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Abstract: Replacing natural aggregate (NA) with recycled aggregate (RA) has contributed to the
trend of sustainable development in civil construction. With this background, improvements in
the mechanical properties of recycled aggregate concrete (RAC) and the scientific design of the
mixture ratio are attracting more concern in recent years. This paper is a review of the recent research,
including the following aspects: the mixture design of RAC; the improved mechanical properties
of recycled concrete with steel fibers; and the performance of the main components. In addition,
the primary composition materials, properties, and calculation methods of the mixture ratio of RAC
are summarized. The mechanical properties, durability and microscopic analysis of RAC are also
discussed. The accurate calculation of mixture proportion can significantly facilitate the work of
preparing a test mix of RAC. Through the mixture-ratio optimization and physical and chemical
strengthening of RA, the mechanical properties of RAC can be improved to promote the wider
application of this eco-friendly material.

Keywords: recycled aggregate concrete; mixture proportion design; steel fibers; mechanical proper-
ties; eco-friendly material

1. Introduction

Fast urbanization has brought huge amounts of material costs as well as waste building
materials (mainly concrete). Waste concrete blocks are crushed to replace natural aggregates
(NAs) and are mixed with concrete materials to realize sustainable uses of building materials,
saving energy and reducing carbon emissions [1–4]. Different from NA, the outer layer of
the RAC is covered by cement mortar [5,6], which has some unique disadvantages, such
as a high water-absorption rate, low density, low-strength, and poor bond strength with
cementing materials [7,8]. Recycled aggregate (RA) consists of crushed solid waste from
buildings. RA has many edges and corners and a large proportion of flaky material.

There are many shortcomings of RA, therefore improving the mechanical properties
of RAC has become an interesting topic. To address this problem, physical and chemical
strengthening of the RA is commonly performed [9–11]. Physical strengthening refers
to the removal of the cement mortar and the edges and corners on the surface of the
RA through impact and friction using mechanical means [12,13].Chemical strengthening
refers to the use of certain active grouts or chemical agents to fill pores and cracks in the
RA [14–16]. Besides, steel fibers (SFs) can be added to improve the mechanical properties
of RAC [17–22], such as tensile, crack-resistance, and bending properties.

In addition to the above strengthening methods, an appropriate and accurate mixed-
ratio design is also important to ensure the good mechanical performance of RAC. The
compressive strength of concrete in RAC is 20–25% lower than that of natural aggregate
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concrete (NAC) with the same mixing ratio [23–25]. The properties and substitution rate
of the recycled aggregate (RA) determine the compressive strength of the RAC [26,27].
The requirement of low-strength concrete (20 MPa) can be met by RA, but for RAC to be
widely used, it must meet the requirements of medium-strength concrete (40 MPa) and
high-strength concrete (60 MPa).

In this paper, the mixture proportion design methods of RAC are reviewed. The
technical route of the mixture proportion design and the use of orthogonal experimental
methods are introduced. In addition, the function and composition of various materials
of RAC, the material content in the test, and the calculation methods are reviewed. The
purpose of this review is to improve the accuracy and universal application of the RAC
mixture-ratio design.

2. Technical Route of RAC Mix Design

The mixed-proportion design of concrete is the basis of research on RAC, which
determines the compressive strength, flexural performance, and durability of RAC, and
directly affects the application and promotion of RAC. In the weight-replacement method,
RAC is prepared by the mixed-proportion design method of NAC, then the NA is replaced
by some RA or all RA. The results showed that the performance of RAC prepared by the
weight-replacement method was worse than that of NAC, with the same mix proportion.
RA was used as a coarse aggregate, and the compressive strength of RAC was 5–24%
lower than that of NAC [28]. When RA was used in both coarse and fine aggregates, the
compressive strength of RAC was 15–40% lower than that of NAC [29]. This is because
the water absorption of RCA is greater than that of NA, and the crushing index is greater
than that of NA. According to the characteristics of the high water absorption of RCA, the
influence of high water absorption of RA on the working performance of RAC was reduced
by pre-wetting water and increasing compensation water [28,29], and the strength of RAC
then increased by about 20% [30,31]. With regard to the equivalent cement volume method,
Koenders, E.A.B et al. [32] proposed the mixed-design method of RAC with an equivalent
cement volume. ///RA is a composite material composed of NA and cement mortar.
When designing the mix proportion of RAC, the amount of NA and cement mortar in RAC
should be the same as that in NAC. This could ensure that the mechanical properties of the
RAC were the same as those of the NAC under the same mix proportion, but the equivalent
cement volume method in this situation does not take into account that the small-size
RA was only composed of mortar and cement, and the compressive strength of the RAC
prepared in this case was low. Pepe M. et al. [33] put forward the mixed-design method
with the water absorption of RA as the main parameter. By studying the parameters, the
effective water-binder ratio of RAC was calculated, and the compressive strength, flexural
performance, and durability of RAC were predicted. Lijuan Zhang et al. [34] used the
orthogonal test method to analyze the significance of steel fiber RAC, and discovered that
the volume ratio of steel fiber and the replacement rate of RA had a significant impact
on the slump and the water-cement ratio; additionally, the replacement rate of RA had a
significant impact on the compressive strength and the water-cement ratio and the volume
ratio of steel fiber had a significant impact on the splitting tensile strength. On the basis
of orthogonal tests, through a large number of mixed-proportion tests and theoretical
analysis and fitting the experimental data, the mixed-proportion design method suitable for
steel fiber RAC was established. An orthogonal experimental design is a multi-factor and
multi-level design method [32,33]. According to the orthogonality, representative points
are selected from a comprehensive test. The representative points have the characteristics
of uniform dispersion, uniformity, and comparability. The orthogonal experimental design
is a fractional factor design method and is efficient, rapid, and economical. Takeuchi, a
famous Japanese statistician, listed the horizontal combinations obtained in orthogonal
experiments in an orthogonal table.
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3. Method to Improve Performance of RAC and Determine the Dosage of Composition
Material

