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Abstract: It is usual for computational efficiency to simulate growing alloy dendrites during solidifi-
cation using a two-dimensional model. However, the fidelity of such simulations is to be questioned,
since observations show that three-dimensional models lead to significantly more realistic results in
comparison to experiments under many situations. Even in thin sample cases, the properties affecting,
for example, mechanical behaviour are intrinsically three-dimensional. However, partly due to the
lack of published work on the, topic the impact of 2D assumptions on the evolution and structural
mechanical behaviour of dendrites has not been properly explored. In this study, solidification using
the Cellular Automata (CA) method was coupled to a Finite Volume Structural Mechanics Solver
(FVSMS) capable of both 2D and 3D modelling, applied to a selection of representative problems
which clearly demonstrate that structural mechanics is another factor in the modelling of dendrites
where two-dimensional assumptions can lead to significantly altered behaviour when compared to
three-dimensional reality.

Keywords: numerical modelling; microstructure solidification; structural mechanics; dendrite;
2D; 3D

1. Introduction

Numerically modelling the solidification of dendritic metal microstructures is often
approached as a two-dimensional (2D) problem due to the often prohibitive computational
resources required to obtain three-dimensional (3D) solutions at a useful scale and in a
reasonable time frame [1–3]. Many of the basic mechanisms are the same in both 2D and
3D simulations, meaning 2D models can demonstrate fundamental behaviour and be used
to make qualitative comparisons with experiments at a fraction of the computational cost.
However, it can never be overlooked that dendrites are always three-dimensional objects
in reality, meaning that quantitative comparisons between 2D simulations an experimental
results are generally not feasible due to the often significant differences between how
solidifying systems develop in 2D compared to reality.

It has been widely observed that 2D dendrites often display a significantly different
morphology to their 3D counterparts, with different behaviour observed in spacing [4,5],
side branching [2,6,7], fragmentation [8] and tip shape [1,9]. The fundamental cause of
these differences is the more efficient diffusion facilitated by the extra dimension existing
in 3D, which allows dendrite arms to grow more closely and sometimes even fuse together
in a manner not replicable in 2D models due to the higher solute concentration gradient
surrounding the dendrites. This diffusion behaviour has a further impact on the observed
growth speed between 2D and 3D simulations, where the higher concentration gradient in
2D causes the dendrite tip velocity to be significantly lower [1,2,5,10–12]. These differences
can be further compounded when considering the concurrent modelling of other physical
processes, for example fluid flow. Modelling fluid flow restricted to 2D requires simplifying
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assumptions [13] even before considering the significant interactions both natural and
forced flow can have with the solute transport behaviour to influence the solidification
process. When simulating dendritic solidification with flow, 3D modelling produces a
thinner solute layer as fluid may flow in many directions around the complex geometry
of a dendritic network, causing faster growth and a different morphology to develop.
In contrast, in 2D modelling a thicker solute layer is observed due to flow needing to
pass around the tips of dendrites rather than being able to flow around the stems as it
can in reality. This makes it far easier for recirculation to occur and solute to become
trapped [6,7,12,14,15]. Dendrite arm growth under convection shows the same general
behaviour in both 2D and 3D as in both cases the upstream dendrite arms grow faster
than those downstream. However, despite the 3D systems still growing faster overall,
the differences between the upstream and downstream arms is far less extreme than in
2D simulations due to the greater ease with which the flow can propagate around the
network [2,3].

Beyond these fundamental aspects of the solidification process which impact all 2D
simulations, the 3D nature of dendritic growth in reality can lead to almost systematic
differences in the development of some processes such that only qualitative comparisons
can be drawn between the final microstructures. One example of this would be modelling
the columnar-to-equiaxed transition, where significantly different grain sizes and overall
morphologies are observed when compared to experiments. This is due to equiaxed
dendrites being able to block entire fronts of columnar dendrites unrealistically easily as in
2D there is no way for the columnar front to grow around the sides of an equiaxed dendrite
as it can in reality [11,12]. Furthermore, there are intrinsically 3D elements of this process
which must be ignored in 2D, such as the full range of orientations the dendrites may have
and the heterogeneous distribution of the equiaxed dendrites in 3D space. The issue of the
potential dendrite orientations allowing for rotation or out-of plane-bending necessarily
ignored by 2D modelling, has been found to be a significant factor in accurately predicting
the competitive growth of dendrites [16,17]. Competitive growth behaviour is much more
complex than 2D modelling indicates, such that it provides a poor match with even thin
sample experiments in all but very specific scenarios [18].

