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Abstract: Detection of defective crystal structures can help in refute such defective structures to
decrease industrial defects. In our research, we are concerned with Silicon nitride crystals. There
are four types of crystal structure classes, namely no-defect structures, pristine crystal structures,
defective random displacement crystal structures, and defective 25% vacancies crystal structures. This
paper proposes a deep learning model to detect the four types of crystal structures with high accuracy
and precision. The proposed model consists of both classification and regression models with a new
loss function definition. After training both models, the features extracted are fused and utilized as
an input to a perceptron classifier to identify the four types of crystal structures. A novel dense neural
network (DNN) is proposed with a multitasking tactic. The developed multitask tactic is validated
using a dataset of 16,000 crystal structures, with 30% highly defective crystals. Crystal structure
images are captured under cobalt blue light. The multitask DNN model achieves an accuracy and
precision of 97% and 96% respectively. Also, the average area under the curve (AUC) is 0.96 on
average, which outperforms existing detection methods for crystal structures. The experiments depict
the computational time comparison of a single training epoch of our model versus state-of-the-art
models. the training computational time is performed using crystal structures diffraction image
S;,?Ia(tz)sr database of twelve image batches. It can be realized that the prediction computational time of our
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o 1. Introduction
Academic Editor: Dezhen Xue

Crystal structure erosions in Silicon nitride can yield defect products in many areas
such as drugs and chemical industrial products. Defect crystal structures that are caused
by the erosion of the surface can be detected from diffraction images. Detection of crystal
structures at their early industrial stages decrease the risk of defective products greatly.
Publisher’s Note: MDPI stays neutral ~ With the development of cobalt blue light photography, crystal structures can be detected
with regard to jurisdictional claimsin  at their early industrial stages in a low-cost method [1-4].
published maps and institutional affil- Most cases of crystal structures, especially the defective 25% vacancies one, need to be
iations. detected for getting rid of them. There are two major types or classes of crystal structures:

non-proliferating basal crystal structures (NP-crystal structures) and proliferating basal
crystal structures (P-crystal structures) [2]. NP-crystal structures are classified into three
- types: (i) pristine NP-crystal structures, which appear very early, and defective random
NP-crystal structures. P-crystal structures are the defective 25% vacancies phase of crystal
structures. Thus, crystal structures are ranked into four types, namely: No-defect structures,
pristine crystal structures, defective random displacement crystal structures, and defective
25% vacancies crystal structures [5,6].
Attribution (CC BY) license (https:// Figure 1 shows images of the normal surface and different severity of defected cases
creativecommons.org licenses /by/ of crystal structures. The main issue of crystal structure defects includes the difficulty of
10/). recognizing light-defect types. There are lots of similarities among pristine and sometimes
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Pristine structure

defective random displacement cases in the diffraction images. If crystal structures are left
to proceed to the defective 25% vacancy types, industrial defects can occur [7].

Defected structure: Defected structure:
random displacements 25% vacancies

Figure 1. (top) Images of Pristine surface and different severity cases of crystal structures [5] (bottom)
Diffraction structure of normal surface and different severity cases of crystal structures.

Many models have been proposed in the literature for the computerized classification
of crystal structures. In the previous models, automatic identification of defects of crystal
structure surfaces have been proposed. Detection of irregularities and rupture of crystals
in images was presented in [6,7]. In incidents of micro-defect recognition, computerized
image processing techniques were presented in [8-11]. Several models for vacancy classes
in phosphorus light images were proposed in [12-16], and the detection of crystal structures
lesions was accomplished for the crystal structures image dataset in [17].

Deep learning architectures and image processing were used for crystal structure
automated detection [17-20]. In [17], a region convolutional network (R-CNN) for crystal
structure detection and classifying into binary cases was established. In [18], a fusion deep
learning model was developed to detect damage in images from the dataset in [21].

Previous works developed the detection and classification of crystal structure types.
These types of work introduce classification as a conventional image processing architec-
ture where experts selected features are deliberated [22-26]. In [27], the authors proposed
a technique using random forest on selected handcrafted features to detect the severity
of defects in crystal structures. In [28], a crystal structures taxonomy was implemented
utilizing BossaNova vector mid-level that represents the Bags of Visual features. In [29], a
dual-stage handcrafted feature selection was used: one stage for identifying the existence
of defects in the crystal structures and then detecting the severity phase. A bag of features
method was established for crystal structure classes by using the orientated histogram gra-
dients in. In [30], both dual and multi-classification were attained by using multiresolution
Horlick features.