RAC mainly consists of cement, sand, NA, RA, water, and superplasticizer. As for SF
recycled concrete, the amount of SF depends on the amount of recycled concrete material.
The amounts and accelerating agent (AG) depend on the amount of SF. Self-compacting
recycled concrete, fly ash, and silicon powder (SP) are added on the basis of recycled
concrete materials. The material composition is shown in Figure 1, and the chemical
composition of the main materials is shown in Table 1.
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Table 1. Composition of the basic constituent materials, such as cement, and industrial residue.

Classification Type Composition Ref.

Cement
Portland cement Major (C3S, C2S, C3A, C4AF); minor (CaSO4) [35]

Sulphoaluminate cement Major (C4A3, Al2O3, CaO, SiO2, C2S, SO3); minor (C4AF, Fe2O3) [36]

Industrial residue
Fly ash Major (SiO2, Al2O3, CaO, Fe2O3, MgO, SO3); minor (Na2O, K2O) [37]

Silica fume Major (SiO2, Al2O3, Fe2O3); minor (MgO, CaO, Na2O) [37]

3.1. Recycled Aggregate (RA)

The use of crushed building concrete waste to replace the NA in concrete partially
or entirely and the pouring of concrete in construction are conducive to the green and
sustainable development of the civil engineering field; there exists significant market
demand and considerable prospects for this product [38–47]. Japan, the United States,
Germany, and other countries began early development of RAC utilization, and developed
relevant technical standards and specifications for RAC, as summarized in Table 2.

Table 2. Summary of standards and specifications for recycled concrete in various countries.

Countries Year Technical Standards Note

Japan 1977 Technical standard for recycled concrete First put forward

United States 1982 ASTMC-33-82 Removal of restrictions on the application of
recycled aggregate in construction projects

Germany 1988 Guidelines for the application of reclaimed
aggregate in concrete The recycled aggregate is divided into 4 grades
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Table 2. Cont.

Countries Year Technical Standards Note

South Korea 2003 Construction waste regeneration
promotion method

The use and obligations of the relevant
producers for recycled aggregate are clarified

Japan 2005–2007 JISA5021, JISA5022, JISA5023 The country’s construction sector is
highly leveraged

China 2012
Suggestions on the transportation

management of earthwork sand and gravel
for construction garbage

Detailed rules have been drawn up for the
management of construction waste in China

3.1.1. Treatment of RA

Since the surface of RA is covered with cement mortar, compared with NA it has
large surface pores and a high water-absorption capacity. The compressive strength of
concrete in RA is 20–25% lower than that of NAC with the same mix ratio [22,47–50].
The quality of RA and its replacement rate directly affect the compressive strength of
concrete [51,52]. Chemical and physical treatments were conducted to reduce the porosity
and water-absorption capacity of RAC. Bui et al. [53] used a sodium silicate solution to
treat RA and added SP to improve its performance, and It was found that this could
increase the compressive strength by 33 – 50%. Wang et al. [54] immersed RA in an
acetic acid solution and observed the reaction of the cement compound bonded to the
RA: the treated cement mortar covered by the treated aggregate was easily removed
by mechanical friction, improving compressive strength by up to 25%. Saravanakumar
et al. [49] soaked RA with HCL, H2SO4, HNO3, and a mixed solution of hydrochloric acid
and SP. It was found that this treatment improved the physical and mechanical properties of
RAC significantly and could improve compressive strength by 8–18% at the age of 28 days,
compared with untreated RAC. Zhan et al. [50] used a carbonation process to reduce the
water-absorption rate and improve the density of RA. Ismail et al. [16] treated RA with a
low-concentration acid solution and found that it significantly improved the physical and
mechanical properties of RA, which could achieve a compressive strength of up to or above
50 Mpa at 28 days. Gupta et al. [51] used a freeze-thaw cycle to treat RA, which stripped
the cement mortar from the RA to improve its performance, as shown in Figure 2.

Crystals 2022, 12, x FOR PEER REVIEW 4 of 23 
 

 

Table 2. Summary of standards and specifications for recycled concrete in various countries. 

Countries Year Technical Standards Note 
Japan 1977 Technical standard for recycled concrete First put forward 

United 
States 

1982 ASTMC-33-82 
Removal of restrictions on the application of recy-

cled aggregate in construction projects 

Germany 1988 
Guidelines for the application of reclaimed aggregate in 

concrete 
The recycled aggregate is divided into 4 grades 

South 
Korea 

2003 Construction waste regeneration promotion method 
The use and obligations of the relevant producers 

for recycled aggregate are clarified 

Japan 
2005–
2007 

JISA5021, JISA5022, JISA5023 
The country’s construction sector is highly lever-

aged 

China 2012 
Suggestions on the transportation management of earth-

work sand and gravel for construction garbage 
Detailed rules have been drawn up for the man-