Experimental results have demonstrated that during the solidification process den-
drites can become misorientated [19], deform [20] and even fragment [21] due to structural
mechanical effects driven by numerous potential sources including, gravity, thermal ex-
pansion or partial remelting [22]. While this behaviour is often identified as a key factor
in the formation of casting defects and can alter the development of the microstructure
more generally, research into understanding these mechanisms remains sparse. This is
particularly true when it comes to numerically modelling, where the impact of structural
mechanics on the development of the microstructure is generally ignored. When structural
mechanical behaviour is considered as a factor it is often only done to post-process an exist-
ing dendritic microstructure [23–25], without considering any interaction structural effects
may have had with the solidification process. One notable exception is the work done by
Yamaguchi and Beckermann [26], who combined a phase field solidification model with
the finite element method in a fully coupled framework of interdependent microstructure
solidification and structural mechanics, albeit limited in many ways as highlighted by the
authors. Furthermore, with the exception of the work by Yang et al. [23] where the struc-
tural behaviour of a simplified structure roughly approximating a dendrite is modelled,
all existing modelling has been performed in 2D. This, aside from the differences in fun-
damental solidification behaviour outlined earlier, has large implications on the expected
structural mechanical behaviour, even before considering how this interacts with the solidi-
fication process. Much of the structural mechanical behaviour observed in experiments is
fundamentally 3D, where any examples of dendrites rotating or bending out of plane are
impossible to model in 2D [21,22]. The exclusion of these potential orientations means that
at best a qualitative match with experiments can be expected when modelling phenomena
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such as crystal mosaicity [27] or competitive growth with misorientated dendrites which
may lead to defects.

In previous work by the authors in Soar et al. [28], structural mechanics and mi-
crostructure solidification were concurrently modelled in 2D such that the preferential
growth orientation of the dendrites was altered by displacements arising during growth
perpendicular to a constant supergravity body force. This fully coupled framework is
representative of cases where the orientation change is more significant to microstructure
development than the deformation itself, such that even if the absolute displacement at the
tip remains quite small relative to the dendrite size, the gradient of the displacements can
still cause significant misorientation. In a subsequent paper [29] this framework expanded
the modelling into 3D and tested its capability for modelling fundamentally 3D structural
effects using a selection of idealised cases. Furthermore, it was also observed in this paper
when modelling a 3D system with an identical problem setup to a case modelled in 2D
in the earlier paper [28], the observed orientations, deformations and final microstructure
were all significantly different. This contribution will expand on this point and explore
how the modelling assumptions for both solidification and structural mechanics in 2D can
significantly alter how microstructures develop, meaning that 2D modelling of coupled
microstructure solidification with structural mechanics can generally only provide qualita-
tive insights into some aspects of fundamental behaviour, as the final 2D microstructure
predicted will always be significantly different to the 3D reality. The results presented
have been chosen to explore these differences in structural behaviour between 3D and 2D
simulations for a single dendrite grown under otherwise identical modelling conditions.
The cases were chosen as to allow for easy comparison and to highlight the differences in
behaviour rather than to necessarily predict any specific mechanism.

2. Numerical Modelling

The numerical modelling used in this paper is largely identical to that laid out in
previous papers written by the authors on this topic [28,29], with this section providing a
quick summary of the methods used while highlighting any differences in implementation
that were required to obtain the results presented.

