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Abstract: It has been shown that a nonchiral anisotropic macromolecule embedded in a chiral
dielectric solvent possesses an effective optical activity proportional to the optical activity of the
solvent. As a result, there exists an effective chiral interaction between the macromolecules, which
creates a torque acting on the primary axes of the two interacting molecules. A general expression for
the effective chiral interaction potential has been derived in terms of the effective polarizability and
the effective gyration tensor of the macromolecule in the chiral solvent. Explicit expressions for the
components of the effective polarizability and the gyration have been obtained using the model of a
hard rod filled with anisotropic dielectric and embedded into the isotropic chiral dielectric medium.
The theory predicts the formation of the cholesteric helical structure in the nematic polymer liquid
crystal phase induced by a chiral solvent.

Keywords: anisotropic macromolecule; chiral solvent; chiral interactions

1. Introduction

Interactions between macromolecules can be very complicated and, in particular, in the
case when the macromolecules are embedded into an ionic solvent (see, for example, [1–3]).
The major interactions between two isolated molecules include electrostatic, dispersion,
and short-range anisotropic repulsion [1,2,4]. At a short separation between the two macro-
molecules, one also has to take into consideration the hydrogen bonding and the formation
of various complexes. In the ionic solvent, one also has to take into account many body
interactions between the macromolecules, solvent molecules, and counter ions. Even in the
idealized case of a neutral dielectric solvent, its dielectric properties may significantly screen
the electrostatic interactions and renormalize the dispersion interactions, as the latter gener-
ally depend on the effective polarizabilities of the two molecules in the dielectric medium.

Various anisotropic interactions between macromolecules also play a major role in
liquid crystal polymers and block copolymers, which exhibit many different phases with
various orientational and translational types of order. However, in the existing molecular
theory of polymers, the interactions between macromolecules is taken into consideration
only at a basic level. In most theories (see, for example, [5–10] and references therein), only
isotropic attraction and/or repulsion between segments of the flexible chains and the model
Maier–Saupe orientational interactions between rigid fragments are taken into account.
Of particular interest are the chiral intermolecular interactions, which are responsible,
for example, for the helical twisting in the cholesteric liquid crystal phase, as well as in more
complicated chiral smectic phases. The existing molecular–statistical theory of cholesteric
ordering is based either on model interaction potentials or on simple molecular models,
including steric repulsion between molecules of helical shape and electrostatic interaction
between helical charge distributions of rod-like DNA molecules [11,12]. The effect of the
chiral shape and of the molecular biaxiality has recently been taken into consideration
in [13–15]. At the same time, as mentioned by a number of authors [2,4], the most general
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chiral intermolecular interaction is the dipole–quadrupole dispersion interaction, which
in principle exists between chiral macromolecules of any structure. In polymer melts and
in nonionic solvents, such a chiral interaction may be predominant if the chiral charge
distribution on the macromolecular surface is not very pronounced.

In this paper, we consider the effective dispersion interaction between nonchiral
macromolecules in a simple chiral solvent, which is treated as a chiral dielectric medium.
It is shown that there exists an effective chiral interaction between nonchiral anisotropic
macromolecules embedded in a chiral solvent. Such an interaction potential is determined
by the effective optical activity of a nonchiral macromolecule in the chiral dielectric medium.
Moreover, even an elongated cavity in the chiral medium possesses an effective optical
activity, and hence, any two such cavities will twist with respect to each other. The paper
is arranged as follows. In Section 2, we derive a general expression for the effective
chiral dispersion interaction between two uniaxal macromolecules in the chiral medium
in terms of the effective polarizability and effective optical activity of the macromolecule.
The expressions for the effective polarizability and the optical activity are derived in
Section 3. Finally, Section 4 contains our discussion and conclusions.

2. Effective Chiral Interaction between Nonchiral Macromolecules in a Chiral Solvent

We assume that the macromolecules are anisotropic and uniaxial, and their orientation
is specified by the unit vector a in the direction of the molecular primary axis. In this case,
an arbitrary interaction potential V(a1, r12, a2) between the macromolecules "1” and "2”
depends on the unit vectors a1 and a2 and on the intermolecular vector r12.