agement of construction waste in China 

3.1.1. Treatment of RA 
Since the surface of RA is covered with cement mortar, compared with NA it has 

large surface pores and a high water-absorption capacity. The compressive strength of 
concrete in RA is 20–25% lower than that of NAC with the same mix ratio [22,47–50]. The 
quality of RA and its replacement rate directly affect the compressive strength of concrete 
[51,52]. Chemical and physical treatments were conducted to reduce the porosity and 
water-absorption capacity of RAC. Bui et al. [53] used a sodium silicate solution to treat 
RA and added SP to improve its performance, and It was found that this could increase 
the compressive strength by 33 – 50%. Wang et al. [54] immersed RA in an acetic acid 
solution and observed the reaction of the cement compound bonded to the RA: the 
treated cement mortar covered by the treated aggregate was easily removed by mechan-
ical friction, improving compressive strength by up to 25%. Saravanakumar et al. [49] 
soaked RA with HCL, H2SO4, HNO3, and a mixed solution of hydrochloric acid and SP. It 
was found that this treatment improved the physical and mechanical properties of RAC 
significantly and could improve compressive strength by 8–18% at the age of 28 days, 
compared with untreated RAC. Zhan et al. [50] used a carbonation process to reduce the 
water-absorption rate and improve the density of RA. Ismail et al. [16] treated RA with a 
low-concentration acid solution and found that it significantly improved the physical and 
mechanical properties of RA, which could achieve a compressive strength of up to or 
above 50 Mpa at 28 days. Gupta et al. [51] used a freeze-thaw cycle to treat RA, which 
stripped the cement mortar from the RA to improve its performance, as shown in Figure 
2. 

 

(a) (b) (c) 

Figure 2. Recycled aggregate is treated using freezing-thawing cycles. (a) The sample of frozen RA; 
(b) Remove aggregate mortar; (c) Treated recycled aggregate. 

  

Figure 2. Recycled aggregate is treated using freezing-thawing cycles. (a) The sample of frozen RA;
(b) Remove aggregate mortar; (c) Treated recycled aggregate.

3.1.2. Amount of RA

The calculation of the amount of RA is based on the amount of NA to determine
the replacement rate of RA (rg). There is no clear industry standard for the replacement
rate of RA. The volume formula is used to calculate the amount of the aggregate: mg,
mra = rg ∗mg. Equation (1) is used in the standard JGJ52-2006 [52], Volume formula: the
sum of the volumes of the concrete constituent materials is 1.
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3.2. Steel Fiber

The tensile, splitting, and deformation resistance of concrete can be significantly
improved by adding SF to the concrete. The addition of SF to concrete changes the stress
concentration point of the microcracks and inhibits the development and propagation of
delayed microcracks. Concrete is a brittle material, and SF evenly dispersed into concrete
has a reinforcing and softening effect, and improves the performance of concrete. Many
scholars have used the addition of SF to improve the mechanical properties of RAC.

3.2.1. Crack Resistance Theory of Steel Fiber

When concrete shrinks, external constraints prevent the shrinkage and deformation
of the concrete, and tensile stress occurs inside the concrete, as shown in Figure 3. When
the tensile stress reaches the tensile stress limit of the concrete, the micro-cracks inside
the concrete expand and form large cracks. When SF is mixed with the concrete, the soil
around the original microfracture and the SF and concrete interface bond change the stress
concentration point of the microfracture. As for the tensile stress, a stress field occurs inside
the concrete, causing cracks to appear. When the tensile strength of the concrete reaches
the limit, the tensile stress in the SF is transmitted to the uncracked portion. A new crack
appears, but the fiber concrete does not break [53–55], as shown in Figure 3a.
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Figure 3. Crack resistance mechanism of steel fiber. (a) Crack resistance mechanism of steel fiber
when concrete is under tension. (b) Crack resistance mechanism of steel fiber with different lengths
of micro-cracks).

The SF exists in the form of a linear aggregate in the concrete and prevents the
formation of internal micro-cracks as the concrete shrinks and deforms. When the length of
the micro-crack is larger than the distance between the SFs, the SFs transfer the load of the
micro-crack load and distribute the stress load evenly. Thus, the stress of the micro-crack is
concentrated on the tip and is passivated, limiting further expansion of the micro-crack.
When the length of the micro-crack is less than the distance between the SFs, the SFs prevent
the expansion of micro-cracks and force the micro-cracks to change their path. Thus, the
internal energy of the micro-crack is dispersed and the development of micro-cracks is
prevented [55], as shown in Figure 3b.

3.2.2. Composite Mechanical Reinforcement Theory of Steel Fiber

The British researchers Samy et al. and the American researcher Naaman first used
the theory of composite mechanics to investigate SF reinforced concrete. In SF reinforced
concrete or SF recycled concrete, the SF is regarded as one phase of the fiber reinforcement
system, and the concrete or recycled concrete is the other phase in the theory of composite
mechanics. The combination of the materials results in composite materials. The overall



Crystals 2022, 12, 1321 6 of 22

mechanical properties of the composite material are the sum of the mechanical properties
of the two materials [55].

The basic assumptions of composite mechanics are shown in Figure 4: (1) The SFs
are arranged in parallel and uniformly in the concrete, and are in the same direction
as the concrete stress. (2) The SFs and concrete have no relative slip, and the strain is
equal εc = εm = ε f . (3) Both the SFs and the concrete are in elastic deformation, and the
deformation is consistent: fc = σc ∗ Ac, fm = σm ∗ Am, f f = σf ∗ A f fc, fm, f f representing
the total load of the composite matrix, the concrete, and the SF, respectively. σc, σm, σf
represent the stress of the composite matrix, the concrete, and the SF, respectively. Ac,
Am, A f represent the cross-sectional area of the composite matrix, the concrete, and the
SF, respectively. Since the elastic modulus of the SF is far greater than that of the concrete,
when the composite matrix is subjected to stress and deformation the SF improves the
mechanical properties of the concrete or RAC [55].
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3.2.3. Theoretical Mechanical Reinforcement of Steel Fiber Spacing