The evolution of the alloy microstructure for all cases examined in this paper uses a
finite difference decentred octahedron (or square in 2D) Cellular Automata (CA) method
which is based on the Imperial College µMatIC code [4,14,30], further developed into
the bespoke numerical code Thermo Electric Solidification Algorithm (TESA) which uses
parallel processing to solve large scale, complex multi-physics problems [31–33]. The
governing equations used for solidification are the transient phase change and solute
partitioning given by

Cl(1− k)
∂φs

∂t
= −∇ · (De∇Cl) + [1− (1− k)φs]

∂Cl
∂t

, (1)

where Cl and Cs are the liquid and solid concentration respectively , k = Cl/Cs is the
partition coefficient, 0 ≤ φs ≤ 1 is the solid fraction, De is the mass diffusivity and t is time.
Diffusive transport is then governed by

∂Ce

∂t
= ∇ · (De∇Cl), (2)

with the equivalent concentration defined as Ce = (1− φs)Cl +φsCs. A Frozen Temperature
Approximation is taken, which for a constant thermal gradient increasing along x and
constant cooling rate gives the explicit spatial and temporal temperature as

T(x, t) = TW +
∂T
∂x

x−Qt, (3)
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where TW is the initial lowest temperature at the west wall and Q is the constant cooling
rate. The equilibrium temperature of the interface is given by

Ti = T0 + ml(Cl − C0), (4)

where C0 is the initial concentration, T0 is the liquidus temperature at this initial concentra-
tion and ml is the liquidus slope.

The structural mechanical behaviour in the system is modelled using a Linear Elastic
material model, requiring assumptions that the displacements are ‘small’, that there is no
plastic deformation occurring and that there is a linear relationship between stress and
strain. While these simplifying assumptions cannot be held as applicable for all cases where
structural mechanics has an impact on microstructure solidification, they are sufficient
for examining the cases where the absolute displacement is small relative to gradient
of displacement (and hence orientation change) at the tip of the dendrite as have been
explored in this paper and previous work.

Due to the scope of this paper, examining the impact of 2D assumptions on the
concurrent modelling of microstructure solidification with structural mechanics, there
are three sets of governing Linear Elasticity equations which must be considered. The
first is for modelling a fully 3D system as was done in Soar et al. [29], which requires no
further assumptions and has the stationary solution for displacement behaviour of a linear
elastic structure under external forces being governed by the following set of three partial
differential equations:

(λ + µ)

(
∂2u
∂x2 +

∂2v
∂x∂y

+
∂2w
∂x∂z

)
+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ Fx = 0 (5)

(λ + µ)

(
∂2v
∂y2 +

∂2u
∂y∂x

+
∂2w
∂y∂z

)
+ µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
+ Fy = 0 (6)

(λ + µ)

(
∂2w
∂z2 +

∂2u
∂z∂x

+
∂2v

∂z∂y

)
+ µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
+ Fz = 0 (7)

where u, v and w are the displacements in the x, y and z direction, Fx, Fy and Fz are the
corresponding body forces and the Lamé constants µ and λ are defined as:

λ =
ηE

(1 + η)(1− 2η)
(8)

µ =
E

2(1 + η)
(9)

taking E and η to be the Young’s Modulus and Poisson’s ratio of the material respectively.
In this implementation we allow for variable material properties for a solidifying structure
by defining the Young’s Modulus as a parameter which can vary according to a linear
relationship with the solid fraction, such that a fully solidified material will have the
maximal Young’s Modulus chosen for the material and liquid cells are given a trivially
small Young’s modulus value which will provide no resistance to structural movement
if modelled.

When solving a structural mechanics problem in 2D an assumption must be made
about the thickness of the 2D structure being modelled. In the previous modelling found
in Soar et al. [28] plane strain was assumed, meaning that the out-of-plane thickness
dimension is much larger than the other two dimensions, allowing an assumption to be
made that the displacements w in the z direction are functionally zero, causing the out-of-
plane strains to correspondingly vanish. Once these assumptions have been considered,
the system of partial differential equations that needs to be solved for the displacements of
a stationary 2D plane strain linear elasticity problems are reduced to:
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(λ + µ)

(
∂2u
∂x2 +

∂2v
∂x∂y

)
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
+ Fx = 0 (10)

(λ + µ)

(
∂2v
∂y2 +

∂2u
∂x∂y

)
+ µ

(
∂2v
∂y2 +

∂2v
∂x2

)
+ Fy = 0 (11)

