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Abstract: The rapid development of fusion-reactor technology calls for excellent anti-irradiation
materials. Complex concentrated alloy (CCA) is a newly proposed alloy concept which is a promising
candidate of nuclear fusion materials by virtue of its great phase stability under irradiation. This
article summarizes anti-radiation mechanism and the microstructure evolution in HEAs. The effec-
tive factors on irradiation behavior of HEAs, including entropy, sample size and temperature, are
discussed. Finally, the article introduces the potential ways to solve the economic and environmental
problems which the HEAs faced for their applications in the future. In summary, the HEAs usually
show better irradiation resistance than traditional alloys, such as less swelling, smaller size of defects,
and more stable mechanical properties. One possible reason for the irradiation resistance of HEA is
the self-healing effect induced by the high-entropy and atomic-level stress among the metal atoms.
The activation of the principal element should be considered when selecting components of HEA, and
the high throughput technique is a potential way to reduce the design and fabrication cost of HEAs.
It is reasonable to expect that coming years will see the application of novel HEAs in fusion reactors.

Keywords: high-entropy alloy; irradiation resistance; mechanical property; fusion reactor materials

1. Introduction

Nuclear energy is a green and sustainable power source, which can replace the fuel
energy and reduce the greenhouse effect on the earth. Nowadays, about 11% of the global
power supply is offered by nuclear reactors [1]. A fusion reactor is a future nuclear power
source, the energy of which comes from nuclear fusion, and it may theoretically generate
unlimited power with much less radiation waste. Up to now, the Tokamak is the most
well-studied approach to using fusion power. Figure 1 shows a typical tokamak device,
the ARIES-AT fusion power core. The high-temperature ionized plasma is magnetically
confined in a toroidal magnetic field, and the first-wall materials of the device, which
directly face the plasma, are irradiated by the heat high-energy neutron [2]. The devel-
opment of fusion reactors puts forward higher requirements for the radiation resistance
of materials because the neutron flux from high-temperature plasma is higher than from
fission reactions [3].

Complex concentrated alloys (CCAs) are novel solid-solution alloys that were pro-
posed in 2004 [4–6]. The CCAs usually consist of four or more principal elements, and the
content of each component is more than 5% [7–9]. The simple solid solution phases of CCAs
are stabilized by the high configurational entropy among the principal elements. By virtue
of special phase structure and cocktail effect of multiple principal elements, the CCAs are
reported to show outstanding properties such as abnormal mechanical properties, excellent
thermal stability, good corrosion resistance and high wear resistance [10–14]. Recently,
the irradiation resistance of CCAs attracts extension interest in the materials community
due to their good swelling tolerance and stable mechanical properties under irradiation.
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One possible reason for the excellent irradiation resistance of CCA is the self-healing effect
induced by atomic-level stress among metal atoms.
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of first wall suffer strong neutron flux.

This article reviews the recent progress of irradiation-resistant CCAs and introduces
the irradiation behaviors of CCAs, including the evolution of their microstructures and
mechanical properties under different irradiation conditions, and summarizes their anti-
irradiation mechanism under different conditions.

2. The Microstructure Evolution of CCA under Irradiation

The recombination of radiation-induced vacancies and interstitials is the key point to
good irradiation tolerance [16]. This section briefly introduces the anti-radiation mechanism
in CCAs and reviews their microstructure evolution under irradiation.

2.1. The Anti-Radiation Mechanism in CCA

Early in 2013, the high electron-irradiation damage tolerance was observed in near
equal atomic Zr-Hf-Nb alloys [17]. Egami et al. [18] explained the anti-radiation mechanism
of Zr-Hf-Nb by calculating their atomic-level stress using the density functional theory
(DFT), and predicted the high irradiation resistance of CCA. The atomic-level pressure of
CCAs derives from the intrinsic atomic size differences and the electronegativity [19], and
it can be defined as:
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where σ
αβ
i is atomic-level stress tensor of the ith atom, α and β are Cartesian coordinates, Vi

is the atomic volume of the ith atom, and f α
ij and rβ

ij are the two-body force and the distance
between the atoms i and j. Egami et al. [18] speculate that CCAs with the atomic-level
volume strain close to 0.1 are self-healing and highly irradiation resistant. Tong et al. [20]
revealed the local lattice distortion can be relaxed by lattice expansion in FeCoNiCr and
FeCoNiCrMn under low dose irradiation.