Deep learning methods and neural networks have produced much success in the clas-
sification challenge due to their learning abilities without prior feature knowledge [31-33].
In [31], a CNN model was used for the dual classification of crystal structures from diffrac-
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tion surface images, that focus on binary crystal structures output as yes or no defect-
existence. In [32], the Efficient-B5 CNN was utilized for classification, and binocular images
for both surfaces (up and down surfaces) were used as inputs to the transfer learning
architecture. In [33], a Deep CNN for distinguishing two cases of normal crystal structures
and No-defect structures was perceived. In [34], the surface images were entered into two
Deep CNN architectures with each one performing a binary grouping of crystal structures.
In [35], a CNN smartphone model was built for the classification of crystal structures at
enhanced speed.

Identification of several cases of crystal structures was employed in [36—40]. In [40],
a Deep-CNN for four-cases identification of crystal structures was employed. A hyper-
parameter was performed in the V4 model to acquire four cases of crystal structures in [36].
A deep CNN was employed to detect the four cases of crystal structures in [37], where
a Feed Forward CNN and a deep CNN were employed in the CrysPACS database for
crystal structure identification. In [38], deep learning models (AleXNet and ResNet) were
matched for crystal structure grouping using the Kaggle database with VggNet for the
highest accuracy. A transfer learning app using a pre-trained model was constructed to
identify four cases of crystal structures in [39]. This app executes in real-time using crystal
structures images that are taken via special lenses that are attached to the cameras.

Recent research utilized the fusion of two deep learning stages for the crystal structures
classification. In [39,40], the incorporation of two deep learning stages was utilized to
identify the presence or absence of crystal structures, referable crystal structures, and crystal
structures-sight-threatening crystal structures. In [39], a fusion of two pre-trained deep
CNNs, namely Resnet50 and Densel21, were employed for crystal structure classification.
All of this research considered the fusion of more than one classification CNN models,
but none of them employ regression techniques that can determine which features have
the higher impact on the classification process. It should be noted that the stated crystal
structures classification research reported defective random displacement accuracy. Other
papers suggested multitasking CNN for image analysis with lesion industrial tasks. In [40],
a semi-supervised CNN is proposed for multitasking segmentation with the simultaneous
splitting of red abrasions in surface images. In [41], an area multitask detection model was
presented to detect various defects of the crystal structure types.

In this research, we proposed a multitasking fusion deep CNN for classifying diffrac-
tion images into the four-crystal structure types from no-defect structures to defective
25% vacancies crystal structures. There is a dependency across the four crystal structure
types. This dependency across the types can be computed using a regression model in the
direction of accurate classifying. We proposed a multitasking fusion model comprising
a regression computational model and a classification model to detect the four crystal
structure types. The classifier differentiates between the crystal structure classes utilizing a
sole loss function. Our deep model utilizes a twofold loss function, the first fold is utilized
in the classifier and the other fold is used in the regression model which increases accuracy
to a great extent.

The contribution of this paper is as follows:

e A densely connected CNN accompanied by a squeeze layer is proposed to build a
multitasking fusion model.
The squeeze layers have the advantage of differentiating channel dependencies.
A Perceptron layer is utilized at the end to perceive the four crystal structure types of
crystal structures from the features selected by a classifier and the regression phase.
e  We also incorporate transfer learning and a public dataset to assess the performance
of the proposed model.

This paper is structured as follows: Section 2 describes the methods and materials.
In Section 3, experimental results are demonstrated. Section 4 depicts the conclusion and
future work.
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2. Methods and Materials

In this section, we are proposing a crystal structures classification model. The next
subsections will represent the types of the proposed technique.

2.1. The Multitasking Classification Model

Crystal structures develop from lower to higher severity levels yielding a dependency
between progressive types. Regression can investigate the dependency between the types.
Therefore, we propose a multitasking classification model with regression to classify the
four types of crystal structures.

The multitasking classifier can differentiate between the four types, while the regres-
sion learns the interrelation among the four types. The classifier performs its job using
one or more loss functions [14]. Our proposed model utilizes two loss functions namely
the entropy and the square error (SEF) functions the first one is used for the classification
while the latter is used for the regression. The regression technique is trained on the crystal
structures image dataset utilizing a linear activation and the classifier is trained individually
by using a Softmax function [1-4], as depicted by the following equations:

N
Entropy = — ) " t; log(p;) 1)

__Ltywm
SEF = NZ,‘ (ti — pi) ()

where, p; and t; are the predicted true values, respectively. N is the number of
different classes. ‘
ex(0)

;.":1 eo‘(j)

Softmax(i) = j=1,2,....,m (3)
where m is the number of classes, and « is the output of the final connected layer. The
probability of the classifier output is between zero and one.

