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Abstract: Mechanical stabilities and properties are critical in real applications of materials, as well as
material and machine design. With the success of graphene, graphene-like materials arose tremendous
interest in the past few years. Different from bulk materials, two-dimensional (2D) materials have
prominent non-linear elastic behaviors. Here, we briefly review the mechanical stabilities and
properties of graphene-like 2D III-nitrides, including boron nitride (BN), aluminum nitride (AlN),
gallium nitride (GaN), indium nitride (InN), and thallium nitride (TlN). These nitrides are excellent
wide band gap semiconductors very suitable for modern electronic and optoelectronic applications.
As a result, they play a central role in solid-state light-emitting devices. Their Young’s modulus,
Poisson’s ratio, ultimate tensile strength, and elastic limits under various strains are extensively
studied, as well as their high-order elastic constants and non-linear behaviors. These studies provide
a guide for their practical applications and designs.

Keywords: graphene-like 2D III-nitrides; mechanical properties; five-order non-linear elasticity;
first-principles calculations; FONE method

1. Introduction

The research on 2D nanomaterials with potential next generation electronic device
application has seen tremendous progress in the past few years [1–3]. Examples of such ma-
terials in the nitrides family include graphene-like 2D III-nitrides, including boron nitride
(BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), and thallium
nitride (TlN). We denote them as g-BN, g-AlN, g-GaN, g-InN, and g-TlN throughout this
mini review. These nitrides are excellent wide band gap semiconductors very suitable for
modern electronic and optoelectronic applications. As a result, they play a central role in
the light industry.

There are extensive studies on these materials. For a superlattice sample consisting of
an arrangement of six layers of GaN(16 nm)/AlN(13 nm) deposited on top of a 60 nm thick
AlN layer grown on a (1–100) SiC substrate, nanobeam electron diffraction analysis results
indicate that the strain in the y-direction is equal to zero. In the x-direction, the first 60 nm
thick AlN layer appears in a strain state of ~1% compared to the SiC substrate, while the
GaN layers are also in tensile strain, but with a much higher strain value of 4.3% [4]. Park et.
al reported the formation of intertwined double-spiral few-layer hexagonal BN (h-BN) with
the most stable AA′ stacking configuration that is driven by screw dislocations located at
the antiphase boundaries of monolayer domains. Moreover, they found that the occurrence
of shear strains at the boundaries of merged spiral islands is dependent on the propagation
directions of encountering screw dislocations and presented the strained features by density
functional theory calculations and atomic image simulations [5]. One previous research
indicated that 2D h-BN has high piezoelectric catalytic ability and stability since h-BN can
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directly convert mechanical energy into chemical energy, which displays the huge potential
of two-dimensional piezoelectric materials in relieving energy pressure [6]. Some first-
principles calculation results [7] for the semi-hydrogenated-semi-oxidized two-dimensional
(111)-oriented bilayer BN nanosheets show that for a few layers, the B (N) atoms of BN
nanosheets are more easily bound to H (O), which provides new ideas for achieving high
performance BN-based electromagnetic nanodevices. First-principles calculations [8] for
the few-layer gallium nitride (GaN) nanosheet presented that with the thickness increases,
few-layer GaN nanosheets have suffered from the size-induced transition from indirect
semiconductor to metallic as well as from the graphitic planar honeycomb to the wurtzite
buckled 2D form, which indicates that there are two competing mechanisms that govern
the polarity compensation with the sheet’s net dipole served as an important parameter for
determining the sheet’s stable formation. Some first-principles density functional theory
calculations for the mechanical and electronic properties of aluminum nitride (AlN) and
titanium nitride (TiN) sheets indicate that TiN and AlN layers depending on the atomic
configurations and the strain direction can yield remarkable elastic modulus in the range
of 137.64 GPa nm for Young’s module and high ultimate tensile strength from 6.29 N/m
to around 18.34 N/m [9]. By using ab initio calculations, BN, BP, AlN, and AlP are found
to exhibit hyperelastic softening behavior and high inter-atomic rigidity that is highly
desirable in the automotive and aeronautical industries [10]. By using MD simulations,
Le proposed a formula [11] that can capture the variation of KIc/(σcr1/2) (from 1.87 to
2.45) by considering this dimensionless quantity as a function of the tensile strength-elastic
modulus ratio and buckling height-bond length ratio, while molecular mechanics-based
models have predicted a constant value of this quantity.

Several experimental and atomistic simulation studies on graphene and carbon nan-
otubes have proved that 2D nanosheets and nanotubes usually show non-linear elastic
deformation during tension up to the intrinsic strength of the material followed by a strain
softening up to the fracture [12–16]. To establish a continuum-based framework to capture
this non-linear elastic behavior of the 2D nanosheets, the higher-order elastic constants
must be considered in the strain energy density function [17,18]. In such a model, the
strain energy density is expanded in a Taylor series to include both quadratic as well as
higher-order terms in strain. The quadratic term accounts for the linear elastic response
of the material while the cubic and higher-order terms account for the strain softening of
the elastic stiffness. The higher-order terms can also be used to define other anharmonic
properties of this 2D nanostructure including phenomena such as thermal expansion,
phonon–phonon interaction, etc. [19].

The goal of this mini-review is to overview and compare the continuum description
of the elastic properties of general 2D graphene-like nitrides, including g-BN, g-AlN,
g-GaN, g-InN, and g-TlN from ab initio density functional theory calculations via five-
order non-linear elasticity (FONE) method. This continuum description is suitable for
incorporation into the finite element method. As a result, this method could also be very
useful for multiscale calculations passing electronic scale information about mechanical
properties to the continuum level. To achieve that, the elastic properties of the monolayer
of a graphene-like material were first examined using ab initio density functional theory.

Under the framework of quantum mechanics, the density functional theory (DFT)
calculations can predict the elastic properties of materials if one takes into account the
structural relaxations along with gradient corrections [20]. It was demonstrated that the
resulting continuum description is capable of describing those accompanying ab initio
DFT calculations with high accuracy in the infinitesimal strain regime as well as at finite
strains, including the strain at the intrinsic stress and beyond in graphene [18]. A higher-
rank tensor is associated with each term of the series expansion and the components of the
tensor represent the continuum elastic properties. Previous authors had determined the
non-zero independent tensor components that correspond to the symmetrical elements of
graphene for the second-, third-, fourth- and fifth-order term from stress–strain response of
graphene [18]. We extended the method with least-squares solution to over-determined
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(up to eighth-rank tensor) and well-determined (tenth-rank tensor) linear equations. This
method is introduced in the next section and then applied to obtain the continuum descrip-
tion of the elastic properties of monolayer graphene-like materials. The results and analysis
are in Section 4, followed by the conclusions.

2. Five-Order Non-Linear Elasticity (FONE) Method

The five-order non-linear elasticity (FONE) method used here is an extension of the
method introduced by Wei et al. [18]. The improvement of our work includes the least-
squares solution to the over-determined (up to eighth-rank tensor) and well-determined
(tenth-rank tensor) linear equations. Take the hexagonal boron nitride monolayer for
instance; we used a super cell containing 12 B and 12 N atoms in one plane, with periodic
boundary conditions. The undeformed reference configuration is shown in Figure 1, with
lattice vectors Hi, I = 1, 2, 3.
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Figure 1. Atomic (a) super cell (24 atoms) of h-BN; (b) structure of g-AlN in the conventional unit
cell (6 atoms); (c) structure of g-GaN in the conventional unit cell (6 atoms); (d) structure of g-TlN in
the conventional unit cell (6 atoms); (e) structure of g-InN in the conventional unit cell (6 atoms) in
the undeformed reference configuration.

FONE is described as follows. When a macroscopically homogeneous deformation
(deformation gradient tensor [21] F) is applied, the lattice vectors of the deformed h-BN are
hi = FHi. The Lagrangian strain [22] is defined as η = 1

2
(
FTF− I

)
, where I is the identity

tensor. The strain energy density has functional form of Φ = Φ(η). The elastic properties of
a material are determined from Φ, which is quadratic in strain for a linear elastic material.
Non-linear elastic constitutive behavior is established by expanding Φ in a Taylor series in
terms of powers of strain η. The symmetric second Piola–Kirchhoff stress tensor, Σij, can be
expressed (up to fifth order) as [18]:

Crystals 2022, 12, x FOR PEER REVIEW 4 of 51 

 

 

tensor. The strain energy density has functional form of Φ = Φ(η). The elastic properties of 

a material are determined from Φ, which is quadratic in strain for a linear elastic material. 

Non-linear elastic constitutive behavior is established by expanding Φ in a Taylor series 

in terms of powers of strain η. The symmetric second Piola–Kirchhoff stress tensor, Σij, 

can be expressed (up to fifth order) as [18]: 

𝛴𝑖𝑗 =
ə𝛷

ə𝜂𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙𝜂𝑘𝑙 + 

1

2!
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑘𝑙𝜂𝑚𝑛 + 

1

3!
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝜂𝑘𝑙𝜂𝑚𝑛𝜂𝑜𝑝

+ 
1

4!
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟𝜂𝑘𝑙𝜂𝑚𝑛𝜂𝑜𝑝𝜂𝑞𝑟 

(1) 

where ηij is Lagrangian elastic strain. Summation convention is employed for repeating 

indices; lower case subscripts range from 1 to 3. Herein, C denotes each higher-order elas-

tic modulus tensor; the rank of each tensor corresponds to the number of subscripts. The 

second-order elastic constants (SOEC), Cijkl, third-order elastic constants (TOEC), Cijklmn, 

fourth-order elastic constants (FOEC), Cijklmnop, and fifth-order elastic constants (FFOEC), 

Cijklmnopqr, are given by the components of the fourth-, sixth-, eighth-, and tenth-rank ten-

sors, respectively. 

We used conventional Voigt notation [23] for subscripts: 11→1, 22→2, 33→3, 23→4, 

31→5, and 12→6. It should be mentioned that strain η4 = 2η23, η5 = 2η31, η6 = 2η12. Equation 

(1) can be rewritten as: 

𝛴𝐼 =
ə𝛷

ə𝜂𝐼
= 𝐶𝐼𝐽𝜂𝐽 + 

1

2!
𝐶𝐼𝐽𝐾𝜂𝐽𝜂𝐾 + 

1

3!
𝐶𝐼𝐽𝐾𝐿𝜂𝐽𝜂𝐾𝜂𝐿+  

1

4!
𝐶𝐼𝐽𝐾𝐿𝑀𝜂𝐽𝜂𝐾𝜂𝐿𝜂𝑀 (2) 

where the summation convention for upper case subscripts runs from 1 to 6. These con-

stants are orientation-independent in h-BN due to the six-fold rotation symmetry of the 

atomic lattice [23]. In this study, we model the monolayer h-BN as a 2D structure and 

assume that the deformed state of the monolayer h-BN is such that the contribution of 

bending to the strain energy density is negligible as compared to the in-plane strain con-

tribution. This assumption is reasonable since the radii of curvature of out-of-plane defor-

mation are significantly larger than the in-plane inter-atomic distance. Then, the stress 

state of monolayer h-BN under those assumptions can be assumed to be 2D and we only 

consider the in-plane stress and strain components for these kinds of structures. The com-

ponents of the TOEC, FOEC, and FFOEC tensors can be determined based on the symme-

tries of the graphene atomic lattice point group D6h which consists of a six-fold rotational 

axis and six mirror planes as formulated in [18]. 

The fourteen independent elastic constants of h-BN are determined by a least-squares 

fit to stress–strain results from ab initio DFT simulations in two steps. In the first step, we 

use least-squares fit to five stress–strain responses. Five relationships between stress and 

strain are necessary because there are five independent FFOECs. We obtain the stress–

strain relationships by simulating the following deformation states: uniaxial strain in the 

zigzag direction; uniaxial strain in the armchair direction; and equibiaxial strain. From the 

first step, we find that the components of SOEC, TOEC, and FOEC are over determined 

(i.e., the number of linearly independent variables are greater than the number of con-

straints), and the FFOEC are well determined (the number of linearly independent varia-

bles are equal to the number of constrains). Under such circumstances, the second step 

would be the least-squares solution to these over- and well-determined linear equations. 

In the first step, we carried out three deformations: uniaxial strain in the zigzag di-

rection (case z), uniaxial strain in the armchair direction (case a), and equibiaxial strains 
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where ηij is Lagrangian elastic strain. Summation convention is employed for repeating
indices; lower case subscripts range from 1 to 3. Herein, C denotes each higher-order elastic
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modulus tensor; the rank of each tensor corresponds to the number of subscripts. The
second-order elastic constants (SOEC), Cijkl, third-order elastic constants (TOEC), Cijklmn,
fourth-order elastic constants (FOEC), Cijklmnop, and fifth-order elastic constants (FFOEC),
Cijklmnopqr, are given by the components of the fourth-, sixth-, eighth-, and tenth-rank
tensors, respectively.