Romualdi et al. put forward the SF spacing theory in 1963, and used the theory of
fracture mechanics in the analysis of SF reinforced concrete. Concrete is a brittle material,
with internal micro-cracks, and the adding of SF significantly reduces the number of micro-
cracks and disperses their stress concentration. Romualdi used the theory of forward
continuous SF concrete and assumed that the SFs were evenly distributed in the concrete in
the form of a chessboard, and were oriented in the direction of the pull. Cracks occurred in
the center of the area surrounded by the SFs under the action of tensile stress. Bond stress
occurred around the fiber, and opposite stress was produced at the tip of the cracks; the SFs
prevented the generation of cracks and improved the mechanical properties of the concrete
or recycled concrete [55–60].

3.2.4. Steel Fiber Content

The SF reinforcement theory summarized in the above Sections 3.2.1–3.2.3 indicates
the feasibility of adding SF to RAC to improve the performance of recycled concrete. The
properties of the concrete matrix are generally improved with an increase in the SF volume
ratio, but it is necessary to consider whether the SFs are uniformly dispersed in the concrete,
and the volume ratio of the SFs should not exceed 2% [61]. The significance analysis of
RAC in the orthogonal experiment indicates that the SF content has a significant influence
on the crack resistance and flexural strength of RAC. Gao [62] fitted the formula of the
relationship between the flexural strength of RAC and the SF content, as shown in Figure 5
and Equations (2) and (3). The volume ratio of SFs can be calculated based on the length and
diameter of the SF. However, the tensile strength of the SF is not considered in this formula.
During a splitting test of SF-RA, some SFs were pulled apart. Ma [63] fitted the relationship
between the splitting strength of sprayed SF concrete and the volume ratio of the SF while
considering the tensile strength of the SF, as shown in Equation (4). This equation is an
important reference for the calculation of the volume ratio of SFs in RAC. In this manner,
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the volume of the SF can be calculated according to the design value of the splitting strength
of SF shotcrete and the design value of different tensile strengths of the SF.
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3.3. Water/Cement Ratio

At the same replacement rate of RA (rg), the compressive strength of RAC decreases
with an increase in the water/cement ratio. A decrease of water-cement ratio increases the
compressive strength of RAC. However, a simple reduction of the water-cement ratio will
lead to poor workability of the RAC. In engineering applications, a water-reducing agent is
generally added to reduce the water-binder ratio and improve the compressive strength of
the concrete without affecting its workability. The water-cement ratio has a constant linear
relationship with the compressive strength and the cement strength of the concrete. The
relationship is generally fitted by the empirical Equation (5). This is associated with factors
such as the type of cement and aggregate, and can be determined by fitting the experimental
data. Li et al. [64] developed the concept of the absolute hydrogel mass ratio, as introduced
in Equation (6). Gao et al. [62] fitted Equation (6) and considered the replacement rate of
RA, as shown in Figure 6 and Equations (7) and (8), and summarized in.
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Hua et al. [65] developed a sketch map of the mixed ratio design of RAC based on
Abram’s, law, Lyse’s, law, and Molinari’s law [66,67]. The water-cement ratio of RAC can
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be determined by selecting an appropriate mix ratio for different workability or strength
values of RAC, as shown in Figure 7. Abram’s law describes the relationship between the
water-cement ratio (C/W) of concrete and the strength of concrete, as follows Equation (9).
Lyse’s law describes the relationship between the aggregate-cement ratio (A/C) and the
water-cement ratio (C/W) (by weight) as follows Equation (10). Molinari’s law describes
the relationship between the aggregate-cement ratio and the cement content as follows
Equation (11).
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3.4. Unit Water Consumption

Compared with NA, RA has high porosity and high water-absorption [68,69]. Many
factors affect concrete water absorption [70]; therefore, the performance of RAC is lower
than that of NAC for the same mix ratio [71–75]. RA can be modified on the surface or
can be soaked to reduce the water absorption [76]. The pre-saturation method and water
compensation method can be used when mixing RAC [67]. In the latter method, to improve
the strength of RAC, water is added twice when pouring RAC [77,78]. However, these
methods only change the water absorption of RA, and do not provide a calculation method
of the unit water consumption of RAC.

Based on the replacement rate and quality of RA, Guo et al. proposed a calculation
formula for the absolute water consumption of RAC [79–86]. Three different qualities of RA
were obtained by physical strengthening, as shown in Tables 3 and 4 and Figure 8. Studies
have shown that the absolute water consumption of RAC has a good linear relationship
with the RA quality (Equation (12)), and the absolute water consumption decreases with
an improvement in the RA quality [87]. The relationship between ωa, ρ0, and Qe is:
ωa > ρ0 > Qe, thus the formula of water consumption of RAC is as follows (Equation (13)).

Table 3. Basic performance indices of recycled coarse aggregate.

Category SC-RA OP-RA DP-RA

Particle size distribution Continuous grain size Continuous grain size Continuous grain size
Elongated and flaky particle/% 6 4 1

Apparent density/(g/cm3) 2.432 2.468 2.475
Packing density/(g/cm3) 1.355 1.389 1.407

Porosity/% 44 44 43
Content ofimpurtities/% 0.8 0.5 0.1

Content of harmful substances Qualified Qualified Qualified
Alkali aggregate reaction Qualified Qualified Qualified

Content of fine powder/% 1.9 1.1 0.8
Content of clay particles/% 0.6 0.2 0.1
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Table 3. Cont.