The other 2D assumption that can be made when representing a 2D structure is that
of plane stress, which assumes that the out-of-plane thickness dimension is much smaller
than the other two dimensions. This means out-of-plane stresses can be considered as
negligible and can be ignored, though out-of-plane displacement is allowed to occur. These
assumptions allow the system of partial differential equations for the displacement of a
stationary 2D plane stress linear elasticity problem to be reduced to:

E
2(1− η)

(
∂2u
∂x2 +

∂2v
∂x∂y

)
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
+ Fx = 0 (12)

E
2(1− η)

(
∂2v
∂y2 +

∂2u
∂x∂y

)
+ µ

(
∂2v
∂y2 +

∂2v
∂x2

)
+ Fy = 0 (13)

The numerical approach being used to solve this system is the same irrespective of
the assumption chosen to represent the thickness dimension, utilising a Finite Volume
Structural Mechanics Solver (FVSMS) which stores the displacements at the cell faces.
While it is somewhat unusual to use Finite Volume Methods for structural mechanics, there
have been many studies which have found the method to be comparable in accuracy to the
more popular Finite Element Method [34–36], while synergising better for the purposes
of coupling the structural mechanics process to flow and solidification. This implementa-
tion treats structural mechanics as a quasi-stationary process where only displacements
occurring since the previous call of the FVSMS are calculated, requiring body forces to act
transiently such that rather than considering the total force acting upon a structure, only
the changes in the forces since the previous timestep are applied.

The structural mechanics is coupled to solidification using the displacements at a
given timestep to alter the crystallographic orientation of the dendrite. This is done locally
for each volume comprising the dendrite such that orientations observed throughout a
single dendrite can vary dramatically depending on how much displacement a region of
the dendrite experiences. This is implemented in the same manner as employed in previous
work, where it has been applied to both 2D [28] and 3D [29] problems. For prior 3D work
the displacements were used to obtain three extrinsic rotations θx, θy and θz around their
corresponding axes that combined to describe a 3D orientation change, but for the results
presented here the orientation changes around the x and y axes are ignored for easier
comparison with the 2D solutions. This is required because, even though a single fixed
body force acting acting upon the structure primarily alters the orientation around only
one axis, over the course of a simulation the orientation change around the other two
axes can still accumulate to a significant enough degree that visible 3D behaviour such as
twisting and out-of-plane bending can occur which makes comparison between the final
microstructures less obvious.

Consequently, for the cases being examined in this paper, the only change in cell orien-
tation being calculated will be around the z axis in 3D, which is also the only orientation
change requiring calculation in 2D problems. This rotation is calculated for each volume
of the structure by summing the displacements to form an arc between the initial and
displaced position of a point in the centre of the face of the volume as demonstrated in
Figure 1, defining the change in rotation around z as

∆θz =
1

2∆x
(ve − vw − un + us) ≈

1
2

(
∂v
∂x
− ∂u

∂y

)
, (14)
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where the subscripts e, w, n and s indicate that the displacements being used are spatially
located respectively at the East, West, North and South faces of the volume. For the duration
of any simulations presented in this paper ∆θx = ∆θy = 0 throughout the structure, either
by definition for 2D cases or being fixed at these values for 3D cases.

Figure 1. Displacement-derived arc construction used to calculate ∆θz. The face of the volume chosen
is arbitrary and does not alter the angle calculated.

To summarise the numerical approach being used, the CA method will calculate the
microstructural evolution, causing changes to the material properties as well as the body
force being applied to the structure when structural mechanics is solved. The FVSMS
generates displacements which are used to calculate changes to the local crystallographic
orientations, which then alter how the CA method develops until structural mechanics is
next solved.

3. Modelling Set-Up

The relevant material properties and problem setup values used for all cases can be
found in Table 1, which are analogous to those used for experiments with a semi-solid
Ga-25 wt%-In alloy, chosen to provide easier comparison with earlier work published by
Soar et al. [28]. The domain used for all cases presented has a width of 6.4 mm and a
height of 1.6 mm. The depth of the domain depends on the case being modelled, with 2D
solutions having no depth directly modelled (though the equations for plane stress assume
an infinitesimally thin structure and plane strain assume it is infinitely thick), thin sample
simulations have a depth of 0.2 mm and all other 3D simulations have a depth of 1.6 mm.
These domains are all divided into square (2D) or cubic (3D) volumes with a cell size of
∆x = 10 µm. It should be noted that while cases will be referred to as ‘thin sample’ and
‘3D’, this is simply for convenience as ‘thin sample’ cases are still fully modelled in 3D for
both structural mechanics and solidification.