We used conventional Voigt notation [23] for subscripts: 11→1, 22→2, 33→3, 23→4,
31→5, and 12→6. It should be mentioned that strain η4 = 2η23, η5 = 2η31, η6 = 2η12.
Equation (1) can be rewritten as:
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where the summation convention for upper case subscripts runs from 1 to 6. These
constants are orientation-independent in h-BN due to the six-fold rotation symmetry of
the atomic lattice [23]. In this study, we model the monolayer h-BN as a 2D structure
and assume that the deformed state of the monolayer h-BN is such that the contribution
of bending to the strain energy density is negligible as compared to the in-plane strain
contribution. This assumption is reasonable since the radii of curvature of out-of-plane
deformation are significantly larger than the in-plane inter-atomic distance. Then, the
stress state of monolayer h-BN under those assumptions can be assumed to be 2D and
we only consider the in-plane stress and strain components for these kinds of structures.
The components of the TOEC, FOEC, and FFOEC tensors can be determined based on the
symmetries of the graphene atomic lattice point group D6h which consists of a six-fold
rotational axis and six mirror planes as formulated in [18].

The fourteen independent elastic constants of h-BN are determined by a least-squares
fit to stress–strain results from ab initio DFT simulations in two steps. In the first step, we
use least-squares fit to five stress–strain responses. Five relationships between stress and
strain are necessary because there are five independent FFOECs. We obtain the stress–strain
relationships by simulating the following deformation states: uniaxial strain in the zigzag
direction; uniaxial strain in the armchair direction; and equibiaxial strain. From the first
step, we find that the components of SOEC, TOEC, and FOEC are over determined (i.e., the
number of linearly independent variables are greater than the number of constraints), and
the FFOEC are well determined (the number of linearly independent variables are equal
to the number of constrains). Under such circumstances, the second step would be the
least-squares solution to these over- and well-determined linear equations.

In the first step, we carried out three deformations: uniaxial strain in the zigzag
direction (case z), uniaxial strain in the armchair direction (case a), and equibiaxial strains
(case b). For uniaxial strain in the zigzag direction, the strain tensor is:

ηz
ij=

0 0 0
0 ηz 0
0 0 0

, (3)

where ηz is the amount of strain in zigzag direction.
For a given strain tensor, the associated deformation gradient tensor is not unique.

The various possible solutions differ from one to another by a rigid rotation. Here, the lack
of a one-to-one map relationship between the strain tensor and deformation gradient tensor
is not concerned since the calculated energy is invariant under rigid deformation [24,25].
One of the corresponding deformation gradient tensor Fz for uniaxial strain in the zigzag
direction is selected as:

Fz=

1 0 0
0 εz 0
0 0 1

, (4)
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where εz is the stretch ratio ε in the zigzag direction. Moreover, ε is determined by the
Lagrangian elastic strain in Equation (5):

1
2

ε2 + ε− η = 0 (5)

The stress–strain relationships of the uniaxial strain in the zigzag direction are:

Σz
1 = C12ηz +

1
2

C1 12η2
z +

1
6

C11 12η3
z +

1
24

C11 112η4
z , (6)

Σz
2 = C11ηz +

1
2

C1 11η2
z +

1
6

C11 11η3
z +

1
24

C11 111η4
z , (7)

For uniaxial strain in the armchair direction, the strain tensor is:

ηa
ij=

ηa 0 0
0 0 0
0 0 0

, (8)

One of the corresponding deformation gradient tensor Fa for uniaxial strain in the
armchair direction is:

Fa=

εa 0 0
0 1 0
0 0 1

, (9)

where εa is ε in the armchair direction. The stress–strain relationships are:

Σa
1 = C11ηa +

1
2

C2 22η2
a +

1
6

C22 22η3
a +

1
24

C22 222η4
a , (10)

Σa
2 = C12ηa + 1

2 (C1 11 − C222 + C112)η
2
a +

1
12 (C11 11 + 2C11 12 − C22 22)η

3
a

+ 1
24 C12 222η4

a
(11)

For equibiaxial strain in-plane, ηa = ηz = η, the strain tensor is:

ηb
ij=

η 0 0
0 η 0
0 0 0

, (12)

The corresponding deformation gradient tensor Fb for equibiaxial strain in-plane is:

Fb=

ε 0 0
0 ε 0
0 0 1

, (13)

The stress–strain relationship is:

Σb
1 =Σb

2
= (C11 + C12)η + 1

2 (2C1 11 − C222 + 3C112)η
2 + 1

6 (
3
2 C11 11 + 4C11 12 + 3C11 22 − 1

2 C22 22)η
3+

1
24 (3C11111 + 10C11112 − 5C12222 + 10C11122 − 2C22 222)η

4.
(14)

All fourteen elastic constants contribute to the expressions for stress–strain response
for these three deformation states. However, the components of SOEC, TOEC, and FOEC
are over determined. As discussed before, we used least-squares solutions to solve the
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equations A · C = Σ by computing the elastic constants that minimize the Euclidean 2-norm
||Σ − A · C||2. For SOEC components, C11 and C12 are obtained by:

1 0
0 1
0 1
1 0
1 1


[

C11
C12

]
=


Σz

2(O1)
Σz

1(O1)
Σa

2(O1)
Σa

1(O1)

Σb
1(O1)

 (15)

where Σz
1(O1) is the coefficient of the first order of strain in Σz

1 1 (Equation (9)), and similar

notations are used for the others. The Young’s modulus is E =
(

C2
11 −C2

12

)
/C11 and

Poisson’s ratio is ν = C12/C11.
For TOEC components, C111, C112, and C222 are obtained by:

1
2


1 0 0
0 1 0
1 1 −1
0 0 1
2 3 −1


C111

C112
C222

=


Σz
2(O2)

Σz
1(O2)

Σa
2(O2)

Σa
1(O2)

Σb
1(O2)

 (16)

For FOEC components, C1111, C1112, C1122, and C2222 are obtained by:

1
6


1 0 0 0
0 1 0 0

0.5 1 0 −0.5
0 0 0 1

1.5 4 3 −0.5




C1111
C1112
C1122
C2222

=


Σz
2(O3)

Σz
1(O3)

Σa
2(O3)

Σa
1(O3)

Σb
1(O3)

 (17)

For FFOEC components, C11111, C11112, C11122, C12222, and C22222 are obtained by:

1
24


1 0 0 0 0
0 1 0 0 0

0.5 1 0 1 0
0 0 0 0 1

1.5 4 3 −5 −2




C11111
C11112
C11122
C12222
C22222

 =


Σz

2(O4)
Σz

1(O4)
Σa

2(O4)
Σa

1(O4)

Σb
1(O4)

 (18)

With these fourteen independent elastic constants, the continuum formulation of h-BN
up to the fifth order can be obtained. FONE provides a continuum formulation, which
can present both linear and non-linear elastic mechanical properties. These properties in
monolayer h-BN then can be calculated accurately from ab initio DFT calculations. As
a result, this FONE method can bridge up the scales in multiscale calculations passing
electronic scale information about mechanical properties to the continuum level.

The in-plane stiffness Ys can be obtained from the elastic moduli C11 and C12 as:

Ys = (C11
2 − C12

2)/C11. (19)

The Poisson’s ratio ν, which is the ratio of the transverse strain to the axial strain, can
be obtained from elastic moduli as:

ν = C11/C12. (20)

With third-order elastic moduli, we can study the effect of pressure on the second-
order elastic moduli, where the pressure p acts in the plane of g-AlN. Explicitly, when
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pressure is applied, the pressure-dependent second-order elastic moduli (C̃11, C̃12, C̃22) can
be obtained from C11, C12, C22, C111, C112, C222, Ys, and n as in Equations (21)–(23).

C̃11 = C11 − (C111 + C112)
1− ν

Ys
P (21)

C̃22 = C11 − C222
1− ν

Ys
P (22)

C̃12 = C12 − C112
1− ν

Ys
P (23)

The velocities of these two types of sound wave are calculated from the second-order
elastic moduli and mass density (ρm) using the relationships shown in Equations (24) and (25).

νp =

√
Ỹs (1− ν̃)

ρm(1 + ν̃)(1− 2ν̃)
(24)

νs =

√
C̃12

ρm
(25)

The compressional to shear wave velocity ratio (νp/νs) is a very useful parameter in
the determination of a material’s mechanical properties. It depends only on the Poisson’s
ratio as shown in Equation (26).

νp

νs
=

√
1
ν̃

(
1 +

ν̃2

1− 2ν̃

)
(26)

This method is good for general 2D hexagonal structures due to the symmetries. It
could be used for monolayer h-BNC heterostructures and other honeycomb-like structures.

3. Density Functional Theory Calculations

In g-BNC materials, the g-BN phase is presented by the hexagonal structure (Figure 1a)
of BN locally, which is a six-atom-hexagonal-ring unit and can be denoted as (B3N3). All the
“axis 1” (as displayed in Figures 1 and 2) are along the armchair direction (also x direction)
and all the “axis 2” are along the zigzag direction (also y direction) in this paper. The
g-BN domain in g-BNC hybrid structures is modeled by adjusting the g-BN concentrations
in g-BNC while maintaining the integrity of B3N3 within the system. The g-BN domain
size in a system can be equivalently expressed by the g-BN concentration in the model
as (B3N3)x(C6)1−x, where (C6) denotes the six-atom-hexagonal-ring unit of graphene. The
six-atom-hexagonal-ring unit cell is chosen to capture the “soft mode”, which is a particular
normal mode exhibiting an anomalous reduction in its characteristic frequency and leading
to mechanical instability. This soft mode is a key factor in limiting the strength of monolayer
materials and can only be captured in unit cells with hexagonal rings [26]. This g-BNC
domain model had been successfully used to study the electronic band structures and linear
elastic properties of g-BNC heterostructures in our previous work [27,28].

We considered a conventional unit cell containing six atoms (three metallic atoms and
three nitrogen atoms) with periodic boundary conditions for g-AlN (Figure 1b), g-GaN
(Figure 1c), and g-TlN (Figure 1d). The 6-atom conventional unit cell was chosen to capture
the “soft mode”, which is a particular normal mode exhibiting an anomalous reduction in
its characteristic frequency and leading to mechanical instability.
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Figure 2. Atomic super cell (24 atoms) of five g-BNC configurations in the undeformed reference
configurations, corresponding to g-BN concentration of 0% (graphene), 25%, 50%, 75%, and 100% (g-BN).

The stress–strain relationship of all these materials under the desired deformation
configurations is characterized via first-principles calculations based on density functional
theory (DFT). DFT calculations were carried out with the Vienna Ab initio Simulation
Package (VASP) [29–32] which is based on the Kohn–Sham density functional theory (KS-
DFT) [33,34] with the generalized gradient approximations as parameterized by Perdew,
Burke, and Ernzerhof (PBE) for exchange-correlation functions [35]. For g-BNC, the elec-
trons explicitly included in the calculations are the (2s2p1) electrons of boron, the (2s22p2)
electrons of carbon, and the (2s22p3) electrons of nitrogen. For AlN, the electrons explicitly
included in the calculations are the (3s23p1) electrons for Al, the (2s22p1) electrons for boron,
and the (2s22p3) electrons for nitrogen. For g-GaN, the electrons explicitly included in the
calculations are the (2s22p2) electrons for nitrogen atoms and the (3d104s24p1) electrons
for gallium atoms. For g-TlN, the electrons explicitly included in the calculations are the
5d106s26p1 electrons for thallium atoms and the 1s22s22p1 electrons for nitrogen atoms.
The core electrons are replaced by the projector augmented wave (PAW) approach and
pseudo-potential approach [36,37]. A plane-wave cutoff of 520 eV is used for g-BNC and
600 eV is used for g-AlN, g-GaN, g-InN, and g-TlN in all the calculations. The calculations
are performed at zero temperature.

The criterion to stop the relaxation of the electronic degrees of freedom is set by re-
quiring the total energy change to be smaller than 10−6 eV. The optimized atomic geometry
was achieved through minimizing Hellmann–Feynman forces acting on each atom until
the maximum forces on the ions were smaller than 0.001 eV/Å. The atomic structures of
all the deformed and undeformed configurations are obtained by fully relaxing an either
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24-atom unit cell (g-BNC) or a 6-atom unit cell (other materials) where all atoms are placed
in one plane. Periodic boundary conditions are applied for the two in-plane directions.