Category SC-RA OP-RA DP-RA

Water absorption/% 3.7 2.3 1.7
Crushing index/% 18 15 9

Soundness/% 8.9 5.7 3.1
Aggregate type Class II Class II Class I

Notes: 1. SC-RA denotes simple crushing recycled aggregate. 2. The OP-RA denotes physically strengthened
(once) recycled aggregate. 3. The DP-RA denotes physically-strengthened recycled aggregate. 4. Class I-II denotes
RA is classified as first or second level.

Table 4. Results of linear regression of the impact factor of the recycled aggregate and quality.

Category Linear Regression Equation Correlation of Determination (R2)

βg-ρ0 βg = −0.238ρ0 + 604.5 0.949

βg-ωa βg = 540.9ωa + 6.635 0.999
βg-Qe βg = 111.6Qe + 4.900 0.696

Notes: 1. The ρ0 is the apparent density of the recycled coarse aggregate (kg·m−3); 2. The ωa is the water
absorption of the recycled coarse aggregate in decimals; 3. The Qe is the crushing index of the recycled coarse
aggregate in decimals. 4. R2 is the coefficient of determination and not the correlation coefficient.
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In China, the unit water consumption of ordinary concrete is determined using tables,
or by the following Equation (14) [83]. Gao et al. [62] obtained a linear relationship between
the slump level and unit water consumption of RAC using orthogonal experiments, as
shown in Figure 9. The replacement rate and water absorption rate of RAC in Equations
(15) and (16) were used to fit the curve.
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Wang Min et al. mixed RA with brick slag [84–86] and developed Equation (15). A
water absorption test was conducted with a recycled brick slag aggregate (RBSA) [88,89].
The relationship between the incremental coefficient and time of the RBSA is shown in
Figure 10. The relationship is described in Equations (16)–(22). Zhang-Deng [65] proposed
Equation (16) to calculate the additional water consumption of RAC, which is used in the
technical specification for recycled concrete structures (solicitation draft). Equation (17) was
developed by referring to Zhang [90,91]. Equation (23) was proposed (28) to calculate the
additional water in the mixture ratio design of brick slag RAC [91]. Equations (18) and (22)
are substituted into Equation (17) to obtain Equation (23), describing the relationship
between the additional water content and time to design of the mixture ratio of recycled
concrete containing RBSA.
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3.5. Cement

Ordinary Portland cement (OPC) and sulphoaluminate cement (CSA) are two com-
monly used types of cement; the oxide and chemical compositions of cement are shown
in Table 5. The product is created by the hydro-hardening of CSA cement, whereas the
hydro-hardening product of Portland cement is a calcium silicate compound. CSA cement
has a higher content of tricalcium aluminate (C3A) and Ca4Al6O12SO4 than OPC, resulting
in a higher early strength of the CSA cement compared to OPC. Hua et al. [65] used OPC
cement and CSA cement to investigate the lead content of lead-contaminated RA (the
average lead content measured by the wet extraction method was 25.5 mg/L) and lead-
contaminated RBSA (the average lead content measured by the wet extraction method was
9.16 mg/L), respectively [92,93]. The California code [94–104] defines hazardous materials
as having a lead concentration exceeding 1 mg/L (wet extraction). It was found that the
lead concentration of RAC and recycled brick slag concrete (RBSC) was less than 1mg/L
(wet extraction), and the RA and RBSA containing OPC was better than those containing
CSA because OPC cement is more alkaline than CSA [65].

Table 5. Oxide and chemical compositions of cement (%).

Oxide
Composition (%) PortlandCSA

CaO SiO2 Al2O3 Fe2O3 MgO SO3 TiO2

62.96 20.96 4.54 3.48 2.91 2.77 -
40.00 5.55 37.50 1.50 1.75 10.00 1.25

Chemical
Composition (%) PortlandCSA

C3S C2S C3A C4AF Gypsum Ca4Al6O12SO4

53.71 19.58 6.14 10.59 0.78 -
0.42 12.59 10.64 - 1.07 73.37
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Cement dosages can be determined using the calculation method of the C/W ratio
described in Section 3.2. The unit water consumption is obtained using the calculation
method of unit water consumption presented in Section 3.3. Alternatively, the nomogram
of the general mix design [65] can be used to determine the cement dosage, as shown in
Figure 8.

3.6. Sand Ratio

The surface of RA is covered by a layer of mortar, unlike NA, and the presence of the
mortar reduces the performance of the RAC [105,106]. Crushing of low-strength concrete
reduces the amount of mortar adhering to the RA surface, but crushing of high-strength
concrete increases the bonding strength between the mortal and the RA [107]. Therefore,
researchers have proposed different calculation methods to determine the ratio of recycled
concrete and sand.

Guo et al. [64] used the calculation method of NAC to determine the sand-to-concrete
ratio of RAC when physical and chemical strengthening methods were applied. The sand-
to-concrete ratio rate of NAC (βsN) should be determined based on the standard JGJ55-
2011 [108], the technical parameters of the aggregate, the concrete mixing performance, and
the construction requirements, as shown in Equation (24–25).

Fathifazl used the equivalent mortar volume (EMV) method, and considered the
mortar adhered to the RA versus total mortar content of RAC to determine the parameters
of normally vibrated concrete (NVC) [109].

Gao et al. considered the cement mortar covering the outer layer of the RA and the
particles inside the cement mortar as one unit. The objective was to fill the gap between
concrete and the coarse aggregate with fine aggregate. The following Equations (26)–(29)
were established to calculate the sand ratio of the SF recycled concrete [62], as summarized
in Table 6.