For ease of comparison, all cases presented are using the same fixed uniform body force
of Fy = 30 MN/m3, with the other body force components set Fx = Fz = 0 N/m3. This force
had to be chosen rather arbitrarily due to the paucity of documented information about
the mechanical properties of a single dendrite or the magnitude of any forces experienced
in cases where significant bending has been observed in experiments. This represents a
system with a 1:1 ratio between force and Young’s Modulus, this force being found to
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induce significant and visually distinct displacements for easy visual comparisons despite
the relatively small modelling domains.

The temperature is defined for all cases assuming nucleation occurs at a small initial
undercooling of 5 K below the liquidus temperature starting at the west wall. The tem-
perature increases with a constant temperature gradient of 1 K mm−1 aligned with the x
axis through the rest of the domain. The system then cools at a constant rate of 0.01 K s−1

throughout the simulation. As the temperature variations are small at the microscale for
this setup, the effect of thermal expansion has been neglected and the material properties
have been assumed to be temperature independent.

It should be noted that as there is a linear relationship between the applied force and
Young’s modulus, increasing or decreasing both quantities by the same amount will cause
the same displacement to be predicted, meaning that the results presented apply to a whole
family of solutions with the same ratio of E:F, making the exact values being chosen here
somewhat arbitrary. The boundary conditions used are also the same for all domains, with
the west wall where the dendrite is seeded using a fixed Dirichlet condition to anchor
the structure and the north, south, high and low boundaries periodic for both structural
mechanics and solidification such that the system could be considered as being part of a
larger sample growing under the same conditions.

Table 1. Material properties and problem setup values used for simulations.

Property Variable Value Unit

Cooling Rate Q 0.01 K s−1

Density Liquid ρl 6326 kg m−3

Density Solid ρs 6673 kg m−3

Poisson’s Ratio η 0.3 −
Thermal Gradient ∇T 1 K mm−1

Timestep ∆t 5 ms
Young’s Modulus E 30 MPa

4. Validation

Before examining how 2D assumptions alter the behaviour of coupled structural
mechanics and microstructure solidification, it seemed prudent to model cases using only
the structural mechanics solver to remove solidification as a factor. This serves not only
to validate the accuracy of the solutions for the three sets of governing equations but also
provides a baseline for the impact of 2D assumptions on structural behaviour which will
be instructive to refer back to when exploring the interactions of these assumptions with
growing dendrites.

A cantilever beam structure was modelled with dimensions 6 mm× 1.2 mm× 1.2 mm.
This was fixed to the centre of the western wall of the domain and had a uniformly
distributed body force applied using the same structural material properties as defined
above for the dendrites. A cantilever beam was chosen for this validation case for multiple
reasons. With these dimensions the beam structure should be as similar in aspect ratio
to the dendrites that will be modelled as can be achieved with a single geometric shape.
Furthermore, in the literature both for modelling and when interpreting experiments,
many authors have published results where an analogy was made that a single columnar
dendrite behaves like a cantilever beam [19–21,24], making the results of a deforming
beam a natural baseline reference for the fully coupled behaviour presented in the results.
Another benefit of modelling a cantilever beam is that its behaviour can also be represented
using the Euler–Bernoulli beam theory to derive a 1D analytic solution which accounts for
the thickness of the beam. The process of deriving these analytic solutions along with any
corresponding assumptions have been covered in detail in many other places [37], but for
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the purposes of this validation it is sufficient to know that the displacement (v) along the
beam experiencing a uniform load can be calculated at any given point x using

v(x) =
F

24EI
(6L2x2 − 4Lx3 + x4), (15)

where I is the second moment of area for the beam’s cross section and L is the total length
of the beam.