In the general case, the interaction between nonpolar neutral macromolecules is domi-
nated by the dispersion (or the so-called van der Waals) interaction, which is determined by
the dielectric properties of the interacting particles. In particular, the leading contribution is
the so-called dipole–dipole dispersion interaction potential, which is given by the following
general expression (see, for example, [4]):

U(R, a1, a2) = −
h

2π

∫ ∞

0
Tr
[
α∗αβ(1, ω)Tβγ(R)α∗γδ(2, ω)Tδα(R)

]
dω, (1)

where α∗(iω) is the effective polarizability tensor of the macromolecules i, h is the Plank
constant, and

Tαβ(R) = R−5
(

3RαRβ − R2δαβ

)
(2)

is the dipole–dipole propagator tensor, where R = r12 is the intermolecular vector.
In this paper, we employ a simple model of a macromolecule, which is considered to

be an anisotropic particle filled with a dielectric medium characterized by the anisotropic
dielectric susceptibility. It should be noted that if the macromolecule is embedded in the
dielectric medium, the molecular polarizability tensor α∗αβ(iω) is the effective quantity
renormalized by the dielectric properties of the surrounding medium. For chiral molecules,
the effective polarizability also accounts for the molecular optical activity and can be
expressed as

α∗αβ(iω) = α0
αβ(iω) + β∗αβγ(iω)∇γ, (3)

where β∗αβγ(iω) is the effective optical activity tensor, which can generally be expressed
as βαβγ = εαβνg∗νγ, where g∗νγ is the effective gyration tensor, and εαβν is the absolute
antisymetric tensor. As shown below in Section 3, even a nonchiral molecule should
possess some nonzero effective optical activity if it is embedded into the chiral dielectric
medium. This effective optical activity of a macromolecule vanishes together with the
optical activity of the solvent. Substituting Equation (3) into Equation (1), one obtains
the leading term in the chiral interaction potential between two macromolecules (see,
for example, [16]):

U∗(R, a1, a2) = −
h

2π

∫ ∞

0
Tr
[

β∗αβγ(1, ω)Tdq
γβν(R)α0

νη(2ω)Tηα(R)
]
dω, (4)
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where

Tdq
αβγ(R) = ∇γTαβ(R) = R−7Rγ

(
3RαRβ − R2δαβ

)
+ R−5(3Rαδβγ + 3Rβδαγ − Rγδαβ

)
(5)

is the third rank dipole–quadrupole propagator tensor.
For uniaxial macromolecules, the polarizability tensor α0

αβ(2ω) can be expressed in
terms of the molecular primary axis a:

α0
αβ = ᾱδαβ + ∆α

(
aαaβ − δαβ

)
, (6)

where ᾱ is the average molecular polarizability, and ∆α = α∗‖ − α∗⊥ is the anisotropy of the
molecular polarizability. Here, α∗‖ is the longitudinal polarizability along the axis of the
macromolecule, and α∗⊥ is the transverse polarizability.

The molecular effective gyration tensor can also be expressed in a similar way:

g∗αβ = ḡδαβ + ∆g
(
aαaβ − δαβ

)
. (7)

Substituting Equations (2), (5)–(7) into Equation (4), one obtains the following final
expression for the effective chiral interaction potential between two uniaxial macromolecules
in the dielectric solvent:

U∗(R, a1, a2) = −J∗R−7((a1 · a2)− 2(a1 · u12)(a2 · u12))((a1 × a2) · u12), (8)

where
J∗ = E0

∆α∗∆g∗

ε2
m

, (9)

and where u12 is the unit intermolecular vector. Here , ∆α∗ = α∗‖ − α∗⊥ is the anisotropy
of the effective polarizability of the macromolecule in the surrounding dielectric medium,
∆g∗ = g∗‖ − g∗⊥ is the anisotropy of the effective gyration tensor of the macromolecule, E0

is the average excitation energy of the macromolecule, and εm is the average dielectric
susceptibility of the medium around the macromolecule. One notes that the chiral interac-
tion potential is proportional to the pseudoscalar quantity ∆g∗, which possesses opposite
signs for macromolecules of opposite handedness. The quantity ((a1 × a2) · u12) is also a
pseudoscalar, which changes sign under space inversion. Hence, the interaction potential
itself is a scalar, as it should be.