The classifier generates four scores that are added to one equivalent to the four classes
of crystal structures. The regression has only one output concerning the defect severity
of the crystal structures case. The regression is trained with the outputs zero for No-
defect structures, 0.3 for the pristine crystal structures case, 0.6 for the defective random
displacement, and 0.9 for the defective 25% vacancies case. Therefore, the regression
algorithm outputs only one value indicating one of four crystal structure types. Features
extracted by the classifier and the regressor are fused and fed into the final perceptron layer
for the concluding classification. The proposed model is depicted in Figure 2.

2.2. Implementation of the Deep Learning Model
2.2.1. The Multitasking Network (Mtask)

An improved dense CNN (Dns-Net) is employed for the multitasking model. A Dns-
Net is combined with a squeeze-excitation (SQE) [11]. The SQE architecture has a block for
interdependencies improvements to enhance performance.

The Multitasking Connected Network (Mtask) consists of dense classification and
regression models, and a multitask classifier. The architecture of the developed Mtask is
depicted in Figure 3.
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Input the image of the defraction crystal image

Classifier Regression model

Output Fusion Stage

The regression model outputs zero for normal structures, 0.3
for the mild crystal structures case, 0.6 for the moderate, and
0.9 for the severe case.

The Classifier outputs scores corrosponding to the crystal
structures case, the sum of the scores are 1

Feature Fusion

Final Classification

Figure 2. The proposed classifier and regression model, the images of the diffraction crystal images
are fed as input for both the classifier and the regression model, and the outputs from both models
are then fused.

Dense Classifier
Dns-Net with Squeeze- Regression using Square
Excitation Layer using Error Loss Function
Entropy Loss Function

Feature Fusion

¥

Final Perceptron
Classification
Layer

¥

Four Defect Classes

A 4
-

Figure 3. The Multitasking connected network with feature fusion from the squeeze model and the
regression model where the classifier can predict the four classes for the input crystals.

2.2.2. Architecture

Dns-Net consists of seven dense layers and six transition layers in between the dense
layers. In each dense layer, the SQE module is continual for 8 times. An SQE module has a
normalization layer, a 3 X 3 convolution layer, and a ReLU activation function. An SQE
model has average pooling, and excitation layers with two convolution layers, where the
first layer is tailed by a ReLU and the second layer is tailed by a sigmoid activation function.
Channels in the SQE are downsized to one value utilizing average pooling. The SQE input
is scaled utilizing the weight computed from the SQE. Down-sizing is attained by the
in-between layers. A transition layer is made of normalization, ReLU, and average pooling.
And an SQE layer. The final fully connected layer is replaced with a 3 x 3 convolution
layer to lessen the parameters.
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The growth of the Dns-Net is set to 184 and 15, respectively. There are two x growth
filters for the initial convolution layer, while the number of filters is two x growth x
compression for the dense and transition blocks. The compression ratio is set to 0.6.

In the multitasking model, classification regression models are pooled to enhance the
fused features. Figure 4 demonstrates the fusion of the regression and the classifier outputs.
Outputs from the final pooling layer of the classifier are fused with the outputs of the final
regression. The CNN finishes with a fully connected layer and has a Sofomax output layer.

Transfer [ earning

Descriptor B®  Structures &

e test

Figure 4. Transfer Learning Model.

2.2.3. Training

The Dns-Net model is trained using 280 epochs and gradient descent optimization
techniques utilizing an entropy loss function. For the initial 180 epochs, the learning rate is
set to 0.0015 and the batch size is set to 3. For the following 50 epochs, the learning rate
is set to 0.0002. For the final epochs, the learning rate is further reduced to 0.00001. The
accuracy is computed in each epoch, and we stored the model with the maximum accuracy
using checkpoint callback. The output layer is a convolution with the activation function
Softmax that produces four scores corresponding to the four classes of crystal structures.

The proposed Dns-Net regression underwent 50 epochs of training. The adaptive
moment optimization technique with a 0.001 learning rate and mean square error function
are utilized in the learning phase. The output layer of the Dns-Net has a linear activation
score function of one output describing the severity of the crystal structures case.