The results for the displacement v were calculated for beams using the analytic solution,
2D plane strain, 2D plane stress and in 3D, with the resulting displacements observed along
the entire length of the beam being shown in Figure 2. Note that while displacements in x
were calculated in all cases other than in the analytic solution, and displacements in z were
calculated in 3D, these have been omitted due to being relatively insignificant in magnitude
and as there are no means of comparing them with the analytic solution. Looking at the
results it can be seen that the 3D modelling provides a very close match to the analytic
solution, with 2D plane stress under-predicting the displacement slightly and the 2D plane
strain solution predicting a significantly lower displacement than even the plane stress
solution. However, all cases show similar behaviour and the displacements obtained are
all of the same order of magnitude, with the displacement at the tip of the beam varying
by less than 10% of displacements obtained from the beam theory solution even for the
2D cases. This indicates that while there may be a degree of systematic under prediction
when using 2D modelling assumptions which could prove to be significant in some cases,
all governing equations nevertheless provide a reasonably accurate stationary solution for
the displacements of a structure.

Figure 2. Comparison of displacements calculated along the length of a beam calculated using
different modelling assumptions.

5. Results and Discussion

A natural extension of the beam validation results is to examine how the calculated
displacements of dendrites are altered by using different modelling assumptions within
an uncoupled framework. The results in this section will be examples of post processing,
where the structural mechanics provides a prediction of how a structure reacts to external
forces, but structural mechanics is not considered as a factor which will influence the
growth behaviour of the dendrites at any point.

Four cases were examined, using the problem domain dimensions outlined in the
Modelling set-up section: 2D plane strain, 2D plane stress, thin sample and 3D, with the
corresponding microstructures of dendrites grown to a length of approximately 6 mm with
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a crystallographic orientation of 10° using these modelling assumptions being provided
in Figure 3. From these results it is immediately obvious how the different modelling
assumptions alter the solidification behaviour of the dendrite by constraining the solute
diffusion, with the 2D dendrite being more needle-like with less developed secondary
arms than either of the 3D results where the extra dimension allows solute to escape
far more easily. However, the constriction of the thin sample clearly has an impact on
solute diffusion despite being modelled in 3D, as while still clearly different, there are
qualitative similarities between the thin sample and 2D microstructures such as more
similar secondary arm lengths and spacing than can be observed in the 3D dendrite. This
problem of constrained solute diffusion is also a factor in the growth time, as it takes
approximately twice as long for a dendrite modelled in 2D to reach a comparable length to
a 3D dendrite. To account for this in comparisons, 2D dendrites will be grown for twice as
long as the 3D dendrite they are compared to.

Figure 3. Final microstructures of simulated dendrites grown to 6 mm under different modelling
assumptions. Top: concentration profile of a 2D dendrite (used for plane stress and strain). Middle:
3D surface of a dendrite grown in a thin sample. Bottom: 3D surface of a dendrite grown in a normal
width sample.

To explore the deformation behaviour of these dendrites throughout solidification,
the dendrites were post-processed at fixed time intervals to calculate the displacement
value at the tip, which has been plotted for all four cases up to 800 s/1600 s (3D/2D) in
Figure 4. The transient behaviour here shows that the 3D and thin sample displacements
are almost identical until around 400 s, where their behaviour radically diverges as the
thin sample displacements continue smoothly increasing according to a power law O(t5),
while the 3D solution only increases by a small amount for the rest of the simulation. The
reason for this becomes obvious when considering the 3D microstructure in Figure 3, as the
secondary arms have become sufficiently developed that they are interacting with those of
other dendrites due to the periodic boundary conditions, constraining deformation along
the length of the dendrite other than a relatively small region near the tip which remains
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free. Consequently, rather than acting like a cantilever beam, only the parts of the dendrite
which are ahead of the point of the secondary arm interaction are able to move freely.
The length of this region of free movement stays approximately the same irrespective of
the total length of the dendrite, meaning that the displacements at the dendrite tip stop
changing other than by a slight linear trend caused by the small displacements which occur
within the growing constrained region of the dendrite. In comparison, the secondary arms
of the thin sample dendrite do not interact with other dendrites and have significant gaps
in the secondary arm spacing that makes the dendrite more susceptible to bending than a
continuous beam structure of the same length such as those examined in the validation.