One can readily see how the chiral interaction potential (8) promotes the mutual twist
of the long axes of the two interacting molecules. Indeed, let us consider the simple mutual
orientation of the two molecules when a1⊥u12 and a2⊥u12. In this case (a1 · a2) = cos φ,
and ((a1 × a2) · u12) = sin φ, where φ is the angle between the long axes of the two
macromolecules. Then, the interaction potential (8) can be written in the simple form:

U∗(R, a1, a2) = −
1
2

J∗R−7 sin(2φ). (10)

One can readily see that depending on the sign of the coupling constant J∗, the
minimum of the potential (10) corresponds to φ = π/4 or φ = −π/4. It should be noted,
of course, that there exists also the nonchiral dispersion orientational interaction between
two rod-like macromolecules, which promotes the parallel orientation of the two molecules.
Generally, nonchiral interactions are much weaker than the nonchiral ones; hence, the
actual equilibrium twist angle between neighboring rod-like macromolecules should be
much smaller than π/4, which is indeed the case in cholesteric polymer liquid crystals.

It is interesting to note that the chiral interaction potential (8) has the same mathemat-
ical form as the first term of the general expansion of the corresponding part of the pair
potential. Indeed, let us consider the general pair potential, which depends on the unit vec-
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tors a1 and a2 along the axes of the two muniaxial macromolecules and the intermolecular
vector r12. This potential can be expanded in terms of the so-called spherical invariants

U(a1, r12, a2) = ∑
lmk

Jlmk(r12)Tlmk(a1, u12, a2), (11)

where u12 = r12/r12. The set Tlmk(a1, u12, a2) is a complete orthogonal set of basis func-
tions [17,18] that contains the vector a1 to the power l, the vector u12 to the power m, and
the vector a2 to the power k. The explicit expressions for the lower order invariants have
been given, for example, by Van der Meer [17]. The invariants with one zero index are
just Legendre polynomials, for example, T202(a1, u12, a2) = P2(a1 · a2). The invariants with
1 + m + k odd are pseudoscalars and, therefore, the corresponding coupling constants Jlmk
are also pseudoscalars. Such terms may appear in the expansion of the interaction potential
only if one of the interacting particles is chiral. The first nonpolar chiral term of the general
expansion (Equation (9)) reads:

U∗(a1, r12, a2) = J∗(r12)((a1 × a2) · u12)(a1 · a2). (12)

The potential (Equation (12)) promotes the twist of the long axes of neighboring
molecules and is widely used in the statistical theory of cholesteric ordering (see, for exam-
ple [11,12,17–19]).

3. Effective Optical Activity of a Nonchiral Macromolecule in a Chiral
Dielectric Medium

In this section, we use the model of the dielectric ellipsoid embedded into the chiral
dielectric medium (see [20]) to express the effective polarizability anisotropy ∆α∗ and the
effective anisotropy of the gyration tensor ∆g∗ of a model macromolecule in terms of the
dielectric parameters of the system including the optical activity of the chiral solvent. We
assume that the ellipsoid is filled with the anisotropic optically active nonchiral dielectric
with the susceptibility εn:

εi
αβ = εi

⊥δαβ +
(

εi
‖ − εi

⊥

)
aαaβ, (13)

where εi
‖ and εi

⊥ are the longitudinal and transverse components of the dielectric suscepti-
bility of the medium inside the ellipsoid.

The ellipsoid is embedded into the isotropic dielectric medium with the dielec-
tric susceptibility εm and the isotropic optical activity βαβγ = εαβγg, where g is the
isotropic gyration:

εm
αβ = εmδαβ + εαβγg∇γ. (14)

Then, the electric field Ei inside the ellipsoid is related to the field Em outside the
ellipsoid by the following equation:

ε̂m( Î − q̂)Ei + q̂Di = ε̂mEm, (15)

where the induction Di = ε̂iEi , and qαβ = q⊥δαβ + (q‖ − q⊥)aαaβ. Here, q‖, q⊥ are the
depolarization coefficients of the ellipsoid of revolution defined, for example, in [20], and Î
is the unit tensor.