3.7. Annexing Agent

Fly ash, SPs, water-reducing agents, and AGs are the primary additives of RAC. Fly
ash is artificial ash with a smooth and spherical particle that can fill the pore of cement
paste, reducing the water requirements; the pozzolanic reaction of the fly ash cement paste
is the chemical reaction between reactive silica or Alumina in the fly ash particles and
calcium hydroxide (Ca(OH)2-CH), formed from cement hydration. Fly ash can reduce the
porosity of the concrete and improve the bonding capacity of the aggregate and cement
mortar [110–112]. SP has high activity and high filling capacity and is widely used in
various kinds of concrete admixtures to improve the workability and bonding performance
of the concrete. SP has the ability to resist alkali-aggregate reaction and sulfate, and
has low permeability [48]. RA has a high water-absorption capacity; thus, additional
water has to be added to improve the workability. However, an increase in the water
content may affect the mechanical properties of RAC. Therefore, water-reducing agents are
utilized to reduce the water content and improve the workability of RAC; these agents do
not adversely affect the RAC [113,114]. Accelerating agents have been used in shotcrete;
however, there is a lack of research on spraying recycled concrete or SF recycled concrete
using shotcrete. A compatibility test must be performed when an accelerating agent, fly
ash, and a water reducer are used simultaneously. The amount of additives in RAC have
not been investigated in depth. Generally, a conventional amount of ordinary concrete is
used: fly ash or SP typically comprises 10% of the cement amount, and the dosage of a
highly effective water-reducing agent is generally 1.5% of the weight cementious material.
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Table 6. Equation of mixture ratio of RAC.

Composition Material Equation Symbol Description Ref.

Amount of RA mc
pc

+
m f
p f

+
mg
pg

+ ms
ps

+ mw
mw

+ 0.001α = 1 (1)

pc: cement density (kg/m3), pf: mineral admixtures (SF and fly ash,
SP, etc.) density (kg/m3), pg: (RA and NA) aggregate of the
apparent density (kg/m3), ps: fine aggregate of apparent density
(kg/m3), pW: water density is 1000 kg/m3, α: percentage of the air
content of concrete, α desirable 1 without using air-entraining agent
for RAC, α preferable 2 without air-entraining agent for SF
reinforced concrete, mc: cement dosage (kg/m3), mf: mineral
admixture dosage (kg/m3), ms: sand dosage (kg/m3), mW: unit
water consumption (kg/m3).

(1) [52]

Steel fiber content

f f tm/ ftm = α f λ2
f + B f (2) fftm, fm: the flexural strength of the SF RAC and the RAC with the

same mix ratio respectively, νf: the volume rate of the SF, lf/df: the
slenderness ratio of the SF, ft: the splitting strength of the concrete
matrix, R: the volume ratio of the SF, fr: the design value of the
tensile strength of the SF, fce: the 28-day splitting strength of
the cement.

(2–3) [61,62]
(4) [63]λ f = ν f l f /d f (3)

ft = 6.66× 10−5 R fr + 3.46× 10−2 fce
c
w (4)

Water/cement ratio

fcu,0 = fce(C/W − αb) (5)
fcu ,0: denotes the design compressive strength (MPa) of the concrete
or RA, fce: is the 28-day compressive strength(Mpa) of the cement,
C/W: the water/cement

(5–6) [64]
(7–11) [66,67]fRg = A fce

[
C/
(
W + mRgwa

)
+ B

]
(6)

αa = 0.53
(
1 − 0.1rg

)
(7)

αb = 0.2
(
1 + 0.2rg

)
(8)

ratio, αa: cement strength conversion coefficient, αb: (virtual
water-cement ratio) are the regression coefficients for data fitting,
fRg = fcu ,0, A = αa, and B = αb, w: the water consumption of ordinary
concrete, mRg : the dosage of RCA (kg·m−3), wa: the water
absorption rate of RCA, which is expressed by decimals, k1 and k2
are constants that depended on the material, a/c: the ratio of
aggregate to cement, k3 and k4 are constants that depend on the
material used, C: the cement content, k5 and k6 are constants that
depend on the material.

f
′
c = k1

kw/c
2

(9)

(a/c) = k3(w/c) + k4 (10)

C = 1000
k5(a/c)+k6

(11)
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Table 6. Cont.

Composition Material Equation Symbol Description Ref.

Unit water consumption

WRg = W + βgλg (12) WRg : the total water consumption of RAC, βg: the influence
coefficient of the absolute water consumption of RAC that has a
linear relationship with the performance indices of RAC (Table 4),
mw: the unit water consumption (kg/m3), T: the slunp level of
ordinary concrete (mm), K: a constant, which is determined by the
type and the maximum particle size of the coarse aggregate, T0 the
required slump level of RAC, kg: the coefficient related to the type
and particle size of RA, wra: the water absorption rate of RA, wna:
the water absorption rate of NA.