2.2. The Defect of CCA under Radiation

The lattice atom leaves the initial position after being bombarded by high-energy parti-
cles when alloys are subjected to irradiation, and results in the generation of a Frenkel pair.
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The accumulation and translocation of Frenkel pairs lead to the formation of complex defect
structures, such as point defect and line defect stacking defect tetrahedrons, dislocation
loops, precipitations, voids and He bubbles [21]. The defect growing in CCA is restrained
due to the self-healing effect, resulting in better irradiation resistance of CCA than conven-
tional alloys. Figure 2 displays the dislocation loops distribution in nickel-based CCAs
after irradiation. The alloys show denser and smaller dislocation loops with the increasing
mixing entropy. The single phase Al0.1CoCrFeNi exhibits great structure stability against
precipitate at ~43 dpa 3 MeV Au ion irradiation [22]. The stable stacking fault tetrahedron
forms in FeCrCoNi CCA under the high dose 1.5 MeV Ni ion irradiation [23]. Compared
with 304 SS and pure nickel, the CrMnFeCoNi CCA exhibits smallest helium bubble size
and densest stacking fault tetrahedron [24]. The vacancy formation is also difficult in CCA.
Xu et al. [25] studied the formation of vacancy clusters in CoCrFeMnNi CCA using first
principle calculation and experiment, and found it is difficult to form tri-vacancy clusters,
which is the reason for the good irradiation resistance of CCA.
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3. Mechanical Properties of CCA under Irradiation

The materials with irradiation defects, such as helium bubbles, irradiation hardening
and embrittlement, lead to the deterioration of mechanical properties such as strength and
toughness of materials and even failure, which seriously affects the safety of fusion reactors.
The nanostructures, such as precipitation and matrix damage induced by radiation, hinder
the dislocation slip and increase plastic deformation stress in CCA. As the result, the alloys
often show hardening and embrittlement after being irradiated. Figure 3 shows the tem-
perature dependence of mechanical properties of Ni-based CCAs. The yield and ultimate
strengths of NiCoCr, NiCoCrMn and FeNiCoCr have stronger temperature dependence
than NiCo and Ni, and the nature of the constituent elements can also affect the mechanical
properties of CCAs [27].
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The hardening is a common phenomenon in CCAs after irradiated, the reason of
which can be attributed to the irradiation-induced lattice damage and the defect formation.
For example, the hardness of CrMnFeCoNi is measured higher after irradiation at room
temperature [24]. The CoCrFeCuNi CCA exhibits notable hardening when irradiated
with a 100 keV He+ ion beam, due to the dislocation-dominated hardening effect [28].
However, the hardness of some CCAs have no big change after being irradiated. The
Ti2ZrHfV0.5Mo0.2 CCA designed by Lu et al. [29] shows almost no hardening after helium
ion irradiation.

Chen et al. [30] studied the helium bubble formation in CCA, which is the reason for
the helium embrittlement of nuclear structural materials. They found the helium bubble
size in FeCoNiCr CCA is smaller than in pure nickel and steel. However, the hardness of
V2.5Cr1.2WmoCo0.04 CCA decreases when irradiated at low temperature [31]. Jawaharram
et al. [32] measured irradiation-induced creep during 2.6 MeV Ag ion irradiation. The
irradiation induced creep enters the sink-limited regime at about 100 ◦C when the grain
size is smaller than 80 nm, and the creep compliance scales inversely with grain size.

4. Effective Factors on Irradiation Resistance of CCA

The irradiation CCAs need to present different shapes and compositions to suit the
complex serving environment in fusion reactors and their irradiation performance can be
affected by different conditions. This section discusses three attractive factors which are
effective on irradiation resistance of CCA, including alloying, irradiation of CCA films and
high-temperature irradiation on CCAs.
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4.1. Effect of Alloying

The contribution of entropy to irradiation properties is an interest in CCAs research
because high mixing entropy is a common characteristic of CCAs. The mixing entropy of
CCAs can be defined as [33]:

∆Smix = −R ∑n
i=1(ci ln ci), (3)

where the ci is mole percent of ith component in the alloy system, and R is the gas constant,
and n is the component number. According to Equation (3), it is easy to know that the
increase of component number can magnify the mixing entropy in CCAs. Therefore, the en-
tropy effect of multi-component alloy is notably higher than pure metals. In this way, Chen
et al. [34] compared He-bubble-formation resistance of FeCoNiCr alloy with pure nickel.
The CCA shows lower He bubble volume fraction than the nickel. Li et al. [35] simulated
the response of CoNiCrFeMn to nickel-atom bombardment via the molecular dynamics
method. The CCA has less dispersed point defect and can tolerate more bombardment
than pure nickel. These results prove the CCAs are more stable than pure nickel under
irradiation, and further research revealed the irradiation behaviour evolution of CCAs with
the increased component number.

