertical cross-section of one coated graphite crucible (60 h melt contact) was
prepared from various positions along the crucible wall and bottom. After removing the
attached silicon by an etching process, the thickness of the still present CVD coating was
measured (Figure 8).
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Figure 8. CVD coating thickness at different positions of a graphite crucible after 60 h melt contact
and silicon crystallization. Because the measurement of coating thickness was only achievable by
destructive methods, the CVD thickness before melt contact was determined at a crucible, which was
coated with identical process condition as the crucible, used for silicon melting experiment.

Above the silicon melt surface level, a coating thickness of about 135 ± 10 µm
is measured. Analogously to the dipping experiments, the lowest coating thickness
(90 µm ± 30 µm) occurred directly below the contact point of the coating with the Si melt
surface. Moving along the crucible wall downwards, the CVD thickness increases again up
to 120 µm ± 10 µm, before it further increases in the spherical bottom region to >400 µm.
Since the exact local CVD coating thickness before the melting experiment was unknown,
values from destructive measurements of previously coated graphite crucibles were used
for a rough estimation of the dissolved layer thickness. The results show that, in the region
without Si melt contact, almost no dissolution exists, while in the region of the melt surface
level the strongest dissolution of about 50 µm has occurred. In the lower wall region,
the coating thickness is only reduced by 30–40 µm, which is on a similar level as in the
dipping experiments (40–50 µm for 40 h, compare Figure 4). For the bottom region no
reliable investigation of the CVD dissolution process could be achieved. The geometric
limitation of flux, in combination with the high reactivity of the precursor gases, results in
an increased variation of resulting CVD coating thickness at the bottom for each coating
process.
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Based on these results, a CVD Si3N4 coating layer thickness of at least 100 µm should
be applied for application in Cz growth to be sure that the coating is not completely
dissolved.

3.2.2. Impact of Crucible/Coating Systems on Precipitate Formation in Grown Crystals

Within the frame of previous done short-term experiments (4 h melt holding time) [19],
the application of a CVD Si3N4 coating on the crucible has led to a significant reduction of
Si3N4 precipitates in the crystal volume in comparison to an experiment without the use of
the CVD coating. This gives the hint that the coating could act as nucleation site for the
Si3N4 precipitates formed in the silicon melt supersaturated with nitrogen.

The same phenomenon could be also found in the new long-term experiments within
uncoated and coated graphite crucibles. The observation in crystals grown within the
NSN-crucibles was not possible due to the extended crack formation.

Corresponding investigations by IR transmission microscopy (Figure 9) reveals that, in
the case of the non-coated graphite crucible (here, the nitrogen comes from Si3N4 powder,
which was intentionally added to the Si feedstock), the resulting crystal shows a significant
formation of Si3N4 precipitates in the central crystal volume and the top region.
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Figure 9. IR transmission microscopy images of vertical center slices from silicon crystals grown
in graphite crucible with different nitrogen sources (CVD coating and Si3N4 powder addition to
feedstock).

In contrast, for both crystals grown in graphite crucibles with CVD coating (40 h
and 60 h of melt contact), Si3N4 needle-like structures were mostly detected directly at
the interface between CVD Si3N4 coating and silicon crystal. In the crystal volume no
precipitates could be found, despite FTIR measurements also here show N contents closely
above the solubility limit and therefore Si3N4 precipitate formation could be expected. In
this case, the heterogeneous nucleation on the CVD coating surface seems to be favored
according to a reduced nucleation energy compared to the homogeneous nucleation of
Si3N4 precipitates in the silicon melt. Consequently, the CVD Si3N4 coating could act as a
nucleation site for nitrogen-related precipitates. A similar effect of preferred precipitate
formation at a Si3N4 based crucible coating used for DS growth of mc-Si ingots was already
observed by Trempa et al. [29].

Additionally, a significant change in the resulting CVD Si3N4 coating morphology
after long time scale experiment (60 h) could be observed (Figure 10).

Besides the change in surface morphology, the Si3N4 crystal size is also increased.
This may indicate that, on the one hand, a recrystallization process of amorphous coating
elements and/or a transition of Si3N4 phase occurred during the silicon melt contact. On
the other hand, also a deposition of parasitic precipitates on the CVD coating surface
could take place due to the dissolution of Si3N4 coating in liquid silicon, followed by an
oversaturation of nitrogen in the melt [17].
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Figure 10. Morphology of CVD Si3N4 surface before and after 60 h melt contact.

Nevertheless, even if all the experimental data support the thesis of the beneficial
impact of the CVD Si3N4 crucible coating on precipitate formation in lab scale directional
solidification processes, the proof of concept must also be further demonstrated for real Cz
growth process conditions.

4. Conclusions

The basic evaluation of the long-term stability of oxygen-free crucible systems for
the application in industrial Cz growth has shown that graphite and NSN-based crucible
materials, in combination with a dense CVD Si3N4 surface coating, have promising ap-
plication potential. According to dipping experiments up to 40 h the CVD coating shows
no infiltration and only weak dissolution by the silicon melt, which makes it attractive as
a protection coating for the crucible base materials. But also, if the CVD coating would
locally fail during process, the tested crucible base materials itself, such as isostatic pressed
graphite with low porosity and appropriate mechanical strength as well as pore sealed
NSN, have shown an excellent stability at this time scale, which is an important safety issue
for industrial application.

These results are confirmed by laboratory scaled DS crystallization experiments with
extended melt holding period up to 60 h. Also in this case, both crucible systems show a
high robustness against the silicon melt.

With respect to the nitrogen contamination of the silicon melt, which is also a critical
issue in Cz growth related to Si3N4 precipitate formation and structure loss events, it could
be found that the Si melt is always saturated with nitrogen by the partly dissolved CVD
coating. However, all ingots grown in CVD-coated crucibles reveal no precipitates in the
ingot volume. This indicates that the CVD Si3N4 coating acts as nucleation site, which
could enable the pulling of single crystalline Si ingots out of these crucible systems.
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