(12–13) [79]
(14) [83]

(15–16) [62]
(17–24) [92]

WRg = W + (540.9wa + 6.635 )λg (13)
mw = 3.33× (0.1 × T0 + K ) (14)
mw = 3.33×

(
0.1 × T0 + kg

)
(15)

kg = k
[
1 + (wra − wna)× rg

]
(16)

4W = µ 4Wz + (1 − µ )4Wc (17)

4Wc =


(
2.00569− 0.61793 e−0.2048t)%mR 0 < t < 60 min(

1.99318 + 1.1023 e−4t
)
%mR 60 min < t < 24 h

2.15%mR t > 24 h

(18)

4W = mg[(SR − wR)− (S0 − w0)] (19)
k = (SR − wR)− (S0 − w0) (20)

k =


(
12.683 − 1.908e−0.175t)% 0 < t < 60 min
(13.415 + 0.0005t )% 60 min < t < 24 h

14.14% t > 24 h

(21)

4Wz =


(
12.683 − 1.908e−0.175t)%mR 0 < t < 60 min
(13.415 + 0.0005t )%mR 60 min < t < 24 h

14.14%mR t > 24 h

(22)

4Wc =


[
2 + 10.683µ − e−0.2t(1.278µ + 0.62 )

]
%mR 0 < t < 60 min

[µ (11.425 + 0.00039t ) + 1.99 + 0.0001t ]%mR 60 min < t < 24 h
(2.15 + 11.99µ ) %mR t > 24 h

(23)

Cement C/W (24)

Sand ratio
βs = βsN −

mRA−mACSN
mRA

% (25) mRA: the quality of RA in the drying state, mACSN: the quality of RA
completely stripped by a freeze-thaw cycle (Figure 3), βsN: the sand
rate of RA after stripping the

(25) [109]
(26–29) [62]Vs = γ ×

(
Vna × Pna + Vra × Pra + Vf

)
(26)

Vc + Vw + Vs + Vna + Vra + Vf ++α = 1 (27)

rg = mra
mra+mna

= ρra×Vra
ρra×Vra+ρna×Vna

⇒ Vna
Vra

=
(1 −rg)×ρra

rg×ρna

(28)

cement mortar from the NAC and represents the sand ratio of RAC.
γ: the coefficient of sand ratio surplus, which is the ratio of fine
aggregate sand in RAC to the pore volume of the RA and SF. Vs, Vm,
Vra and Vf represent the volumes of sand, NA, RA, and SF,
respectively. Pna and Pra represent the porosity of NA and RA
respectively. Vc and Vw represent the volume of cement and water
in RAC respectively,represents the air content of RAC. ms, mra, and
mna represent the quality of sand, NA, and RA, respectively. ρs, ρm,
and ρna represent the density of sand, NA, and RA, respectively.

βg = ms
ms+mna+mra

= ρra Vs
ρsVs+ρnaVna+ρraVra

(29)
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4. Mechanical Properties of RAC

In this section, we summarize the factors affecting the compressive properties, flexural
properties, shear properties, and durability of RAC, and focus on the methods of improving
the mechanical properties of RAC.

4.1. Compressive Performance

The compressive property is the most crucial mechanical property of RAC, since
it affects the bending and shear properties and the durability of RAC. The compressive
strength of RAC decreases with an increase in the replacement rate of RA [115–120]. A high
replacement rate of RA has been the objective of numerous studies, and the improving of
the quality of the RA itself is imperative to achieve this. Physical and chemical methods to
improve the quality of RA were described in Section 3.1.1, and will not be repeated here.

The water-cement ratio is a key factor affecting the compressive strength of RAC. The
compressive strength of RAC decreases with an increase in the water-cement ratio, and the
same applies to ordinary concrete [121]. Cement mortar is bonded to the surface of RA,
and the porosity and water-absorption capacity are high. The water consumption of RAC
is higher than that of ordinary concrete to achieve the same workability. In general, the
influence of this adverse factor is reduced by adding a water-reducing agent and adding
water in two stages [83,84].

The addition of SF can improve the compressive performance of RAC [120], and
improve the distribution of micro-cracks. The mechanical reinforcement mechanism of SF
is detailed in Sections 3.2.1 and 3.2.2. Numerous domestic and international studies on
SF recycled concrete have shown that the compression behavior of SF recycled concrete is
similar to that of SF ordinary concrete. SFs significantly improve the mechanical properties
of RAC and change the fracture process and toughness of RAC [122–124]. SFs prevent or
reduce the development of micro-cracks inherent in RAC [17]. As partial substitutes of
cement gel materials, fly ash and SP substantially improve the compressive performance
of RAC [115–117]. The microscopic analysis of RAC with SP described in Section 5 also
confirms this result.

4.2. Bending and Shear Properties

The flexural and shear properties of RAC decrease with an increase in the replacement
rate of RA [122–129]. At the replacement rates of RA of 25%, 50%, and 100% the bending
strength of RAC was 6%, 13%, and 26% lower, respectively, than that of ordinary concrete
with the same mix ratio, and the splitting shear strength of RAC was 6%, 10%, and 40%
lower, respectively, than that of ordinary concrete with the same mix ratio [123]. Zhang
et al. [130] found that SF significantly improved the bending performance and shear
performance of RAC. The SF did not significantly enhance the bending performance of
RAC when the volume ratio of the SF was less than 0.5%. However, when the volume ratio
of the SF in RAC increased from 0.5% to 1%, the bending performance of RAC increased
significantly. When the volume ratio of SF was > 1%, the bending performance of RA
decreased significantly with an increase in the volume ratio. An increase in the volume
ratio of SF from 0% to 2% resulted in an increase in the split shear strength of RAC of 84%.

5. The Durability of RAC

The durability of RAC has attracted much attention. A review of studies on chloride
penetration, sulfate erosion, freeze-thawing cycles, and high temperature indicates that the
durability of the RAC is attributed to the high porosity and high water-absorption capacity.