For g-BNC, the irreducible Brillouin zone was sampled with a Gamma-centered
19 × 19 × 1 k-mesh. Such a large k-mesh was used to reduce the numerical errors caused
by the strain of the systems. The initial charge densities were taken as a superposition of
atomic charge densities. There was a 14 Å thick vacuum region to reduce the inter-layer
interaction to model the single layer system. For g-AlN, the irreducible Brillouin zone was
sampled with a C-centered 25 × 25 × 1 k-mesh. There was a 15 Å thick vacuum region to
reduce inter-layer interactions to model the single layer system. For g-GeN and g-TlN, the
irreducible Brillouin zone was sampled with a Gamma-centered 17 × 17 × 1 k-mesh. There
was a 15 Å vacuum region to reduce the inter-layer interaction to model the single layer
system. To eliminate the artificial effect of the out-of-plane thickness of the simulation box
on the stress, we used the second Piola–Kirchhoff (P–K) stress [38,39] to express the 2D
forces per length with units of N/m.

For a general deformation state, the number of independent components of the second-,
third-, fourth-, and fifth-order elastic tensors are 21, 56, 126, and 252, respectively. However,
there are only fourteen independent elastic constants that need to be explicitly considered
due to the symmetries of the atomic lattice point group D6h, which consists of a six-fold
rotational axis and six mirror planes [18].

The fourteen independent elastic constants of all these materials are determined by a
least-squares fit to the stress–strain results from DFT calculations in two steps, detailed in
our previous work [38], which had been well used to explore the mechanical properties of
2D materials [39–63].

A brief of the FONE method is that, in the first step, we use a least-squares fit of
five stress –strain responses. Five relationships between stress and strain are necessary
because there are five independent fifth-order elastic constants (FFOEC). We obtain the
stress–strain relationships by simulating the following deformation states: uniaxial strain
in the zigzag direction (zigzag); uniaxial strain in the armchair direction (armchair); and
equibiaxial strain (biaxial). From the first step, the components of the second-order elastic
constants (SOEC), the third-order elastic constants (TOEC), and the fourth-order elastic
constants (FOEC) are over determined (i.e., the number of linearly independent variables
are greater than the number of constrains), and the fifth-order elastic constants are well
determined (the number of linearly independent variables are equal to the number of
constrains). Under such circumstances, the second step is needed: least-squares solution to
these over- and well-determined linear equations.

4. Results and Analysis
4.1. g-BNC
4.1.1. Geometry

The optimized atomistic structures of the five configurations are shown in Figure 2, in
ascending order of g-BN concentration as 0% (graphene), 25%, 50%, 75%, and 100% (g-BN).
Due to the intrinsic difference between pure g-BN and graphene, the lattice constants of the
g-BNC mixtures are obtained by averaging the lattice vectors of the super cells for a direct
comparison to pure g-BN and graphene. We found that the lattice constant increases with
g-BN concentration x. Our results of the lattice constants are summarized in Table 1, which
are in good agreement with experiments on g-BN (2.51 Å) [64] and graphene (2.46 Å) [65].
Regarding the van der Waals corrections, we have extensive investigation on it [66]. We
have previously studied the Grimme correction D3 on the high-order elastic constants of
hydrogenated graphene [62]. We have concluded that the van der Waals corrections have
trivial effect on the high-order elastic constants of the 2D materials. Therefore, the van der
Waals corrections should not affect our main results.
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Table 1. Lattice constants a, in-plane stiffness Ys, Poisson’s ratio ν, and high-order elastic constants of
g-BNC from DFT calculations, compared to previous calculations of graphene.

0.00 0.25 0.50 0.75 1.00 Graphene a

a 2.468 2.484 2.496 2.506 2.512 2.446

Ys 344.6 321.9 300.0 285.7 278.3 348

V 0.1790 0.1839 0.1937 0.1998 0.2254 0.169

Qi 356.0 333.2 311.8 297.6 293.2 358.1

C12 63.7 61.3 60.4 59.4 66.1 60.4

Cm −3121 −2888 −2666 −2560 −2514 −2817

C112 −472 −551 −407 −383 −425 −337

C222 −2978 −2722 −2466 −2381 −2284 −2693

Gm 19,980 18,220 20,195 18,030 16,547 13,416

C1112 2706 3643 4267 2628 2609 759

C1122 2843 4065 2012 6755 2215 2582.8

C2222 16,568 16,085 19,746 13,234 12,288 10,358.9

Q11111 −81,498 −77,944 −130,712 −98,102 −65,265 −31,383.8

Q11112 −13,378 −18,430 −30,317 −13,725 −8454 −88.4

G11122 −12,852 −29,572 −52,986 −62,434 −28,556 −12,960.5

G12222 −28,504 −34,777 −34,287 −47,317 −36,955 −13,046.6

C22222 −79,311 −146,507 −328,759 −121,135 −100,469 −33,446.7
a Graphene in a 2-atom unit cell [46].

When the strains are applied, all the atoms are allowed full freedom of motion. A
quasi-Newton algorithm is used to relax all atoms into equilibrium positions within the
deformed unit cell that yields the minimum total energy for the imposed strain state of the
super cell.

4.1.2. Strain Energy

Both compression and tension are considered with Lagrangian strains ranging from
−0.1 to 0.3 with an increment of 0.02 in each step for all three deformation modes. The
system’s energy will increase when strains are applied. We define strain energy per atom
Es = (Etot − E0)/n, where Etot is the total energy of the strained system, E0 is the total
energy of the strain-free system, and n is the number of atoms in the unit cell. This intensive
quantity is used for the comparison between different systems. Figure 3 shows the Es as a
function of strain in uniaxial armchair, uniaxial zigzag, and equibiaxial deformation.

Es is seen to be anisotropic with strain direction, consistent with the non-isotropic
structure of the monolayer g-BNC. Es is non-symmetrical for compression (η < 0) and
tension (η > 0) for all three modes. This non-symmetry indicates the anharmonicity of the
g-BNC structures. The harmonic region, where the Es is a quadratic function of applied
strain, can be taken between −0.02 < η < 0.02. The stresses, derivatives of the strain
energies, are linearly increasing with the increase in applied strains in the harmonic region.
The anharmonic region is the range of strain where the linear stress–strain relationship is
invalid and higher-order terms are not negligible. With an even larger loading of strains,
the systems will undergo irreversible structural changes, and the systems are in the plastic
region, in which they might fail. The maximum strain before failure is the critical strain.
The ultimate strains are determined as the corresponding strain of the ultimate stress,
which is the maxima of the stress–strain curve, as discussed in the following section.
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ial strains as a function of g-BN concentrations.

4.1.3. Stress–Strain Response

The stress (second P–K stress)–strain (Lagrangian strain) relationship for uniaxial strain
in armchair and zigzag directions, as well as equibiaxial strains, are shown in Figure 4.
These stress–strain curves reflect the facts of the non-isotropic g-BNC atomic structures, in
addition to the anharmonic responses in compression and tension. Overall, stress increases
with strain monotonically in all compression cases. The linear relationship between stress
and strain is valid in strain from −0.02 to 0.02, which is the linear elastic region.

When the tensile strain is beyond 0.02, a non-linear relationship of stress–strain occurs.
There is a maximum stress when tensile strain becomes larger than 0.14 for all five configu-
rations. We denote this maximum stress as ultimate strength and the corresponding strain
as ultimate strain. The stress–strain curves of these five configurations are quite similar,
due to their similar 2D hexagonal structures. As a consequence, the stress–strain curves
overlap. The insets are zoomed in plots showing different mechanical behaviors around
the ultimate strains.

Stresses are the derivatives of the strain energies with respect to the strains. The
ultimate strength (the maxima in the stress–strain curve) is the maximum stress that a
material can withstand while being stretched, and the corresponding strain is the ultimate
strain. Under ideal conditions, the critical strain is larger than the ultimate strain. The
systems of g-BNC under strains beyond the ultimate strains are in a metastable state, which
can be easily destroyed by long wavelength perturbations, vacancy defects, as well as high
temperature effects [67]. The ultimate stress and strain are also called ideal stress and strain.
The ultimate strain is determined by the intrinsic bonding strength that acts as a lower limit
of the critical strain. Thus, it has practical meaning in consideration for its applications.
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strains as a function of g-BN concentrations CBN. Σ1 (Σ2) denotes the x (y) component of stress. “fit”
stands for the fitting of DFT calculations (“DFT”) to continuum elastic theory.

The ultimate stress and strain of all five configurations at three deformation modes are
summarized and plotted in Figure 5, as a function of the g-BN concentrations CBN. Please
note that we use CBN instead of x to represent the concentration of the g-BN phase in the
rest of the paper. We found that the ultimate strain of a certain configuration is a function
of both deformation mode and the directions.
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deformation modes (armchair, zigzag, and equibiaxial) and two components (1 and 2) as a function
of g-BN concentrations CBN.

4.1.4. Elastic Constants

The elastic constants are essential to the continuum description of the elastic properties.
The continuum responses are the least-squares fit to the stress–strain results from the DFT
calculations, as plotted in Figure 6. We then have 20 values for the 14 independent elastic
constants of g-BNC from DFT calculations. The fourteen independent elastic constants of
g-BNC are determined by least-squares fit to over-determined equations [38]. The results
of these fourteen independent elastic constants are grouped in SOEC, TOEC, FOEC, and
FFOEC as listed in Table 1.
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Figure 6. Linear elastic constants (SOEC) c11, c12, Ys, and n as a function of g-BN concentrations CBN.

Due to the symmetry, only C11 and C12 are independent. C11 decreases linearly with
respect to CBN, as plotted in the top panel of Figure 6. Our results of Ys, ν from Equations
(19) and (20) and elastic constants of the five configurations are shown in bottom panels
of Figure 6. Our calculated value of in-plane stiffness of graphene (344.6 N/m) is in good
agreement with the experimental value (340 ± 50 N/m) [12] and theoretical predictions
(348 N/m [18] and 335 N/m [67]). Our calculated value of g-BN (278.3 N/m) agrees with
an ab initio (GGA-PW91) prediction (267 N/m in ref. [67]). Poisson’s ratios ν are 0.18 and
0.23 for graphene and g-BN, in agreement with 0.16 and 0.21, respectively [67]. Our results
of Ys, ν, C11, and C12 are also comparable with ab initio predictions [68] and tight-binding
calculations [69] of BN nanotubes.

We found that C11 and the in-plane stiffness decrease almost linearly as g-BN concen-
tration increases, while C12, as well as Poisson’s ratio ν, show a rather more complicated
behavior (Figure 6). The similar trend of in-plane stiffness and C11 are based on the fact
that C11 is dominant, about 6 times bigger than C12. For the same reason, Poisson’s ratio ν
has a similar trend as C12. The increment of the Poisson’s ratio with respect to the g-BN
concentration indicates a decrement of the network connectivity [70], consistent with the
decrement of the density.

The effect of the g-BN concentration on the higher-order elastic constants is shown in
Figure 7. In an overview, the third- and fifth-order elastic constants are all negative, in con-
trast to positive fourth-order elastic constants. From the magnitude, the longitudinal modes
(diagonal terms) of elastic constants are much larger than the shear modes (off-diagonal
terms) of elastic constants. Comparing the elastic constants in different orders, one can
notice that the third-order elastic constants of g-BNC vary mildly with the concentrations of
g-BN. However, the fourth- and fifth-order elastic constants have a more complex response
to the BN modification.
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By considering the variation with respect to the BN concentration, we found that BN
modification has a large effect on the longitudinal mode elastic constants but is insensitive
to the shear mode elastic constants. For the third-order elastic constants, the longitudi-
nal modes C111 and C222 monotonically increase with respect to the g-BN concentration,
opposed to the small wiggles in the curve of shear mode C112. The ratio of C111 to C112
is around 6, the same as the ratio of C11/C12. For the fourth-order elastic constants, the
longitudinal modes C1111 and C2222 generally decrease with respect to g-BN concentrations,
with disturbances around CBN = 0.5. The shear mode C1122 curve has larger fluctuations
than the C1112. For the fifth-order elastic constants, the longitudinal modes C1111 and C2222
are very sensitive to the g-BN concentration, with the minimum at CBN = 0.5. The shear
modes C11112, C11122, and C12222 are relatively inert to the g-BN concentration. The valley
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points of C11111 and C22222 at CBN = 0.5 indicate the instability of g-BNC around CBN = 0.5.
This is consistent with our previous observation of bond breaking.