After the fusion of the features from the classifier and the Dns-Net, a normalization
function is added to normalize the batch data. A normalization function is utilized to
increase the training speed and decrease the sensitivity. The entropy loss and the optimiza-
tion functions with a learning rate of 0.002 are used in the training phase of 60 epochs.
The learning rate is decreased by 0.1 every time the loss function is not decreased for four
epochs. The model with the best validation accuracy is selected.

The L2 regularization is used for the fully connected layers of the Dns-Net. The kernel
regularization guards the model from the overfitting problem.

2.2.4. Transfer Learning Model (TLM)

Due to the size of available training for deep learning, we incorporated transfer
learning in the model. The ImageNet neural network is tuned to employ the proposed
multitasking model to classify crystal structure severity.

The architecture of the TLM is built using depth convolutional separable learning
layers and encompasses entry, middle, and exit flows. Figure 4 depicts the TLM architecture.
Image data are used as input to the entry flow, then move to the middle flow of nine layers,
and the exiting through the exit flow, tailed with the batch normalization process. This
model has 42 feature extraction convolutional. The TLM model is trained with ImageNet
data set for 2000 classes with an accuracy of 82%.

In the model tuning, the TLM ImageNet stage is pre-trained and tuned for the regres-
sion phase with a single output class. The architecture of the TLM is depicted in Figure 4.
The last connected layer of the TLM is split and an additional pooling layer is used with
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linear activation. The optimization algorithm with a 0.002 learning rate and mean square
error function is utilized to train the model for 30 epochs. The dataset is divided into
smaller batches for training.

A second pre-trained TLM is tuned with images to classify the four cases of crystal
structures. The final connected layer is substituted by a pooling layer and a Softmax layer.
A dropout regularize layer is used prior to the output with a 0.75% keep rate. The loss
function and optimization with a 0.002 decay rate are utilized for training. The model with
the best accuracy was selected. The model is tuned for 35 epochs with a batch of size 16. If
the loss function is not decreased for five epochs, the learning rate is decreased by 0.2.

Features produces from the final pooling layer of the TLM model and regression
model are fused and used in the PL classifier. In the Dns-Net, the PL classifier in the
multitasking TLM network includes two fully connected Softmax layers at the final stage
to produce four scores for the cases of the crystal structures. Both the TLM network and
the PL classifier of Dns-Net use the same training parameter. The model with the highest
accuracy will be selected.

3. Experiments

The experiments were implemented on an NVIDIA Quadro workstation [42] with
twenty 3.3GHZ cores and RAM with a size of 64 GBs. The software used to program the
models was Python 3.7 with the deep learning Keras package, H5PY, and Scikit-Learn [43].
In the following sections, we will discuss the performance and the experimental results.

3.1. Performance

Performance was evaluated using five commonly used performance metrics of Preci-
sion, Accuracy, AUC curve, Recall, and F1 Score [18]. We also utilized the Weighted Kappa
coefficient for quality measure [19]. Precision and Recall are calculated for the four crystal
structure cases separately and then the average was used for the classification. For the
Kappa Score coefficient, the weight is defined as follows:

_ (=i (A
kappa = (N—1)2<E> 4)

where, A is the actual number of observations and E is the expected number, 7 and j are the
indices of the true and the predicted class, and N is the number of classes.

3.2. The Dataset

We utilized a public database of crystal diffraction images from the dataset in [21]
total of 16,000 images. All the images are frontal and backward diffraction of the surface.
3500 are No-Defect cases, 4500 of the images are pristine cases, 4000 images are of random
defects of crystal structures and 4000 of the attained images are defective of type 25%
vacancies. All the images are labeled by chemists for supervised learning. The dataset
includes images of resolution 1024 x 1024 for each surface.

3.3. Experimental Results

Three experiments are performed each experiment uses 80% of the images for training
and 20% for testing. The images are selected randomly for each experiment. Performance
metrics are depicted as confusion matrices for the first experiment (Exper-1) utilizing the
Dns-Net with and without TLM are depicted in Tables 1 and 2. The Precision, F1 Score,
Accuracy, Recall, and Kappa coefficient for Exper-1 are depicted in Table 3. As can be
drawn from these metrics, the TLM model upgraded the performance by nearly 4%.



Crystals 2022, 12, 1324 8 of 15

Table 1. Exper-1confusion matrix for Dns-Net without the transfer learning.