The same morphological considerations apply to the 2D dendrites, with even less
developed secondary arms and larger arm spacing than the thin sample case making the
2D dendrite even more susceptible to bending. The deformations over time for the 2D
solutions are also significantly different to those observed in either of the 3D simulations,
likely due to the different speed and morphological evolution behaviour experienced in 2D
solidification, where early in the simulation the tip displacement is significantly smaller
than that observed in 3D, but after around 900 s the changes in tip deformation move
into a mode which increases according to a power law of O(t6.5). This leads to both 2D
assumptions overtaking even the thin sample case by the end of the simulations, despite
the fact that the 2D assumptions should cause the displacements of otherwise identical
structures to be underestimated as indicated by the beam validation in Figure 2.

While the beam validation demonstrates that modelling assumptions can alter the
observed displacements by up to 10%, this seems relatively minor when compared to the
structural mechanical behaviour observed over time in solidified dendrites as shown in
Figure 4. Clearly the interaction of structural mechanics with solidification to alter dendrite
morphology and the different growth speeds can have a far more significant impact to the
displacements obtained than can be accounted for by the comparatively minor systematic
error caused by 2D structural mechanical modelling assumptions.

Figure 4. Total displacements observed at the tip of dendrites grown using different modelling
assumptions. Different time scales are used for 3D/2D comparison as the constrained diffusion in 2D
approximately halves the growth speed.

The final case examines coupled dendrite growth and structural mechanics, using the
methodology previously described where the crystallographic orientation of a dendrite is
updated using the displacements obtained throughout the simulation. The dendrites in this
simulation were grown for 800 s/1600 s (3D/2D) with results showing the concentration
profile for each case provided in Figure 5 and the 3D dendrite morphologies more clearly
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shown in Figure 6. These solute concentration profiles highlight that 2D solidification has
less efficient diffusion, with both 2D solutions showing a significantly higher solute concen-
tration than either 3D case. Much as in the uncoupled cases shown in Figure 3 this leads to
approximately halved growth velocities in 2D and significant morphological changes.

Figure 5. Concentration profiles of dendrites grown under a constant force using different modelling
assumptions at the end of the final time 800 s/1600 s (3D/2D). In descending order results correspond
to the following modelling assumptions: 2D with plain strain; 2D with plane stress; 3D in a thin
sample; 3D in a normal width sample.

All of the dendrites were seeded with an initial orientation of 20°, which is continually
changed by the displacements throughout the simulation. Comparing the two 2D simu-
lations, the final orientation observed at the tip of the dendrite grown with plane strain
assumptions is −67°. However the larger displacements obtained due to the plane stress
assumptions seem to have compounded during the course of the simulation to cause a
significantly larger final orientation of −90° at the tip. The final tip orientation observed
for the thin sample case is −52°, with the reduced deformation being down to the more
developed secondary arms constraining deformation more than either 2D examples, though
there are some qualitative similarities in the final microstructures of the thin sample and 2D
plane strain cases. The 3D case has a comparatively much smaller final tip orientation of
−20°, which is again attributable to having significantly more developed secondary arms
than even the thin sample case. Much as in the uncoupled 3D case, these are not only much
coarser but also interact with the secondary arms of other dendrites due to the periodic
boundaries, constraining the dendrite along most of the primary arm and only leaving a
relatively small region near the tip free to move.
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Figure 6. 3D surfaces showing the microstructure of a dendrite grown under a constant force in a
thin sample simulation (top) and a 3D simulation (bottom).

A better understanding of the transient behaviour of these coupled simulations can
be gained by considering how the orientation at the tip of these dendrites changes over
time as they grow under a constant force. This can be seen in Figure 7 and as the change
in orientation over time can be thought of as a derivative of the displacements it is not
surprising that there are some similar relationships to those seen in the post-processed
cases in Figure 4. However due to the morphology of the dendrites changing over time the
tip orientation in these coupled cases has further complications. For the 3D cases there is
again a very good matching of tip orientation until around 550 s with the rate of orientation
change for both cases following a power law of O(t2). At this point the thin sample case
shifts into a different mode where the orientation change becomes O(t3). However the
orientation observed in the 3D case begins to change at an approximately linear rate as
around this time secondary arm interaction begins. Much as in the post processed cases,
this means that only a relatively small region near the tip ahead of the arm interaction is
free to move and hence the rate of orientation change becomes approximately constant
rather than increasing with the length as would be expected of a cantilever beam.