As a comparison of the second-order elastic constants, our results of graphene agree
with a previous study of using a 2-atom unit cell [18], as summarized in Table 1. However,
there is considerable difference in the higher-order (>2) elastic constants. This is mainly
because the primitive unit cell (2-atom unit cell) does not have the freedom to distort along
the K1 mode (soft mode) as the primitive translational symmetry is enforced [41]. Such
K1 soft mode is a precursor to a phase transition as in soft mode theory or directly leads
to mechanical failure. This failure mechanism affects the non-linear behavior of graphene
around the ultimate strain, which is characterized by the high-order elastic constants.

The high-order elastic constants are strongly related to anharmonic properties, in-
cluding thermal expansion, thermos-elastic constants, and thermal conductivity. With
higher-order elastic constants, we can easily study the pressure effect on the second-order
elastic moduli, generalized Gruneisen parameters, and equations of state. For example,
when pressure is applied, the pressure-dependent second-order elastic moduli can be
obtained from C11, C12, C22, C111, C112, C222, Ys, and ν [23,38,39,71]. In addition, using the
higher- order elastic continuum description, one can obtain the mechanical behaviors under
various loading conditions, e.g., under applied stresses rather than strains as demonstrated
in a previous study [18]. Furthermore, the high-order elastic constants are important in
understanding the non-linear elasticity of materials such as changes in acoustic velocities
due to finite strain. As a consequence, nano-devices such as nano surface acoustic wave
sensors and nano waveguides could be synthesized by introducing local strain [39].

A good way to check the importance of the high-order elastic constants is to consider
the case when they are missing. With the elastic constants, the stress–strain response can
be predicted from the elastic theory [38]. We take the configuration of the g-BNC with
CBN = 0.25 as an example to demonstrate here. When we only consider the second-order
elasticity, the stress varies with strain linearly. As illustrated in Figure 8, the linear behaviors
are only valid within a small strain range, about −0.02 ≤ η ≤ 0.02, in the three deformation
directions. With the knowledge of the elastic constants up to the third order, the stress–
strain curve can be accurately predicted within the range of −0.06 ≤ η ≤ 0.06. Using the
elastic constants up to the fourth order, the mechanical behaviors can be well treated up
to a strain as large as 0.12. For the strains beyond 0.12, the fifth-order elastic constants are
required for an accurate modeling. The analysis of the other configurations comes to the
same results.

Our results illustrate that the monatomic layer structures possess different mechanical
behaviors in contrast to the bulk or multi-layered structures, where the second-order elastic
constants are sufficient in most cases. The second-order elastic constants are relatively
easier to calculate from the strain–energy curves [67,72]; however, they are not sufficient.
The high-order elastic constants are required for an accurate description of the mechanical
behaviors of monatomic layer structures since they are vulnerable to strain due to their
geometry confinements.

The g-BNC heterostructures are unstable under large tension. All stress–strain curves
in the previous section show that such types of materials will soften when the strain is
larger than the ultimate strain. From the viewpoint of chemical bonding, this is due to the
bond breaking. This softening behavior is determined by the high-order elastic constants.
The high-order elastic constants reflect the high-order non-linear bond strength under large
strains. The negative values of FFOECs ensure the softening of materials under large strain
beyond ultimate strains. The salient large values of FFOECs of CBN = 0.5 g-BNC structure
in Figure 8 make it easier to soften at large strains, indicating less stability.



Crystals 2023, 13, 12 17 of 48

Crystals 2022, 12, x FOR PEER REVIEW 17 of 51 

 

 

bond breaking. This softening behavior is determined by the high-order elastic constants. 

The high-order elastic constants reflect the high-order non-linear bond strength under 

large strains. The negative values of FFOECs ensure the softening of materials under large 

strain beyond ultimate strains. The salient large values of FFOECs of CBN = 0.5 g-BNC 

structure in Figure 8 make it easier to soften at large strains, indicating less stability. 

 

Figure 8. Predicted stress–strain responses from different orders: second, third, fourth, and fifth 

order, and compared to the DFT calculations in the three deformation directions of CBN = 0.25. 

Our results of mechanical properties of g-BNC are limited to zero temperature due 

to current DFT calculations. Once the finite temperature is considered, the thermal expan-

sions and dynamics will, in general, reduce the interactions between atoms. As a result, 

Figure 8. Predicted stress–strain responses from different orders: second, third, fourth, and fifth
order, and compared to the DFT calculations in the three deformation directions of CBN = 0.25.

Our results of mechanical properties of g-BNC are limited to zero temperature due to
current DFT calculations. Once the finite temperature is considered, the thermal expansions
and dynamics will, in general, reduce the interactions between atoms. As a result, the longi-
tudinal mode elastic constants will decrease with respect to the temperature of the system.
The variation of shear mode elastic constants should be more complex in responding to the
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temperature. A thorough study will be interesting, which is, however, beyond the scope of
this study.

4.2. g-AlN
4.2.1. Atomic Structure

We first optimized the equilibrium lattice constant for g-AlN. The total energy as a
function of lattice spacing was obtained by specifying nine lattice constants varying from
2.8 Å to 3.4 Å, with full relaxations of all the atoms. A least-squares fit of the energies versus
lattice constants with a fourth-order polynomial function yielded the equilibrium lattice
constant as a = 3.127 Å, which agrees with previous first-principles calculation results of
3.09 Å [73] and 3.15 Å [74].

The most energetically favorable structure was set as the strain-free structure in this
study and the atomic structure, as well as the conventional cell, is shown in Figure 1b.
Specifically, the bond length of the Al–N bond is 1.805 Å, which is 0.355 Å (or 25%) longer
than the bond length of the B–N bond in g-BN. The N–Al–N and Al–N–Al angles are
120◦ and all atoms are within one plane. Our resulting atomic structure is in good agree-
ment with previous DFT calculations for pristine g-AlN [73,74] and hydrogen passivated
flakes [75–77]. The further studies in the following subsections imply that this theoretically
predicted structure is mechanically stable.

4.2.2. Strain Energy

When the strains were applied, all the atoms were allowed full freedom of motion. A
quasi-Newton algorithm was used to relax all atoms into equilibrium positions within the
deformed unit cell that yielded the minimum total energy for the imposed strain state of
the super cell.

Both compression and tension were considered with Lagrangian strains ranging from
−0.1 to 0.4 with an increment of 0.01 in each step for all three deformation modes. It is
important to include the compressive strains since they are believed to be the cause of the
rippling of the free-standing atom-thick sheet [78]. It was observed that a graphene sheet
experiences biaxial compression after thermal annealing [79], which could also happen
with g-AlN. Such an asymmetrical range was chosen due to the non-symmetric mechanical
responses of material, as well as its mechanical instability [80], to the compressive and
tensile strains.

We define strain energy per atom as Es = (Etot − E0)/n, where Etot is the total energy
of the strained system, E0 is the total energy of the strain-free system, and n = 6 is the
number of atoms in the unit cell. This size-independent quantity is used for comparison
between different systems. Figure 9 shows the Es of g-AlN as a function of strain in uniaxial
armchair, uniaxial zigzag, and equibiaxial deformation. Es is seen to be anisotropic with
strain direction. Es is non-symmetrical for compression (η < 0) and tension (η > 0) for all
three modes. This non-symmetry indicates the anharmonicity of the g-AlN structure.

The harmonic region where the Es is a quadratic function of the applied strain can
be observed between −0.02 < η < 0.02. The stresses, which are derivatives of the strain
energies, linearly increase with the increase in the applied strains in the harmonic region.
The anharmonic region is the range of strain where the linear stress–strain relationship is
invalid and higher-order terms are not negligible. With an even larger loading of strain, the
system will undergo irreversible structural changes, and the system is then in the plastic
region where it may fail. The maximum strain in the anharmonic region is the critical
strain. For all three directions, the critical strains are not spotted in the testing range. The
ultimate strains are determined as the corresponding strain of the ultimate stress, which is
the maximum of the stress–strain curve, as discussed in the following section.
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ial strains of g-AlN (top), compared with g-BN (bottom).

It Is worth noting that, in general, compressive strain will cause buckling of the free-
standing thin films, membranes, plates, and nanosheets [78]. The critical compressive
strain for buckling instability is much less than the critical tensile strain for fracture, e.g.,
0.0001% versus 2% in graphene sheets [80]. However, buckling can be suppressed by
applying constraints, such as embedding (0.7%) [81], placing on a substrate (0.4% before
heating) [79], thermal cycling on a SiO2 substrate (0.05%) [82] or a BN substrate (0.6%) [83],
and sandwiching [84]. Thus, although the buckling relaxation modes are not considered



Crystals 2023, 13, 12 20 of 48

in this study due to the unit cell limit, our study of compressive strains is important in
understanding the mechanics of these non-buckling applications.

4.2.3. Stress–Strain Curves

The second P–K stress–Lagrangian strain relationship for uniaxial strains along the
armchair and zigzag directions, as well as biaxial strains, are shown in Figure 10. The
ultimate strength is the maximum stress that a material can withstand while being stretched,
and the corresponding strain is the ultimate strain. Under ideal conditions, the critical strain
is larger than the ultimate strain. The systems of perfect g-AlN under strains beyond the
ultimate strains are in a metastable state, which can be easily destroyed by long wavelength
perturbations, vacancy defects, and high temperature effects [67]. The ultimate strain is
determined by the intrinsic bond strength and acts as a lower limit of the critical strain.
Thus, it has a practical meaning in consideration of its applications.
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Figure 10. Stress–strain responses of g-AlN (left) under the armchair, zigzag, and biaxial strain,
compared with g-BN (right). Σ1 (Σ2) denotes the x (y) component of the stress. “Cont” stands for the
fitting of DFT calculations (“DFT”) to continuum elastic theory.
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The values of the ultimate strengths and strains corresponding to the different strain
conditions are summarized in Table 2, compared with those of g-BN, graphene, and
graphyne. The material behaves in an asymmetric manner with respect to compressive and
tensile strains. With increasing strain, the Al–N bonds are stretched and eventually break.
When the strain is applied in the armchair direction, the bonds which are parallel to this
direction are more severely stretched than those in other directions. The ultimate strain in
armchair deformation is 0.22, larger than that of g-BN, graphene, and graphyne. Under
zigzag deformation, in which the strain is applied perpendicular to the armchair direction,
there are no bonds parallel to this direction. The bonds inclined to the zigzag direction
with an angle of 30◦ are more severely stretched than those in the armchair direction.
The ultimate strain in this zigzag deformation is 0.27, larger than that of g-BN, graphene,
and graphyne. At this ultimate strain, the bonds that are at an incline to the armchair
direction appear to be broken (middle panel of Figure 10). Under the biaxial deformation,
the ultimate strain is ηm

b = 0.21, which is smaller than that of g-BN and graphene, but
bigger than that of graphyne. As such ultimate strain is applied, all the Al–N bonds are
observed to be broken (bottom of Figure 10).

Table 2. Ultimate strengths (Σm
a, Σm

z, Σm
b) in units of N m−1 and ultimate strains (ηm

a, ηm
z, ηm

b)
under uniaxial strain (armchair and zigzag) and biaxial strain from DFT calculations, compared with
g-BN, graphene, and graphyne.

g-BN g-AlN g-GaN g-InN g-TIN

Σm
a 23.6 16.2 11.9 8.0 5.8

ηm
a 0.18 0.22 0.18 0.18 0.17

Σm
z 26.3 15.9 12.1 8.0 5.7

ηm
z 0.26 0.27 0.22 0.21 0.21

Σm
b 27.8 14.8 11.7 8.0 5.5

ηm
b 0.24 0.21 0.16 0.15 0.16

Our results for the positive ultimate strengths as well as the ultimate strains along the
three deformation directions imply that the g-AlN structure is mechanically stable. Our
result agrees with a previous study of the phonon calculations where imaginary frequencies
near the Γ point are absent [73].

It should be noted that the softening of the perfect g-AlN under strains beyond the
ultimate strain only occurs under ideal conditions. The systems in these circumstances
are in a metastable state, which can be easily destroyed by long wavelength perturbations,
vacancy defects, and high temperature effects, and so enter a plastic state [67]. Thus, only
the data for strain values lower than the ultimate strain have physical meaning and were
used in determining the high-order elastic constants in the following subsection.

Compared to g-BN (right of Figure 10), the stresses in g-AlN respond in a similar
fashion to the strain as those in g-BN, but to a much smaller degree. This could be attributed
to the weaker chemical bonds in g-AlN than in g-BN.

4.2.4. Elastic Constants

The elastic constants are critical parameters in finite element analysis models for the
mechanical properties of materials. Our results for these elastic constants provide an
accurate continuum description of the elastic properties of g-AlN from ab initio density
functional theory calculations. They are suitable for incorporation into numerical methods
such as the finite element technique.