Lu et al. [26] irradiated a series of single-phase Ni-based CCAs, including NiFe,
NiCoFe, NiCoFeCr and NiCoFeCrMn, with 3 MeV Ni2+ ions, and observed a higher
fraction of faulted loops in the alloys with more components, indicating the increasing
compositional complexity extends the incubation period and delay loop growth. Jin
et al. [36] studied the swelling of pure nickel and six Ni-based CCAs, and found the swelling
of nickel-contained alloy greatly depends on the compositional complexity of the alloys
(Figure 4a). However, the hardness has no-liner relationship with configuration entropy.
The NiCo binary alloy show about two times higher hardness than others (Figure 4b).
Zhang et al. [37] studied the effects of dose and temperature on void swelling in NiCoFeCr
CCAs, they found defect diffusion and radiation-induced segregation are affected by
chemical complexity. The Ab-initio MD simulations of interstitial atoms diffusion in Ni-
based CCAs indicated the diffusion occurs through preferential elements in CCAs, which
have influence on the phase stabilities under radiation [38].
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Besides the high-entropy effect caused by the component group, the addition of
single element also has influence on irradiation behavior, which commonly comes with the
transformation of microstructure. For example, the phase structure of AlxCoCrFeNi CCA
can transform from fcc structure to bcc structure with the increasing content of Al [39], so the
irradiation behavior of AlxCoCrFeNi greatly depends on the atomic percent of aluminum.
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The single fcc phase Al0.1CoCrFeNi CCA shows great phase stability against ~43 dpa
3 eM Au ion irradiation, whereas multiple phase CCA exhibits significant precipitation
under identical condition [22]. Furthermore, the defect clusters in disordered bcc and fcc
phases are found to be smaller than the ordered B2 phase under irradiation according to
the comparison between Al0.75CoCrFeNi and Al1.5CoCrFeNi [40].

4.2. Effect of Sample Size

The CCAs can be divided into bulk CCAs, CCA films, CCA wires and CCA powders
according to the dimension of their shapes [41]. The small size CCA may form nanocrys-
talline or amorphous phases due to the increased cooling rate during fabrication, so the
low dimensional CCAs show different properties with bulk CCAs. Recently, the irradi-
ation resistance of CCA films draws research interests due to their fine microstructures.
For example, the swelling resistance of Al1.5CoCrFeNi CCA film [42] is better than bulk
CCA materials, because the effect of ultra-fine nano-crystalline reduces the He cluster.
Zhang et al. [43] compared the thermal-induced and irradiation-induced grain growth in
nanocrystalline NiFeCoCrCu CCA films, and the fcc phase of CCA film is stable when
grain grows under the irradiation. Zhang et al. [44] investigated the interface stabilities
and mechanical properties of AlCrMoNbZr/(AlCrMoNbZr)N multilayer CCA coating
under helium ion irradiations. The multilayer CCA coatings show sharp interfaces between
different layers and form no helium bubbles after being irradiated. The crystallization
occurs in amorphous AlCrFeMoTi CCA coating after irradiated by 6 MeV Au ion beam
at high dose. The hardness of AlCrFeMoTi CCA coating increases obviously with the
increasing irradiation dose [45].

4.3. Effect of Temperature

The CCAs are reported to have fascinating properties at elevated temperatures, such
as excellent thermal stability, high yield strength and softening resistance, high wear
resistance, etc. The structural stability of CCAs at high temperatures derives from the low
Gibbs energy reduced by mixing entropy. The mixing Gibbs free energy of CCA can be
expressed as [46]:

∆Gmix = ∆Hmix − T∆Smix , (4)

here ∆Hmix is the mixing enthalpy, ∆Smix is the mixing entropy, and T is the absolute
temperature. According to Equation 4, the increasing temperature can magnify the effect of
entropy and reduce the Gibbs free energy of system, stabilizing solid solution in CCAs.

Yang et al. [47] compared He-ion irradiation resistance of CCA CrMnFeCoNi with
pure nickel and 304 SS at 450 ◦C, found the CCA has the best He-ion irradiation resistance,
due to the low He atom and point defect mobility. Yang et al. [48,49] studied the irradiation
response of Al0.1CoCrFeNi and Al0.3CoCrFeNi under 3 MeV Au ion irradiation at elevated
temperatures. The CCAs show no obvious phase transformation under high-temperature
ion irradiation, and the defect size increases when defect density decreases with the in-
creasing temperature in Al0.1CoCrFeNi (Figure 5). The dislocation loops of Al0.3CoCrFeNi
under irradiation transforms from predominantly faulted 1/3{1 1 1} dislocation loops to
a mixture of faulted 1/3{1 1 1} dislocation loops and perfect loops when the temperature
increase to 500 ◦C. Chen et al. [50] compared Al0.3CoCrFeNi and CoCrFeMnNi with 316H
SS at 300 ◦C with 1 MeV krypton ions to 1 dpa, and found the irradiation behaviors of
CCAs are similar to SS. The hardness of CrMnFeCoNi CCA is enhanced under helium
ion irradiation at 450 ◦C due to the increasing helium bubble size inside alloy [24]. Liu
et al. [51] studied the He-induced cavities evolution of nickel-contained equal atomic alloys
at 673, 773, 873 and 973 K, and found the increased component number can suppress the
growth of He cavities at 673 K.
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5. Future Trend

Although the researches on the irradiation of CCA have achieved a series of inspiring
results, most of the CCA can rarely serve as nuclear materials. Now the application of
CCAs on the fusion reactor meanly faced two big problems: low economic efficiency and
high radio activation.