(1) Chloride Permeability: The higher the porosity, the stronger the chloride ion
permeability is, and the lower the chloride ion resistance of RAC is [125–128]. However,
when fly ash and SP are added to RAC, they fill the pores of RAC and decrease the chloride
ion permeability of RAC [129–131]. (2) Sulfate Attack: The replacement rate of RA has
the largest influence on the sulfate erosion resistance of RAC [132–138]. However, studies
have found that different replacement rates of RA (50%, 70%, 100%) have a negligible
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influence on the sulfate penetration rate of RAC [134]. Volcanic ash refines the pores
of RAC, improves the interface bonding ability, and significantly improves the sulfate
resistance of RAC [134–136]. (3) Freezing and Thawing: The freeze-thawing state of RAC
is divided into two processes: first, the performance and saturation of the constituent
materials of RAC determine the freezing behavior of the matrix; second, the porosity of
the RA determines the freezing behavior of the aggregate [137], which has adverse effects
on the RAC. Researchers found that the dynamic modulus values of NAC and RAC did
not change after 300 freeze-thaw cycles when a low water-binder ratio (W/C = 0.35) was
used, and gas was added: the amount of RA had little impact on the durability [138,139].
However, the quality, strength, and porosity of RA were not considered. These parameters
are worthy of further study to determine the RAC performance in the freeze-thaw cycle tests.
(4) High-Temperature Exposure: The thermal expansion coefficient of a concrete structure
is different for high-temperature and low-temperature cooling, affecting the durability of
concrete in terms of spalling and volume changes. Research has shown that for the same
particle size of RCA covered in cement mortar, the thermal expansion coefficient of the RA
and mortar were similar, unlike that of NAC. Therefore, the resistance of the RAC to high
temperatures and degradation is better than that of normal NAC [140–162].

6. Microanalysis of RAC with an Optimized Mix Ratio

The performance of RA is worse than that of NA, and the strength of RAC prepared
with a mixture ratio of ordinary concrete is 5%–24% lower [138–142]. The two-stage water
addition method [77,78], EMV method [108], and the addition of SP [117–120,150–154] were
used to improve the mechanical properties of RAC, as summarized in Section 3. In this
section, we explain the principle of micro-mechanical properties of RAC using an example
of the micro-analysis of self-compacting RAC (SRAC), as shown in Figure 11.
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Figure 11a shows that the bonding performance between the aggregate and cement
mortar is poor; the interface transition zone has several micro-cracks, and the concrete
has many pores with a large pore diameter when SRAC is prepared using the common
concrete mix method. However, when the two-stage water addition method is used to
prepare the SRAC, the matrix performance of the concrete is well improved, the porosity is
reduced, the bonding strength between the SRCA and cement mortar is increased, and there
are fewer micro-cracks, as shown in Figure 11b. The EMV method was used to prepare
SRAC. Compared with Figure 11a,c, the pore diameter in Figure 11c is smaller, the bonding
strength between RA and cement mortar is higher, and the interfacial zone is compact and
not loose. Compared with Figure 11b, the composite material distribution of the SRAC
body is more uniform and compact in Figure 11c. Figure 11d shows the presence of silica
in the interfacial transition zone after the addition of SP to the SRAC. The silica-reactive
energy reacts with the Portland cement to form an additional and improved binder similar
to calcium silicate hydrate (CS-H) crystals.

The microscopic images and analysis demonstrate the mixed-ratio design method
reviewed in Section 3, and the addition of SP or other materials significantly improved the
mechanical properties of RAC. However, many methods exist to design the mixture ratio
of RAC, and there is no unified worldwide standard.

7. Conclusions

In this paper, the technical route, composition materials, properties, and design methods
of the mix proportion of RAC were reviewed. The mechanical properties, durability, and
microanalysis of RAC are also discussed. It is of great significance for sustainable development
in civil engineering and architecture to prepare concrete with RA instead of NA. The quality
of RA is improved by the physical and chemical treatment, and the design parameters of
the mix ratio are optimized. The mechanical properties and durability of recycled concrete
are improved by adding SP, SF, and other auxiliary materials. We provide the following
suggestions to promote the extensive and scientific application of recycled concrete in the field
of architecture in the future; this paper proposes the following suggestions:

1. Research is lacking on the use of RA for shotcrete, which is widely used in tunnel
construction, slope support, and other fields. It is important to investigate the mix-
ture design, mechanical properties, and durability of shotcrete recycled concrete or
shotcrete SF recycled concrete.

2. There is no unified understanding of the replacement rate of RA with different qual-
ities. It is necessary to define the upper limit of the replacement rate of RA with
different qualities and the effect of enhancing the mechanical properties of auxiliary
materials, so as to promote the extensive application of RAC. In order to reduce the
cost of using them in various chemical or physical treatments, the effective water in
the recipe must be established and the quality of RA aggregates should be checked
more frequently compared to NA.

3. Many methods exist for the mix design of RAC, and each has its advantages. It is
necessary to reach a consensus to understand the advantages of different methods
and standardize the mix design of RAC.

4. It is necessary to determine how to handle the treatment and reuse of harmful RA and
building material to prevent exposure to harmful substances after break-down and
adverse impacts on the environment.

5. Research is also lacking on the alkali-aggregate reaction of RAC, which occurs when
the alkaline substance in the concrete reacts with the active ingredient, causing ex-
pansion of material or water absorption. Internal cracking occurs due to expansion
stress. Commonly, the concrete-alkali-aggregate reaction causes cracking of the coarse
aggregate, which is more destructive than the damage to the cement mortar colloid
or the over-bond layer between the cement mortar and aggregate. However, RA is
generated by the demolition of concrete structures, and the alkalinity is neutralized. If
an alkali-aggregate reaction occurs, damage will occur. Therefore, it can be assumed
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that RAC is relatively resistant to the alkali-aggregate reaction, although this has not
been confirmed by studies to date.
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