The second-order elastic constants model the linear elastic response. The higher-order
(>2) elastic constants are important for characterizing the non-linear elastic response of
g-AlN using a continuum description. These can be obtained using a least-squares fit of
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the DFT data and are reported in Table 3. The corresponding values for graphene are
also shown.

Table 3. Non-zero independent components for the SOEC, TOEC, FOEC, and FFOEC tensor compo-
nents, Poisson’s ratio n, and in-plane stiffness Ys of g-AlN from DFT calculations, compared with
g-BN, graphene, and graphyne.

g-BN g-AlN g-GaN g-InN g-TlN

A 2.512 3.127 3.207 3.585 3.73

Ys 278.3 135.7 109.4 62.0 34.5

N 0.225 0.366 0.431 0.586 0.689

C11 293.2 156.7 134.4 94.4 65.7

C12 66.1 57.4 57.9 55.4 45.3

C111 −2513.6 −1265.7 −1038.6 −716.7 −485.2

C112 −425 −328.3 −452.2 −461.0 −434

C222 −2284.2 −968.9 −880.6 −609.1 −420.6

C1111 16,547 8753 5478 2978 1977

C1112 2609 699 2710 3307 623

C1122 2215 4604 4964 2514 7317

C2222 12,288 2447 2165 −1745 1362

C11111 −65,265 −46,941 −22,786 3382 −13,969

C11112 −8454 −2801 12,073 −591 16,509

C11122 −28,556 −13,643 −29,688 −17,843 −23,086

C12222 −36,955 −18,237 26,909 −9615 32,898

C22222 −100,469 −3855 −9539 40,801 −11,812

We have Ys = 135.7 N m−1 and ν = 0.366 from Equations (19) and (20), which agrees
with a previous study [73]. The in-plane stiffness of g-AlN is very small compared to g-BN
(49%) and graphene (40%), but comparable to graphyne. The reduction in the in-plane
stiffness from g-BN to g-AlN is a result of the weakened Al–N bond compared to the
B–N bond in g-BN. All other things being equal, bond length is inversely related to bond
strength and the bond dissociation energy, as a stronger bond will be shorter. Considering
the bond length, in g-AlN the bond length of Al–N is 1.805 Å, about 25 percent larger
than the B–N bond length in g-BN (1.45 Å). The bonds can be viewed as being stretched
by the replacement of boron atoms with aluminum atoms with reference to g-BN. These
stretched bonds are weaker than the unstretched ones, resulting in a reduction in the
mechanical strength.

It is worth noting that our results for the positive second-order elastic constants as
well as the in-plane Young’s modulus and Poisso’'s ratio indicate that the g-AlN structure is
mechanically stable. This result is consistent with the energy study in the previous section
and agrees with a previous study of the phonon calculations where imaginary frequencies
near the Γ point are absent [73].

The stress–strain curves in the previous section show that the structure will soften
when the strain is larger than the ultimate strain. From the point of view of electron
bonding, this is due to the bond weakening and breaking. This softening behavior is
determined by the TOECs and FFOECs in the continuum aspect. The negative values of
TOECs and FFOECs ensure the softening of the g-AlN monolayer under large strain.

The hydrostatic terms (C11, C22, C111, C222, and so on) of g-AlN monolayers are smaller
than those of g-BN and graphene, consistent with the conclusion that the g-AlN is “softer”.
The shear terms (C12, C112, C1122, etc.) are, in general, smaller than those of g-BN and
graphene, which contributes to the high compressibility of g-AlN. Compared to graphene,
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graphyne, and g-BN, one can conclude that the mechanical behavior of g-AlN is similar to
graphyne, and that it is much softer than graphene and g-BN.

The high-order elastic constants are strongly related to the anharmonic properties,
including thermal expansion, thermos-elastic constants, and thermal conductivity. With
higher-order elastic constants, we can easily study the pressure effect on the second-order
elastic moduli, generalized Gruneisen parameters, and equations of state. In addition,
using the higher-order elastic continuum description, one can ascertain the mechanical
behavior under various loading conditions, e.g., under applied stresses rather than strains
as demonstrated in a previous study [18]. Furthermore, the high-order elastic constants
are important in understanding the non-linear elasticity of materials such as changes in
acoustic velocities due to finite strain.

In order to check the importance of the high-order elastic constants, we consider the
case when they are missing. With the elastic constants, the stress–strain response can be
predicted from elastic theory [38]. When we only consider the second-order elasticity,
the stress varies linearly with strain. Take the biaxial deformation as an example. As
illustrated in Figure 11, the linear behaviors are only valid within a small strain range,
about −0.02 ≤ η ≤ 0.02, the same result as obtained from the energy–strain curves in
Figure 9. With knowledge of the elastic constants up to the third order, the stress–strain
curve can be accurately predicted within the range of −0.06 ≤ η ≤ 0.06. Using the elastic
constants up to the fourth order, the mechanical behavior can be well treated up to a strain
as large as 0.12. For strain values beyond 0.12, the fifth-order elastic constant is required
for accurate modeling. An analysis of the uniaxial deformations comes to the same results.
Further analysis on g-BN (bottom of Figure 11) also confirms the results.

Our results illustrate that the monatomic layer structures possess different mechanical
behaviors in contrast to the bulk or multi-layered structures, where the second-order elastic
constants are sufficient in most cases. The second-order elastic constants are relatively
easy to calculate from the strain–energy curves [67,72]; however, they are not sufficient
for monatomic layer structures. The high-order elastic constants are required for an accu-
rate description of the mechanical behavior of monatomic layer structures since they are
vulnerable to strain due to their geometry confinements.

Our results for the mechanical properties of g-AlN are limited to zero temperature
due to the current DFT calculations. Once a finite temperature is considered, the thermal
expansions and dynamics will, in general, reduce the interactions between atoms. As a
result, the longitudinal mode elastic constants will decrease with respect to the temperature
of the system. The variation of shear mode elastic constants should be more complex in
responding to the temperature. A thorough study would be interesting, but is, however,
beyond the scope of this study.

4.2.5. Pressure Effect on the Elastic Moduli

The second-order elastic moduli of g-AlN are seen to increase linearly with the applied
pressure (Figure 12). However, Poisson’s ratio decreases monotonically with the increase in
pressure. C11 is asymmetrical to C22 unlike in the zero-pressure case. C11 = C22 only occurs
when the pressure is zero. This anisotropy could be the outcome of anharmonicity.

Compared to g-BN (bottom of Figure 12), the second-order elastic moduli and Pois-
son’s ratio in g-AlN are more sensitive to the in-plane pressure. This could be attributed to
the Al–N bonds being weaker than the B–N bonds.
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Figure 12. Second-order elastic moduli and Poisson’s ratio as a function of pressure for g-AlN (top),
compared with g-BN (bottom).

4.2.6. Pressure Effect on the Velocities of Sound

In the g-AlN monolayer, there are non-zero in-plane Young’s moduli and shear defor-
mations. Hence, it is possible to generate sound waves with different velocities depend-
ing on the deformation mode. Sound waves generating biaxial deformations (compres-
sions) are compressional or p-waves. Sound waves generating shear deformations are
shear or s-waves. The velocities of these two types of sound wave are calculated from
the second-order elastic moduli and mass density (ρm) using the relationships shown in
Equations (24) and (25).
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The dependence of νp and νs on pressure (biaxial stress) is plotted in Figure 13. The
minimum (12 km s−1) of the νp curve occurs at an in-plane pressure of 24 N m−1. However,
νs monotonically increases with an increase in pressure. Thus, νp and νs can be tuned by
introducing biaxial strain through the stress–strain relationship shown in Figure 10c.
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The ratio of νp/νs monotonically decreases with increasing pressure as shown in
Figure 13. It converges to a value of 2.0 at positive pressure.
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As shown in Figure 13, a sound velocity gradient could be achieved by introducing
stress into a g-AlN monolayer. Such a sound velocity gradient could lead to the refraction
of sound wavefronts in the direction of lower sound speed, causing the sound rays to follow
a curved path [85]. The radius of the curvature of the sound path is inversely proportional
to the gradient. In addition, a negative sound speed gradient could be achieved by a
negative strain gradient. This tunable sound velocity gradient can be used to form a sound
frequency and ranging channel, which is the functional mechanism of waveguides and
surface acoustic wave (SAW) sensors [86–88]. Compared to g-BN (bottom of Figure 13), the
sound velocities in g-AlN are more sensitive to the in-plane pressure. Thus, g-AlN based
nano devices for use as SAW sensors, filters, and waveguides may be synthesized using
local strains for next generation electronics.

4.3. g-GaN
4.3.1. Atomic Structure

We first optimize the equilibrium lattice constant for g-GaN. The total energy as a
function of lattice spacing is obtained by specifying nine lattice constants varying from
2.8 Å to 3.6 Å, with full relaxations of all the atoms. A least-squares fit of the energies versus
lattice constants with a fourth-order polynomial function yields the equilibrium lattice
constant as a = 3.207 Å. The most energetically favorable structure is set as the strain-free
structure in this study and the atomic structure, as well as the conventional cell, is shown in
Figure 1c. Specifically, the bond length of Ga–N is 1.852 Å, which is 0.402 Å (or 28%) longer
than the bond length of the B–N bond in g-BN. The N–Ga–N and Ga–N–Ga angles are 120◦

and all atoms are within one plane. Our result for the bond length is in good agreement
with a previous first-principles study [73].

4.3.2. Strain Energy

When the strains are applied, all the atoms are allowed full freedom of motion within
their plane. A quasi-Newton algorithm is used to relax all atoms into equilibrium positions
within the deformed unit cell that yields the minimum total energy for the imposed strain
state of the super cell. Both compression and tension are considered with Lagrangian strains
ranging from −0.1 to 0.4 with an increment of 0.01 in each step for all three deformation
modes. We define strain energy per atom Es = (Etot − E0)/n, where Etot is the total energy
of the strained system, E0 is the total energy of the strain-free system, and n = 6 is the
number of atoms in the unit cell. This size-independent quantity is used for the comparison
between different systems. Figure 14 shows the Es of g-GaN as a function of strain in
uniaxial armchair, uniaxial zigzag, and equibiaxial deformation. Es is seen to be anisotropic
with strain direction. Es is non-symmetrical for compression (η < 0) and tension (η > 0) for
all three modes. This non-symmetry indicates the anharmonicity of the g-GaN structures.
The harmonic region where the Es is a quadratic function of applied strain can be taken
between −0.02 < η < 0.02. The stresses, derivatives of the strain energies, are linearly
increasing with the increase in the applied strains in the harmonic region. The anharmonic
region is the range of strain where the linear stress–strain relationship is invalid and higher-
order terms are not negligible. With an even larger loading of strains, the systems will
undergo irreversible structural changes, and the systems are in a plastic region where
they may fail. The maximum strain in the anharmonic region is the critical strain. The
critical strains are not spotted in this study. The ultimate strains are determined as the
corresponding strain of the ultimate stress, which is the maxima of the stress–strain curve,
as discussed in the following section.



Crystals 2023, 13, 12 28 of 48

Crystals 2022, 12, x FOR PEER REVIEW 30 of 51 

 

 

 

Figure 14. Energy–strain responses for uniaxial strain in armchair and zigzag directions, and equi-

biaxial strains. 

4.3.3. Stress–Strain Curves 

The second P–K stress–Lagrangian strain relationship for uniaxial strains along the 

armchair and zigzag directions, as well as biaxial strains, are shown in Figure 15. The 

stresses are the derivatives of the strain energies with respect to the strains. The ultimate 

strength is the maximum stress that a material can withstand while being stretched, and 

the corresponding strain is the ultimate strain. Under ideal conditions, the critical strain 

is larger than the ultimate strain. The systems of perfect g-GaN under strains beyond the 

ultimate strains are in a metastable state, which can be easily destroyed by long wave-

length perturbations and vacancy defects, as well as high temperature effects [67]. The 

ultimate strain is determined by the intrinsic bonding strengths and acts as a lower limit 

of the critical strain. Thus, it has a practical meaning in consideration for its applications. 