5.1. Low Activation

The metal atoms are bombarded by the neutrons and generate the radio-active isotopes
inevitably when the alloys serve as fusion reactor materials. The long half-life period of
radioactive isotopes will increase the difficulties and cost to deal with these materials
after their service. Because the spent fuels of fusion reaction are negligible, the radiation
waste of fusion reactor meanly comes from the induced-radioactive materials. The low-
activation alloys, which meanly consist of short or medium lived metals, can reduce
radiation pollution and are more unfriendly to the environment. Therefore, the constituent
elements of ideal CCA should not only have a small atomic radius difference to form a
solid solution matrix, but also have low induced radioactivity. However, many CCAs
contain undesirable high-activation metals, such as cobalt, which can produce 60Co via
neutron-induced transmutation [52]. The low-activation metals are preferred to be selected
as principal elements of CCAs when designed as fusion reactor materials. For instance, the
low activation CCA of TiVZrTa and TiVCrTa show comparable mechanical properties and
increased irradiation resistance when compared with TiVNbTa [53]. After removing the
high-activation element cobalt in Cantor alloy, the medium entropy alloy FeCrNiMn shows
similar mechanical strength and phase stability to Fe-Cr-Ni, and its tensile mechanical
performance is comparable to SS at 60 ◦C up to 0.1 and 1 dpa neutron irradiation [54].
Zhang et al. [55] designed low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) CCA,
and VcrFeTa0.1W0.1 and VcrFeTa0.2W0.2 present excellent heat-softening resistance from
600 to 800 ◦C. The reduced-activity CCA of HfTaTiVZr shows stable microstructure with
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high hardness [56], the radiation-induced hardening of which is lower than SS under the
same irradiation conditions due to the self-healing effect of CCAs [57].

5.2. Low Cost

The CCAs are promising irradiation-resistant materials, whereas their applications are
limited by economic efficiency. The cost of CCAs meanly comes from raw materials and
the processing of the preparation.

Firstly, the minor additions of rare metals are common in traditional alloys and have
acceptable influence on the alloy price because the contents of these high-cost elements
are small. The material costs of alloys are considerable when rare metal plays a role as
a principal component. Although a great number of CCAs are designed to achieve as
high mixing entropy as possible, recent research shows that the properties of CCAs have a
non-linear relationship with the mixing entropy [47]. The development of non-equal atomic
CCAs partly solves this problem. For example, the high entropy steels (HESs) contain more
iron than normal high-entropy alloys, and the Fe50Mn30Co10Cr10 HESs overcome the trade-
off between strength and ductility due to the transformation-induced plasticity(TRIP) [58].
The increased content of cheap elements, such as iron, greatly reduced the total cost of raw
materials of CCAs.

The second cost comes from the development and preparation of novel CCAs, espe-
cially when searching the best combination of the principal elements. The high-throughput
technology, which is widely applied to the fabrication of materials, is a potential way
to reduce processing cost of CCAs. For example, Li et al. prepared Al-Zn-Li-Mg-Cu
light-weight entropic alloy [59] and AlxCoCrFeNi (x = 0, 0.3, 0.5, 0.75 and 1) CCAs [60]
with gradient grain size using super-gravity method. The co-sputtering technique can
be applied to phase screening of (CrFeV)-(TaW) low-activation CCA films [61] (Figure 6).
Parkin et al. [62] investigated the phase composition of for two potential radiation damage
tolerant CCA systems via high-throughput technique. They built the compositional library
via co-sputtering method, mapped the phase composition on the co-sputtered films, and
found the composition with a single-phase structure successfully.
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6. Summaries

The CCAs have broad application prospects with the growing nuclear industry and
can fulfill the future requirement of anti-irradiation materials. In this paper, the microstruc-
ture and mechanical property evolution of CCAs under irradiation are reviewed, and three
factors that are effective on irradiation behavior of CCAs, including entropy, size effect and
temperature, are discussed. In summary, the four core effects play different roles in irradia-
tion behavior of CCAs: the high-entropy effect, or so-called compositional complexity, can
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greatly reduce the swelling of CCAs; the element addition can bring about adjustments
of irradiation resistance of CCA due to the cocktail effect; the sluggish diffusion stabilizes
the microstructure of CCAs under irradiation; the lattice distortion increases the atomic
level stress, result in the self-healing effect in CCAs. The new generation of CCAs will be
more environment-friendly and cost-effective and they are promising for the application in
fusion reactor materials in the future.
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