The 2D cases follow the same general trend as that observed in the post processed
cases in Figure 4, with the the rate of orientation change for both 2D assumptions being
significantly less than the 3D cases for the first half of the simulation, then rapidly increasing
such that by the end of the simulation both of the 2D cases have changed orientation
significantly more than either 3D case, though plane strain is again consistently smaller than
plane stress for the duration of the simulation. The orientation for the 2D cases increases
approximately exponentially with time, highlighting that while the thin sample and plane
strain cases are qualitatively similar in microstructural morphology and tip orientation at
the end of this simulation, that appears to be largely coincidental and significant differences
would soon become apparent if the simulation had continued due to the different modes of
orientation change being followed by each case. Regardless, while 2D dendrites are usually
a sub-optimal approximation for any types of 3D dendrite, this does indicate that if 2D
modelling must be used the best qualitative comparisons can be made between thin sample
experiments and 2D dendrites modelled using plane strain assumptions.
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Figure 7. Orientation observed at the tip of dendrites grown using different modelling assumptions.
Different time scales are used for 3D/2D comparison as the constrained diffusion in 2D approximately
halves the growth speed.

These results all combine to underline the complex non-linear nature of coupled
solidification with structural mechanics, as while a single columnar dendrite may act
analogously to a cantilever beam when considered in isolation as a post processed structure,
the interaction with other dendrites and the impact of a structure becoming misorientated
while it solidifies can lead to far more complex behaviour than can be explained by the
cantilever beam analogy. This becomes even more significant when considering the impact
of 2D vs. 3D simulations, as the impact of these modelling assumptions on the solidification
process causes morphological differences for the dendrites that means they behave in an
opposite manner than would be expected from the beam validation. The validation using
beams analogous in cross section to the dendrites show that 2D assumptions cause an under
prediction of displacements compared to reality, however this under prediction is far less
significant than the morphological changes which make 2D dendrites far more susceptible
to bending, leading 2D dendrites to displace and misorient more than the 3D dendrites in
both the post processing and fully coupled cases. Furthermore, any case modelled in 2D
ignores the intrinsic 3D behaviour such as the ability to twist, bend out of plane or pass
through the sample due to misalignment which is known to occur during the solidification
process in reality. All of these factors combine to make any conclusions drawn from 2D
modelling about the structural mechanical behaviour of growing dendrites of limited use
for all but the most general of qualitative observations.

6. Conclusions

When numerically modelling microstructure solidification, 2D simulations are often
run due to the significantly lower computation cost required to obtain solutions at a
relevant scale. However, the 2D assumptions impact diffusion behaviour to alter the
dendrite morphology such that generally only qualitative matches can be obtained. The
impact of this is only exacerbated when modelling other processes which interact with
solidification, each of which include additional assumptions to function in 2D that cause
the results to be even further abstracted from the 3D reality.

Modelling microstructure solidification with structural mechanics is a complex non-
linear process that, when considered at all, has largely been explored in 2D simulations. A
validation case using cantilever beams with a cross section analogous to the dendrites being
modelled indicate that 2D modelling assumptions cause the displacements to be underpre-
dicted. However testing the structural mechanical behaviour of simulated dendrites being
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both post processed and fully coupled to solidification has indicated that the real picture
is more complex, with the changes in dendrite morphology caused by 2D solidification
modelling assumptions making 2D dendrites far more susceptible to bending than their 3D
counterparts. This remains the case even in thin sample experiments which are generally
considered to be essentially 2D in behaviour due to the small width limiting many 3D
behaviours. Despite 2D and thin sample microstructures being somewhat similar in a
qualitative sense, the diffusion behaviour is still significantly different, leading to slower
growing and much less developed dendrites in 2D that are more prone to deformation than
the reality.

Consequently, while 2D modelling may sometimes be sufficient to qualitatively explore
the fundamental behaviour of coupled structural mechanics and microstructure solidifica-
tion, any quantitative match with experiments will be impossible without modelling the
system in 3D.
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