The ultimate strengths and strains corresponding to the different strain conditions 

are summarized in Table 2, compared with that of g-BN and graphene. The material be-

haves in an asymmetric manner with respect to compressive and tensile strains. With in-

creasing strains, the Ga–N bonds are stretched and eventually rupture. When the strain is 

applied in the armchair direction, the bonds which are parallel to this direction are more 

severely stretched than those in other directions. The ultimate strain in armchair defor-

mation is 0.18 (top panel of Figure 15), smaller than that of g-BN and graphene. Under the 

zigzag deformation, in which the strain is applied perpendicular to the armchair, there is 

no bond parallel to this direction. The bonds at an incline to the zigzag direction with an 

angle of 30° are more severely stretched than those in the armchair direction. The ultimate 

strain in this zigzag deformation is 0.22, smaller than that of g-BN and graphene. At this 

ultimate strain, the bonds that are at an incline to the armchair direction appear to be 

ruptured (middle panel of Figure 15). Under the biaxial deformation, the ultimate strain 

is ηmb = 0.16, which is the smallest among those of the three compared. As the ultimate 

strain is applied, all the Ga–N bonds are observed to be ruptured (bottom of Figure 15). 

It should be noted that the softening of the perfect g-GaN under strains beyond the 

ultimate strains only occurs for ideal conditions. The systems under this circumstance are 

in a metastable state, which can be easily destroyed by long wavelength perturbations and 

vacancy defects, as well as high temperature effects, and enter a plastic state [67]. Thus, 

Figure 14. Energy–strain responses for uniaxial strain in armchair and zigzag directions, and equibi-
axial strains.

4.3.3. Stress–Strain Curves

The second P–K stress–Lagrangian strain relationship for uniaxial strains along the
armchair and zigzag directions, as well as biaxial strains, are shown in Figure 15. The
stresses are the derivatives of the strain energies with respect to the strains. The ultimate
strength is the maximum stress that a material can withstand while being stretched, and
the corresponding strain is the ultimate strain. Under ideal conditions, the critical strain
is larger than the ultimate strain. The systems of perfect g-GaN under strains beyond the
ultimate strains are in a metastable state, which can be easily destroyed by long wavelength
perturbations and vacancy defects, as well as high temperature effects [67]. The ultimate
strain is determined by the intrinsic bonding strengths and acts as a lower limit of the
critical strain. Thus, it has a practical meaning in consideration for its applications.

The ultimate strengths and strains corresponding to the different strain conditions are
summarized in Table 2, compared with that of g-BN and graphene. The material behaves
in an asymmetric manner with respect to compressive and tensile strains. With increasing
strains, the Ga–N bonds are stretched and eventually rupture. When the strain is applied
in the armchair direction, the bonds which are parallel to this direction are more severely
stretched than those in other directions. The ultimate strain in armchair deformation is
0.18 (top panel of Figure 15), smaller than that of g-BN and graphene. Under the zigzag
deformation, in which the strain is applied perpendicular to the armchair, there is no bond
parallel to this direction. The bonds at an incline to the zigzag direction with an angle of 30◦

are more severely stretched than those in the armchair direction. The ultimate strain in this
zigzag deformation is 0.22, smaller than that of g-BN and graphene. At this ultimate strain,
the bonds that are at an incline to the armchair direction appear to be ruptured (middle
panel of Figure 15). Under the biaxial deformation, the ultimate strain is ηm

b = 0.16, which
is the smallest among those of the three compared. As the ultimate strain is applied, all the
Ga–N bonds are observed to be ruptured (bottom of Figure 15).
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It should be noted that the softening of the perfect g-GaN under strains beyond the
ultimate strains only occurs for ideal conditions. The systems under this circumstance are
in a metastable state, which can be easily destroyed by long wavelength perturbations
and vacancy defects, as well as high temperature effects, and enter a plastic state [67].
Thus, only the data within the ultimate strain have physical meaning and were used in
determining the high-order elastic constants in the following subsection.

4.3.4. Elastic Constants

The elastic constants are critical parameters in finite element analysis models for
mechanical properties of materials. Our results of these elastic constants provide an
accurate continuum description of the elastic properties of g-GaN from ab initio density
functional theory calculations. They are suitable for incorporation into numerical methods
such as the finite element technique.

The second-order elastic constants model the linear elastic response. The higher-order
(>2) elastic constants are important to characterize the non-linear elastic response of g-GaN
using a continuum description. These can be obtained using least-squares fit of the DFT
data and are reported in Table 3. Corresponding values for graphene are also shown. We
have Ys = 109.4 (N/m) and ν = 0.431 from Equations (19) and (20), in good agreement with
a previous study, which has Ys = 110 (N/m) and ν = 0.48 [73]. The in-plane stiffness of
g-GaN is very small compared to g-BN (39%) and graphene (32%). The reduction in the
in-plane stiffness from g-BN to g-GaN is a result of the weakened bond of Ga-N compared
to the B-N bond in g-BN. With all other things being equal, bond length is inversely related
to bond strength and the bond dissociation energy, as a stronger bond will be shorter.
Considering the bond length, in g-GaN the bond length of Ga-N is 1.852 Å, about 28%
larger than the B–N bond length in g-BN (1.45 Å). The bonds can be viewed as being prior
stretched by the replacement of boron atoms with gallium atoms, in reference to g-BN.
These stretched bonds are weaker than those unstretched, resulting in a reduction in the
mechanical strength.

Knowledge of higher-order elastic constants is very useful in understanding anhar-
monicity. Using the higher-order elastic continuum description, one can calculate the stress
and deformation state under uniaxial stress, rather than uniaxial strain [18]. Explicitly,
when pressure is applied, the pressure-dependent second-order elastic moduli can be
obtained from the high-order elastic continuum description [23,27,39,71]. The third-order
elastic constants are important in understanding the non-linear elasticity of materials such
as changes in acoustic velocities due to finite strain. Therefore, nanodevices such as nano
surface acoustic wave sensors and nano waveguides could be synthesized by introducing
local strain [28,39].

It is worthy to note that the uncertainty of the high-order elastic constants arises from
the propagation of the numerical error of the total energy calculations. The constringency
of the total energy is 10−6 eV. The uncertainty of the second-, third-, fourth-, and fifth-order
elastic constants are 10−2, 100, 102, and 104, respectively.

Stress–strain curves in the previous section show that they will soften when the strain
is larger than the ultimate strain. From the point of view of electron bonding, this is due to
the bond weakening and breaking. This softening behavior is determined by the TOECs
and FFOECs in the continuum aspect. The negative values of TOECs and FFOECs ensure
the softening of the g-GaN monolayer under large strain.

The hydrostatic terms (C11, C22, C111, C222, and so on) of g-GaN monolayers are smaller
than those of g-BN and graphene, consistent with the conclusion that the g-GaN is “softer.”
The shear terms (C12, C112, C1122, etc.), in general, are smaller than those of g-BN and
graphene, which contributes to the high compressibility of g-GaN. Compared to graphene
and g-BN, one can conclude that the mechanical behavior of g-GaN is much softer than
graphene and g-BN.
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4.3.5. Effect of Pressure on the Elastic Moduli

With third-order elastic moduli, we can study the effect of pressure on the second-
order elastic moduli, where the pressure p acts in the plane of g-GaN. Explicitly, when
pressure is applied, the pressure-dependent second-order elastic moduli (C̃11, C̃12, C̃22) can
be obtained from C11, C12, C22, C111, C112, C222, Ys, and ν as in Equations (21)–(23).

The second-order elastic moduli of g-GaN are seen to increase linearly with the applied
pressure (Figure 16). However, Poisson’s ratio decreases monotonically with the increase in
pressure. C̃11 is asymmetrical to C̃12, unlike the zero-pressure case. C̃11 = C̃12 = C11 only
occurs when the pressure is zero. This anisotropy could be the outcome of anharmonicity.
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4.3.6. Promising Applications

In the g-GaN monolayer, there are non-zero in-plane Young’s moduli and shear
deformations. Hence, it is possible to generate sound waves with different velocities
depending on the deformation mode. Sound waves generating biaxial deformations
(compressions) are compressional or p-waves. Sound waves generating shear deformations
are shear or s-waves. The sound velocities of these two types of waves are calculated
from the second-order elastic moduli and mass density using the relationships shown in
Equations (24) and (25).

The dependence of vp and vs on pressure (biaxial stress) is plotted in Figure 17. The
minimum (10 km/s) of the vp curve occurs at an in-plane pressure of 1 N/m. However,
vs monotonically increases with an increase in pressure. Thus, they can be tuned by
introducing the biaxial strain through the stress–strain relationship shown in Figure 15c.
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The compressional to shear wave velocity ratio (vp/vs) is a very useful parameter in
the determination of a material’s mechanical properties. It depends only on the Poisson’s
ratio as in Equation (26). The ratio of vp/vs monotonically decreases with an increase in
pressure as shown in Figure 17. It tends to approach a value of 2.0 at positive pressure.

Notice that a sound velocity gradient could be achieved by introducing stress into
g-GaN, which could lead to refraction of sound wavefronts in the direction of lower sound
speed, causing the sound vectors to follow a curved path [85]. The radius of curvature
of the sound path is inversely proportional to the gradient. Additionally, a negative sound
speed gradient could be achieved by a negative strain gradient. This tunable sound velocity
gradient can be used to form a sound frequency and ranging channel, which is the functional
mechanism of waveguides and surface acoustic wave (SAW) sensors [87,88]. Thus, g-GaN-
based nanodevices of SAW sensors, filters, and waveguides may be synthesized using local
strains for next generation electronics.

4.4. g-InN
4.4.1. Atomic Structure

We first optimize the atomistic structures for g-InN monolayers. The initial configura-
tion is generated by placing 3 indium atoms and 3 nitrogen atoms alternatively on the same
plane, forming the 6-atom unit cell. The relaxed structure shows that the six atoms are still
coplanar. The most energetically favorable structure was set as the strain-free structure in
this study and the atomic structure, as well as the conventional cell, is shown in Figure 1b.
Specifically, the bond length of the In–N bond is 2.074 Å, which is 0.554 Å (or 36.45%) longer
than the bond length of the B–N bond in g-BN. The N–In–N and In–N–In angles are 120◦.
The lattice constant or the second nearest neighbor distance is 3.585 Å. Our results agree
with a previous DFT study [89]. It is worth noting that the lattice constants of Wurtzite
structure of bulk InN are a = 3.540 and c = 5.704 Å in experimental measurement [90]. This
strain-free structure is then set as the reference when mechanical strain is loaded.
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4.4.2. Strain Energy

When strain is applied, the system will be disturbed away from the equilibrium state.
All the atoms of the system are allowed full freedom of motion. A quasi-Newton algorithm
is used to relax all atoms into equilibrium positions within the deformed unit cell that
yields the minimum total energy for the imposed strain state of the super cell. Since the
configuration energy of the strain-free configuration is the minimum of the potential well,
any strain will increase the system’s energy. By applying different amounts of strain in
different directions, the potential well can be explored.

Lagrangian strains ranging from −0.1 to 0.3 are considered with an increment of 0.01
in each step for all three deformation modes. It is important to include the compressive
strains since they are believed to be the cause of the rippling of the free-standing atomic
sheet [19]. Because it was reported that a graphene sheet experiences biaxial compression
after thermal annealing [91], this could also happen with g-InN monolayers. We selected
such an asymmetrical strain range (−0.1≤ η≤ 0.3) owing to the non-symmetric mechanical
responses of material. The lower and upper boundary of the strain are consequent upon its
mechanical instability to the compressive and tensile strains.

We define strain energy per atom as Es = (Etot − E0)/n, where Etot is the total energy of
the strained system, E0 is the total energy of the strain-free system, and n = 6 is the number
of atoms in the unit cell. This size-independent quantity is used for comparison between
different systems. Figure 18a shows the Es of g-InN as a function of strain in uniaxial
armchair, uniaxial zigzag, and equibiaxial deformation. Es is seen to be anisotropic with
strain direction. Es is non-symmetrical for compression (η < 0) and tension (η > 0) for all
three modes. This non-symmetry indicates the anharmonicity of the g-InN structure. It is
worth noting that for small strains, there is a harmonic region, where the Es is a quadratic
function of applied strain. Therefore, the stresses as the derivatives of the strain energies
are linearly increasing with the increase in the applied strains in the harmonic region. From
the plots of the strain energy profile, one can tell that the harmonic region can be taken
between −0.02 < η < 0.02 in the g-InN monolayers.

When the strain is larger, the linear stress–strain relationship is invalid. The range
of these strains is an anharmonic region. The main feature of the anharmonic region is
that the higher-order terms are not negligible. With an even larger loading of strains, the
systems will undergo irreversible structural changes. Then, the system enters a plastic
region where it may fail into parts. The maximum strain in the anharmonic region is the
ultimate strain. The summation of the critical tensile strain and critical compressive strain
is the stable region of that deformation. The width of the stable region defines the opening
width of the potential energy well (Figure 18). In general, the opening width and depth of
the potential energy wells reflect the flexibility and strength of a nanostructure, respectively.
The average width of the stable regions of the three deformation modes (i.e., the opening
width of the potential energy wells) is a reasonably good scale for the mechanical stabilities
of the nanostructures. As a result, from the point view of potential energy, we conclude
that g-InN is mechanically stable. However, it is less stable than g-BN, because both the
depth and width of the potential energy well are smaller than that of g-BN. Besides the
scale for the mechanical stabilities, strain energy profile can be used to estimate the range
of lattice mismatch feasible for epitaxial growth of the 2D materials on the substrates [92].