Predicted Cases
Defective Random  Defective 25% Total

No-Defect Pristine Displacement Vacancies
No-defect 3470 28 2 0 3500
Pristine 88 4410 2 0 4500
Actual Cases ~ Defectiverandom 86 3700 200 4000
displacement
Defective 25% 0 250 3750 4000
vacancies

Table 2. Exper-1 confusion matrix for Dns-Net with the transfer learning.

Predicted Cases
Defective Random  Defective 25% Total

No-Defect Pristine Displacement Vacancies
No-defect 3480 18 2 0 3500
Pristine 67 4440 3 0 4500
Actual Cases Def.ectlve random 14 86 3730 170 4000
displacement
Defectlve. 25% 0 0 230 3780 4000
vacancies

Table 3. Experimental Results.

Average Results

Model Accuracy % Sensitivity % Specificity % Error Rate
Dns-Net without the 91.7 86.9 90.1 0.092
transfer learning
Dns-Net with the 94.98 91.7 92.79 0.0473

transfer learning

The true positive and true negative cases of the second experiment (Exper-2) using
both models (Dsn-Net + regression model) with and without transfer learning are also
depicted in Tables 4 and 5. Whereas, the performance results of all cases are depicted in
Table 5. This experiment also demonstrates an increase in the performance of the regression
classifier model as depicted in Table 6.

Table 4. Exper-2 confusion matrix for Dns-Net + regression without transfer learning.

Predicted Cases
i i % Total
No-Defect Pristine Defe.ctlve Random Defectlve. 25%
Displacement Vacancies

No-defect 3490 8 2 0 3500

Pristine 38 4460 2 0 4500

Actual Cases ~ Defectiverandom 36 3900 50 4000
displacement

Defective 25% 0 0 50 3950 4000

vacancies
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Table 5. Exper-2 confusion matrix for Dns-Net + regression with transfer learning.
Predicted Cases
i i % Total
No-Defect Pristine Defe:ctlve Random Defectlve‘ 25%
Displacement Vacancies
No-defect 3498 2 0 0 3500
Pristine 18 4480 2 0 4500
Actual Cases Defective random 0 3970 30 4000
displacement
Defective 25% 0 20 3980 4000
vacancies
Table 6. Experimental Results for Exper-2.
Average Results
Model Accuracy %  Sensitivity %  Specificity %  Error Rate
Dns-Net + Regression Wlthout 95.7 95.9 951 00321
the transfer learning
Dns-Net + Regression with the 98.73 977 96.79 0.0219

transfer learning

The correlation between the severity of the actual and predicted cases of crystal
structures from diffraction photography of the surface is measured using Bland-Altman
Plot as depicted in Figure 5. Bland-Altman signifies the linear correlation between actual
and predicted amounts [43]. The following metric between actual and predicted crystal

structure classes show high similarity [44].

Bland-Altman Plot

(T RS S— S— N JURSUS. NS F—— H

R T S S AR SRS S S— b i

difference between two measures

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
average of two measures

Figure 5. The correlation between the severity of the actual and predicted cases of crystal structures

from diffraction photography of the surface measured using the Bland-Altman Plot which is a

difference against average.

The experiment results, in Figure 5, portray a linear correlation between the actual
and predicted classes by our proposed model. Bland-Altman denotes the high correlation
of two detects. The plotted Bland-Altman between the actual and predicted cases are

greatly similar.
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Figure 6 denotes the correlation between the computational ratio of the crystal struc-
tures severity of the predicted classes using the Dns-Net + regression with transfer learning
versus the actual ratio detected by experts.

Actual Ratio

Figure 6. The ratio of the crystal structure severity using the Dns-Net + regression with transfer
learning versus the actual ratio detected by experts.

This study indicates the effect of the size on the training set size on the correct pre-
diction. As we can see, the prediction accuracy increases with the size of the training set.
Figure 7 depicts the effect of the training set size on the prediction accuracy of the different
models against the ground truth.

B Ground Truth
W Dns-Net with Transfer learning
Dns-Net +Regression without Transfer learning

B Dns-Net +Regression with Transfer learning2

Figure 7. The effect of the training set size on the prediction accuracy of the different models against
the ground truth.

The AUC curve proves that the proposed model classifies among crystal structure
cases, we also computed the AUC curve for the Dns-Net model, as depicted in Figure 8.
The AUC function adds up the true and false positives as well as the false negative and
then plot them on the AUC graph. Also, the average precision and recall are plotted on
a graph. The areas under the AUC curve are 0.97 and 0.94, respectively which is a high
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value indicating the high performance of the proposed model. AUC curves in Figures 8-10
depict Precision versus recall of the Dns-Net model with regression inferring the transfer
learning effect.