4.4.3. Stress–Strain Curves

We plot the stress–strain relationship in Figure 19 along the three modes of uniaxial
strains along the armchair direction (mode a), uniaxial strains along the zigzag direction
(mode z), and biaxial strains (mode b). The material behaves in an asymmetric manner
with respect to compressive and tensile strains. With increasing strains, the In–N bonds are
stretched and eventually rupture. When strain is applied in mode a, the bonds of those
parallel in this direction are more severely stretched than those in other directions. Under
the deformation mode z, in which the strain is applied perpendicularly to the armchair
direction, there is no bond parallel to this direction. The two In–N bonds at an incline to
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the zigzag direction with an angle of about 30◦are more severely stretched than those in
the armchair direction. Under the ultimate strain in mode z, which is 0.26, the two In–N
bonds that are at an incline to the armchair direction are observed to rupture. Under the
ultimate strain in mode b, ηu

b = 0.18, the two In–N bonds that are at an incline to the zigzag
direction with an angle of about 30◦ are observed to rupture.
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4.4.4. Elastic Constants

The elastic constants are essential parameters to describe the elasticity of materials.
The 14 independent elastic constants of g-InN are determined by a least-squares fit to
the stress–strain results from DFT calculations [38]. The second-order elastic constants
model the linear elastic response. The higher-order (>2) elastic constants are important to
characterize the non-linear elastic response of g-InN using a continuum description. These
can be obtained using the least-squares fit of the DFT data and are reported in Table 1.
Corresponding values for graphene are also shown.

Our result of the in-plane stiffness of g-InN is Ys = 62.0 N/m, much smaller than that
of g-BN and graphene. In order to interpolate our results in terms of standard units of gPa,
we need the size of the out-of-plane dimension, which, however, is not well defined in 2D
material. Taking the inter-layer vdW distance of 5.7 Å from its 3D layered Wurtzite-type
structure [90], our result of the in-plane stiffness is 109 gPa, less than the bulk modulus
(125 gPa) of its bulk counterpart [90]. This could be a consequence of the stretch of its lattice
constants. The Poisson’s ratio of g-InN is ν = 0.586, about 2.6 and 3.3 times that of g-BN
and graphene, respectively.

Higher-order (>2) elastic constants are important quantities [19] in studying the non-
linear elasticity, harmonic generation, lattice defects, phase transitions, strain softening,
temperature dependence of elastic constants, phonon–phonon interactions, photon–phonon
interactions, thermal expansion (through the Gruneisen parameter), echo phenomena,
and so on [43]. Experimentally, the higher-order elastic constants can be determined by
measuring the changes of sound velocities under the application of hydrostatic and uniaxial
stresses [91]. As it is more convenient to apply pressure in experiments, the full stress–strain
relationship described by the higher-order elastic constants are critical. Explicitly, when
pressure is applied, the pressure-dependent second-order elastic moduli can be obtained
from the higher-order elastic continuum description [38]. The third-order elastic constants
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are important in understanding the non-linear elasticity of materials, such as changes in
acoustic velocities due to finite strain. As a consequence, nanodevices (such as nano surface
acoustic wave sensors and nano waveguides) could be synthesized by introducing local
strain [28,39].

These 14 components of the elastic constants in FONE are summarized in Table 3. The
normal terms are in charge of the strength of the material, and the shear terms reflect more
about the flexibility. The comparison of the data in Table 3 reveals that the normal terms of
g-InN monolayers are smaller in magnitude than those of g-BN and graphene, consistent
with the conclusion that the g-InN is “softer”. However, the shear terms do not show a clear
trend. The g-InN monolayers exhibit instability under large tension. Stress–strain curves in
the previous section show that they might soften when the strain is larger than the ultimate
strain. From the point of view of electron bonding, this is due to the bond weakening
and breaking. This softening behavior is determined by the TOECs and FFOECs in the
continuum aspect. The negative values of TOECs and FFOECs ensure the softening of
g-InN monolayer under large strain. It should be pointed out that the tensile strength could
be an overestimate of the onset of the instability due to the limitation of the model [93].

The importance of the high-order elastic constants can be perceived when we consider
their contribution to the non-linear elasticity. When we only consider the second-order
elasticity, the stress varies with strain linearly. Take the biaxial deformation as an example.
As illustrated in Figure 20, the linear behaviors are only valid within a small strain range,
about 0.02, ηh = 0.02. With the knowledge of the elastic constants up to the third order,
the stress–strain curve can be accurately predicted within the range of η ≤ 0.06. Using
the elastic constants up to the fourth order, the mechanical behaviors can be well treated
up to a strain as large as 0.1. For the strains beyond 0.1, the fifth-order elastic constants
are required for accurate modeling. The analysis of the uniaxial deformations provides
similar results.
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4.4.5. Pressure Effect on the Elastic Moduli

As a demonstration of the usage of the high-order elastic constants, we predicted the
pressure effect on the elastic moduli from these elastic constants (Table 3). The pressure
effect on the photoluminescence and emission energies of the InN/GaN super lattices
has been reported [94]. The non-linear elasticity and the pressure dependence of elastic
constants have been investigated in bulk III-N compounds [95]. However, the pressure
effect on the elastic moduli is still unknown in g-InN monolayers. We calculate the effect of
the second-order elastic moduli on the pressure p acting in the plane of g-InN from the third-
order elastic moduli. Explicitly, when pressure is applied, the pressure-dependent second-
order elastic moduli can be obtained from the high-order elastic continuum description [28].

The second-order elastic moduli (C̃11, C̃12, C̃22) can be obtained from C11, C12, C22, C111,
C112, C222, Ys, and υ, as detailed inelastic moduli of g-InN are seen to increase linearly with
the applied pressure (Figure 21). Poisson’s ratio also increases monotonically with increasing
pressure. C̃11 is not symmetrical to C̃22 anymore; only when P = 0, C̃11 = C̃22 = C11. This
anisotropy could be the outcome of anharmonicity.
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4.4.6. Mechanical Instabilities

Mechanical instabilities are the most important in real applications and material or
system designs. The ultimate strains are determined as the corresponding strain of the
ultimate stress, which is the maxima of the stress–strain curve. The ultimate strengths
and strains corresponding to the different strain conditions are summarized in Table 2,
compared with that of g-BN and graphene, since they have similar structures, and they are
close to each other in the periodic table. The g-InN sheet behaves in an asymmetric manner
with respect to compressive and tensile strains. With increasing strains, the B–B bonds are
stretched and eventually rupture. The positive slopes of the stress–strain curves and the
positive ultimate tensile stresses indicate that this structure is mechanically stable.

The g-InN sheet behaves in an asymmetric manner with respect to compressive and
tensile strains. With increasing strains, the In–N bonds are stretched and eventually
rupture. The positive slope of the stress–strain curves and the positive ultimate tensile
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stresses indicate that this structure is mechanically stable. Our results show that the g-InN
monolayers are stable under various strains. From the view of energy, the mechanical
instabilities are related to the energy barriers, over which the material fails. In our ideal
model, this energy barrier is the binding energy. Therefore, we can estimate the binding
energy of 1.3 eV from the strain-energy plot (Figure 18) with ηm

b = 0.15. Note that the
softening of the g-InN monolayers under strains beyond the ultimate strains only occurs
for ideal conditions. The systems under this circumstance are in a metastable state, which
can be easily destroyed by long wavelength perturbations and vacancy defects, as well
as high temperature effects, and enter a plastic state [67]. Thus, only the data within the
ultimate strain have physical meaning.

4.5. g-TlN
4.5.1. Atomic Structure

We first optimize the equilibrium lattice constant for g-TlN. The total energy as a
function of lattice spacing is obtained by specifying nine lattice constants varying from 3.3
Å to 4.1 Å, with full relaxations of all the atoms. A least-squares fit of the energies versus
lattice constants with a fourth-order polynomial function yields the equilibrium lattice
constant as a = 3.731 Å. The most energetically favorable structure is set as the strain-free
structure in this study and the atomic structure, as well as the conventional cell, is shown
in Figure 1d. Specifically, the bond length of Tl–N bond is 2.154 Å, which is 0.704 Å (or
49%) longer than the bond length of B–N bond in g-BN. The N–Tl–N and Tl–N–Tl angles
are 120◦ and all atoms are within one plane. Our result of bond length is in good agreement
with previous DFT calculations of N12Tl12H12.

4.5.2. Strain Energy

When the strains are applied, all the atoms are allowed full freedom of motion within
their plane. A quasi-Newton algorithm is used to relax all atoms into equilibrium positions
within the deformed unit cell that yields the minimum total energy for the imposed strain
state of the super cell.

Both compression and tension are considered with Lagrangian strains ranging from
−0.1 to 0.3 with an increment of 0.01 in each step for all three deformation modes. We
define strain energy per atom Es = (Etot − E0)/n, where Etot is the total energy of the
strained system, E0 is the total energy of the strain-free system, and n = 6 is the number of
atoms in the unit cell. This size-independent quantity is used for the comparison between
different systems. Figure 22 shows the Es of g-TlN as a function of strain in uniaxial
armchair, uniaxial zigzag, and biaxial deformation. Es is seen to be anisotropic with strain
direction. Es is non-symmetrical for compression (η < 0) and tension (η > 0) for all three
modes. This non-symmetry indicates the anharmonicity of the g-TlN structures. The
harmonic region where the Es is a quadratic function of applied strain can be taken between
−0.02 < η < 0.02. The stresses, derivatives of the strain energies, are linearly increasing
with the increase in the applied strains in the harmonic region. The anharmonic region is
the range of strain where the linear stress–strain relationship is in-valid and higher-order
terms are not negligible. With an even larger loading of strains, the systems will undergo
irreversible structural changes, and the systems are in a plastic region where they may fail.
The maximum strain in the anharmonic region is the critical strain. The critical strain is 0.2
under armchair deformation. However, for the other two directions, the critical strains are
not spotted. The ultimate strains are determined as the corresponding strain of the ultimate
stress, which is the maxima of the stress–strain curve, as discussed in the following section.
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Figure 22. Energy–strain responses for uniaxial strain in armchair and zigzag directions, and
biaxial strains.

4.5.3. Stress–Strain Curves

The second P–K stress–Lagrangian strain relationship for uniaxial strains along the
armchair and zigzag directions, as well as biaxial strains are shown in Figure 19. The
ultimate strength is the maximum stress that a material can withstand while being stretched,
and the corresponding strain is the ultimate strain. Under ideal conditions, the critical strain
is larger than the ultimate strain. The systems of perfect g-TlN under strains beyond the
ultimate strains are in a metastable state, which can be easily destroyed by long wavelength
perturbations, vacancy defects, as well as high temperature effects [67]. The ultimate strain
is determined by the intrinsic bonding strengths and acts as a lower limit of the critical
strain. Thus, it has a practical meaning in considering its applications.

The ultimate strengths and strains corresponding to the different strain conditions
are summarized in Table 2, compared with that of g-BN, graphene, and graphyne. The
material behaves in an asymmetric manner with respect to compressive and tensile strains.
With increasing strains, the Tl–N bonds are stretched and eventually rupture. When the
strain is applied in the armchair direction, the bonds of those parallel with this direction
are more severely stretched than those in other directions. The ultimate strain in armchair
deformation is 0.17, smaller than that of g-BN, graphene, and graphyne. The critical strain
is 0.2 under armchair deformation, where there is big drop of the stresses (top panel of
Figure 23), indicating the failure of the system. However, for the other two directions, the
critical strains are not spotted. Under the zigzag deformation, in which the strain is applied
perpendicular to the armchair, there is no bond parallel to this direction. The bonds incline
to the zigzag direction with an angle of 30◦ are more severely stretched than those in the
armchair direction. The ultimate strain in this zigzag deformation is 0.21, smaller than that
of g-BN and graphene, while the same as graphyne. At this ultimate strain, the bonds that
are at an incline to the armchair direction appear to be ruptured (middle panel of Figure 23).
Under the biaxial deformation, the ultimate strain is bm = 0.16, which is the smallest among
those of g-BN, graphene, and graphene. As such ultimate strain applied, all the Tl–N bonds
are observed to be ruptured (bottom panel of Figure 23).
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calculations (“DFT”) to continuum elastic theory.
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It should be noted that the softening of the perfect g-TlN under strains beyond the
ultimate strains only occurs for ideal conditions. The systems under this circumstance are
in a metastable state, which can be easily destroyed by long wavelength perturbations
and vacancy defects, as well as high temperature effects, and enter a plastic state [67].
Thus, only the data within the ultimate strain have physical meaning and was used in
determining the high-order elastic constants in the following subsection.

4.5.4. Elastic Constants

The elastic constants are critical parameters in finite element analysis models for
mechanical properties of materials. Our results of these elastic constants provide an
accurate continuum description of the elastic properties of g-TlN from ab initio density
functional theory calculations. They are suitable for incorporation into numerical methods
such as the finite element technique.

The second-order elastic constants model the linear elastic response. The higher-order
(>2) elastic constants are important to characterize the non-linear elastic response of g-TlN
using a continuum description. These can be obtained using the least-squares fit of the DFT
data and are reported in Table 3. Corresponding values for graphene are also shown.

The in-plane stiffness of g-TlN is very small compared to g-BN (12%), graphene (10%),
and graphyne (21%). The reduction in the in-plane stiffness from g-BN to g-TlN is a result of
the weakened bond of Tl–N compared to the B–N bond in g-BN. While all other things are
equal, bond length is inversely related to bond strength and the bond dissociation energy,
as a stronger bond will be shorter. Considering the bond length, in g-TlN the bond length of
Tl–N is 2.154 Å, about 49 percent larger than B–N bond length in g-BN (1.45 Å). The bonds
can be viewed as being stretched prior by the introduction of thallium atoms, in reference
to g-BN. Stretched bonds are weaker than those unstretched, leading to a reduction in the
mechanical strength.

Using the higher-order elastic continuum description, one can calculate the stress and
deformation state under uniaxial stress, rather than uniaxial strain [18]. Explicitly, when
pressure is applied, the pressure-dependent second-order elastic moduli can be obtained
from the high-order elastic continuum description [23,27,39,71]. The third-order elastic
constants are important in understanding the non-linear elasticity of materials such as
changes in acoustic velocities due to finite strain. Therefore, nano-devices such as nano
surface acoustic wave sensors and nano waveguides could be synthesized by introducing
local strain [28,39].

Stress–strain curves in the previous section show that they will soften when the strain
is larger than the ultimate strain. From the point of view of electron bonding, this is due to
the bond weakening and breaking. This softening behavior is determined by the TOECs
and FFOECs in the continuum aspect. The negative values of TOECs and FFOECs ensure
the softening of g-TlN monolayer under large strain.

The hydrostatic terms (C11, C22, C111, C222, and so on) of g-TlN monolayers are smaller
than those of g-BN and graphene, consistent with the conclusion that the g-TlN is “softer”.
The shear terms (C12, C112, C1122, etc.), in general, are smaller than those of g-BN and
graphene, which contributes to its high compressibility. Compared to graphene, graphyne,
and g-BN, one can conclude that the mechanical behavior of g-TlN is similar to graphyne,
and much softer than graphene and g-BN.

4.5.5. Pressure Effect on the Elastic Moduli

With third-order elastic moduli, we can study the effect of the second-order elastic
moduli on the pressure P acting in the plane of g-TlN. Explicitly, when pressure is applied,
the pressure-dependent second-order elastic moduli (C̃11, C̃12, C̃22) can be obtained from
C11, C12, C22, C111, C112, C22, Ys, and ν as in Equations (21)–(23).

The second-order elastic moduli of g-TlN are seen to increase linearly with the applied
pressure (Figure 24). However, Poisson’s ratio decreases monotonically with the increase
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in pressure. C̃11 is asymmetrical to C̃22 unlike the zero-pressure case. C̃11 = C̃12 = C11 only
occurs when the pressure is zero. This anisotropy could be the outcome of anharmonicity.
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5. Discussion

The benefits and challenges for graphene-like materials to form next generation elec-
tronics are widely discussed, and research topics cover self-heating issues [96] and cooling
strategies for next generation high-power electronic devices [97–102]. This section, on the
other hand, focuses on the comparison of mechanical properties of graphene structures. We
studied the mechanical stability and properties of g-XN materials, where X is an element
from the boron family, under various strains using DFT-based first-principles calculations.
We also calculated the mechanical properties of g-BN in the same environment for a direct
comparison. All calculated parameters are listed in Tables 2 and 3.

For g-AlN, it is observed it exhibits a non-linear elastic deformation up to an ultimate
strain, which is 0.22, 0.27, and 0.21 for armchair, zigzag, and biaxial directions, respectively.
The deformation and failure behavior and the ultimate strength are anisotropic. It has a
relatively low in-plane stiffness (135.7 N m21) and a large Poisson’s ratio compared to g-BN
and graphene. Compared to g-BN, g-AlN has 49% in-plane stiffness, 67%, 60%, and 53%
ultimate strengths in armchair, zigzag, and biaxial strains, respectively, and a Poisson’s
ratio 1.6 times larger. It was found that g-AlN can sustain larger uniaxial and smaller
biaxial strain before it ruptures.

The non-linear elasticity of g-AlN was investigated. We found an accurate continuum
description of the elastic properties of g-AlN by explicitly determining the fourteen inde-
pendent components of the high-order (up to fifth order) elastic constants from the fitting
of the stress–strain curves obtained from DFT calculations. These data are useful to develop
a continuum description which is suitable for incorporation into a finite element analysis
model for g-AlN’s applications at a large scale. We also find that the harmonic elastic
constants are only valid within a small range of -.02 ≤ η ≤ 0.02. With the knowledge of the
elastic constants up to the third order, the stress–strain curve can be accurately predicted
within the range of −0.06 ≤ η ≤ 0.06. Using the elastic constants up to the fourth order,
the mechanical behavior can be accurately predicted up to a strain as large as 0.12. For the
strains beyond 0.12, the fifth-order elastic constants are required for accurate modeling.
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The high-order elastic constants reflect the high-order non-linear bond strength under
large strains.

The second-order elastic constants including the in-plane stiffness are predicted to
monotonically increase with pressure while Poisson’s ratio monotonically decreases with
increasing pressure. The sound velocity of a compressional wave has a minimum at an
in-plane pressure of −4 N m−1 while that of the shear wave monotonically increases
with pressure. The ratio of νp/νs monotonically decreases with the increase in pressure
and converges to a value of 2.0 at positive pressure. Our results of the positive ultimate
strengths and strains, second-order elastic constants, and the in-plane Young’s modulus
indicate that the graphene-like structure of hexagonal AlN monolayers is mechanically
stable. The property of having tunable sound velocities has promising applications in nano
waveguides and surface acoustic wave sensors.

For g-GaN, it was observed that it exhibits a non-linear elastic deformation up to an
ultimate strain, which is 0.18, 0.22, and 0.16 for armchair, zigzag, and biaxial directions,
respectively. The deformation and failure behavior and the ultimate strength are anisotropic.
It has a low in-plane stiffness (109.4 N/m) and a large Poisson’s ratio compared to g-BN
and graphene. Compared to g-BN, g-GaN has 39% in-plane stiffness, 50%, 46%, and 42%
ultimate strengths in armchair, zigzag, and biaxial strains, respectively, and the Poisson’s
ratio is 1.9 times larger. We also found that the g-GaN can sustain much smaller strains
before rupture.

The non-linear elasticity of g-GaN was investigated. We found an accurate continuum
description of the elastic properties of g-GaN by explicitly determining the fourteen inde-
pendent components of high-order (up to fifth order) elastic constants from the fitting of
the stress–strain curves obtained from DFT calculations. These data are useful to develop a
continuum description which is suitable for incorporation into a finite element analysis
model for its applications at a large scale. The second-order elastic constants including
in-plane stiffness are predicted to monotonically increase with pressure while Poisson’s
ratio monotonically decreases with increasing pressure. The sound velocity of a compres-
sional wave has a minimum of 10 km/s at an in-plane pressure of 1 N/m, while a shear
wave’s velocity monotonically increases with pressure. The ratio of νp/νs monotonically
decreases with the increase in pressure, and it tends to approach a value of 2.0 at positive
pressure. The tunable sound velocities have promising applications in nano waveguides
and surface acoustic wave sensors.

For g-InN, it was observed that it exhibits a non-linear elastic deformation up to an
ultimate strain, which is 0.18, 0.21, and 0.15 for armchair, zigzag, and biaxial directions,
respectively. The deformation and failure behavior and the ultimate strength are anisotropic.
It has a low in-plane stiffness (62.0 N/m) and a large Poisson’s ratio compared to g-BN
and graphene. Compared to g-BN, g-InN has 22% in-plane stiffness, 34%, 30%, and 29%
ultimate strengths in armchair, zigzag, and biaxial strains, respectively, and the Poisson’s
ratio is 2.6 times larger. We also found that the g-InN can sustain much smaller strains
before rupture.

The non-linear elasticity of g-InN was investigated. We found an accurate continuum
description of the elastic properties of g-InN by explicitly determining the fourteen inde-
pendent components of high-order (up to fifth order) elastic constants from the fitting of
the stress–strain curves obtained from DFT calculations. These data are useful to develop a
continuum description which is suitable for incorporation into a finite element analysis
model for its applications at a large scale. The second-order elastic constants including
in-plane stiffness are predicted to monotonically increase with pressure while Poisson’s
ratio monotonically decreases with increasing pressure. The third-order elastic constants
are important in understanding the non-linear elasticity of materials, such as changes
in acoustic velocities due to finite strain. As a consequence, nanodevices (such as nano
surface acoustic wave sensors and nano waveguides) could be synthesized by introducing
local strain.
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For g-TlN, it is observed that it exhibits a non-linear elastic deformation up to an
ultimate strain, which is 0.17, 0.21, and 0.16 for armchair, zigzag, and biaxial directions,
respectively. The deformation and failure behavior and the ultimate strength are anisotropic.
It has low in-plane stiffness (34.5 N/m) and a large Poisson’s ratio compared to g-BN and
graphene. Compared to g-BN, g-TlN has 12% in-plane stiffness, 25%, 22%, and 20% ultimate
strengths in armchair, zigzag, and biaxial strains, respectively, and 3.1 times of Poisson’s
ratio. We also found that the g-TlN can sustain much smaller strains before the rupture.

The non-linear elasticity of g-TlN was investigated. We found an accurate continuum
description of the elastic properties of g-TlN by explicitly determining the fourteen inde-
pendent components of high-order (up to fifth order) elastic constants from the fitting of
the stress–strain curves obtained from DFT calculations. These data are useful to develop a
continuum description which is suitable for incorporation into a finite element analysis
model for its applications at a large scale. The second-order elastic constants including
in-plane stiffness are predicted to monotonically increase with pressure while Poisson’s
ratio monotonically decreases with increasing pressure.

6. Conclusions and Outlooks

The mechanical stabilities and properties of graphene-like two dimensional III-nitrides
including g-BN, g-AlN, g-GaN, g-InN, and g-TlN are important in flexible electronics. Their
non-linear high-order elasticity behaviors up to fifth-order elasticity have been obtained
via FONE method. Their properties are overviewed and compared. We found that they are
mechanically stable under various mechanical loadings. Their in-plane Young’s modulus
decreases with respect to their periodic number order from B, Al, Ga, In, and Tl. On the
contrary, the Poisson’s ratio increases with the element order. Their components of elastic
constants might fluctuate; however, the clear trend is that the mechanical strength decreases
with the periodic number. Our theoretical results provide some guidance for practical
applications and designs of nitrides:

(I) With the knowledge of the ideal strength, one can predict and design the reinforcement
efficiency when these 2D materials are used as one component of a composite.

(II) With the knowledge of the ultimate tensile strain and stress, the upper limit of the
mechanical loading is set for the practical applications of these materials and designs
of nitrides.

(III) With the knowledge of the elastic properties, the efficiency of the strain engineering
could be predicted.

On the other hand, there are still four issues of 2D graphene-like two dimensional
III-nitrides that need to be solved [103]. Firstly, it is desirable to investigate the transition
metal tuned III-nitrides. The ‘element map’ of 2D nitrides still needs to be completed,
which may lead to a new breakthrough in materials science. Secondly, various functional
2D nitrides with desirable traits need to be developed. Thirdly, the structural stability and
thermodynamic stabilities of the 2D III-nitrides needs to be further optimized. Finally, fur-
ther efforts on fabrication and synthesis are highly required for the widespread applications
of these functional materials.
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