True Positive Rate

ROC curve
1.01 Z—_T’ - ‘:7’
.--""- -~ l,f
0.8 pr- s
il ol
0.6 Fd L7
¢ L7
1 e
0.4 1 ’f ’/’
Fs
/ el
024 7
| &
s
.
e
0.0{ *
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8. AUC curve for the Dns-Net model, the greater the area under the curve the better accuracy.

True Positive Rate

Receiver Operating Characteristic of Control Predictors

0.8 1
0.6 1
0.4 1
4'..-
0.2 A1 5
-f ’;' — Dense net + regression + transfer
-/‘I " .
!.‘ P — Dense net + regression
I »
'i, /’ cene Dense net alone
0.0 - T T T T
0.0 0.2 0.4 0.6 0.8

False Positive Rate

1.0

Figure 9. AUC curve for the Dns-Net model with regression inferring the transfer learning effect, the

greater the area under the curve the better accuracy.
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Precision Recall Curve
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{=]
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—

|
N W\ Model (AUC)
. M ! — Dense net + regression

Dense net alone

N ! ~  Dense net + regression +
transfer learning

0.25 0.50 0.75 1.00

Recall

Figure 10. Precision versus recall of the Dns-Net model with regression inferring the transfer learning
effect, the precision increased with the transfer learning.

The highest area under the ROC curve is 0.98 for the normal case (no-defect structures).
The lowest area of 0.90 for the pristine case of crystal structures. By employing the weighting
means, we can produce balanced data which can enhance the accuracy. From the AUC plot
of our proposed model, the area under the curve for all the cases is higher than 0.91 which
reveals a high accuracy of the model.

Also, the transfer learning technique is found to be efficient. 80% of the dataset is
selected for the training of the model and 20% for testing.

3.4. Comparative Analysis

The performance analysis of the proposed architecture for the dataset in [21] is com-
pared with recent similar research. As can be understood from these results, the proposed
multitasking model produced the best performance for the classes of the four cases of
crystal structures. The performance comparison of our proposed model with works pre-
sented in [40,41] where the dataset in [21] was utilized. This comparative study confirms
the best performance was attained by the multitasking model with transfer learning. The
performance of the two proposed models is averaged for all of the experiments and is
depicted in Table 7.

Table 7. Experimental Results for Exper-2.

Model Accuracy % Sensitivity % Specificity % Error Rate Number of Classes
Dns-Net + Regression Wlthout 95.7 95.9 95.1 0.0321 4
the transfer learning
Dns-Net + Regressmp with the 98.73 977 96.79 0.0219 4
transfer learning
Model in [40] 88.12% 89.1% 90.1% 0.0481 2
Model in [41] 93.5% 94.7% 93.55 0.0412 4
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Figure 11 depicts the computational time in a single training epoch for diverse models
on the same dataset. the training computational time is influenced by both the database
and batch size, Figure 10 expresses the training computational time for a database of
1022 images with batches of twelve images as seen in Model 2 [40]. It can be realized that
the training time of the model in [41] (Model 1) takes the longest in training, 53 s, while the
training computational time of our multitasking model is at least 21 s. Also, it is seen that
transfer learning can reduce the computational time for training.

Ds-NET + Regression _

DS N
0 10 20 30 40 50 60 70

with transfer learning2 B without transfer learning

Figure 11. Prediction time of the Dns-Net model with regression inferring the transfer learning effect
versus other models.

4. Conclusions

In this research, we proposed a multitasking classification model for the crystal struc-
ture’s surface using the dense Dns-Net deep learning architecture. Two public datasets of
crystal structure diffraction images were utilized to train and test the proposed model. A
dense neural network (DNN) is proposed with better classification accuracy. The multitask
technique is tested by utilizing a dataset of 16,000 Silicon nitride crystal structures. The
dataset includes crystals with 30% highly defective crystals. The DNN model has a high
accuracy of 97% with a shorter classification time.

The experimental results demonstrate that the proposed model produced the best
performance compared to similar classification models. One of the main limitations of the
multitasking model as a deep learning model is the extensiveness of the datasets utilized
and the training time required with a large dataset. Nevertheless, as soon as the proposed
deep learning model is trained, it predicts a test image in little time, less than 0.4 s. Future
extension of this work will comprise the real-time requirements of this model to be installed
in clinical settings for LECD crystal structure inspection.

The limitation of this research is that it is restricted to one kind of material crystals as
it did not include four classes.
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