The dipole moment of the ellipsoid embedded in the dielectric medium can be written
in the form:

P = V(Pi − Pm), (16)

where
Pi =

1
4π

(ε̂i − Î)Ei, Pm =
1

4π
(ε̂m − 1)Em, (17)

and where V is the NP volume.
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On the other hand,
P =

(
α̂∗ + (β̂∗∇)

)
Em, (18)

where α̂∗ and β̂∗ are the effective polarizability and the optical activity of the ellipsoid in
the chiral dielectric medium, respectively.

Combining Equations (14)–(18), one obtains the following set of two simultaneous
equations, which enable one to determine α̂∗ and β̂∗:

V
4π

(
ε̂i − ε̂m

)
Ei =

(
α̂∗ + (β̂∗∇)

)
Em, (19)

Ei =
(

ε̂m − ε̂m · q̂ + ε̂i · q̂
)−1

ε̂mEm. (20)

The optical activity term (β̂0∇) is a small correction to the total susceptibility tensor of
the dielectric medium ε̂m, and hence, these equations can be expanded in powers of (β̂0∇)
keeping only the linear terms. Finally, one obtains the following expressions for effective
polarizability and the effective optical activity in the limiting case of an very long rod-like
macromolecule in the isotropic chiral solvent:

α∗⊥ =
V
2π

εm(ε⊥ − εm)

ε⊥ + εm
, (21)

∆α∗ =
V
4π

[
ε2

m − εm(ε‖ − 3ε⊥) + ε⊥ε‖

]
ε⊥ + εm

, (22)

g∗⊥ = − V
2π

β0

[
εm(ε⊥ + εm)− ε⊥(2ε⊥ − ε‖)

]
(ε⊥ + εm)

2 , (23)

∆g∗ =
V
4π

β0

[
εm(εm − ε⊥ + ε‖)− ε⊥(3ε⊥ + ε‖)

]
(ε⊥ + εm)2 . (24)

Substituting the expressions for ∆α∗ and ∆g∗ into Equation (9), one obtains the fol-
lowing expression for the pseudoscalar coupling constant of the effective chiral interaction
potential between nonchiral macromolecules in a chiral solvent:

J∗ = E0β0

(
V
4π

)2
[
ε2

m − εm(ε‖ − 3ε⊥) + ε⊥ε‖

][
εm(εm − ε⊥ + ε‖)− ε⊥(3ε⊥ + ε‖)

]
(ε⊥ + εm)3ε2

m
. (25)

According to Equation (25), the coupling constant of the effective chiral interaction
potential is proportional to the optical activity β0 of the chiral solvent. The coupling
constant is also a complicated function of the components of the dielectric susceptibility
of the medium inside the rod-like macromolecule. The dependence of the normalized

coupling constant J∗norm = J∗εm/E0β0

(
V
4π

)2
on ε‖/εm and ε⊥/εm is presented in Figure 1.

One can readily see that the effective coupling constant may even change sign depending
on the relation between the transverse dielectric susceptibility of the macromolecule and
susceptibility of the solvent. One notes also that the effective chiral coupling constant is
rather small when ε‖ < 2εm. Then, the effective coupling constant is rapidly increasing
with the increasing ε‖/εm; hence, one concludes that the sufficiently strong effective chiral
interaction can exist only when the longitudinal susceptibility of the macromolecule is
significantly larger then the solvent dielectric constant. At the same time, the effective
chiral interaction constant is sufficiently large only when the transverse susceptibility of
the macromolecule is smaller than the solvent dielectric constant.
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Figure 1. The dependence of the coupling constant on ε‖/εm and ε⊥/εm.

It is also interesting to note that even an anisotropic cavity in the chiral dielectric
medium possesses an effective optical activity, which can be written in the following simple
form, taking into account that in this case ε‖ = ε⊥ = 1:

∆g∗cavity =
V
π

β0
εm − 1

(1 + εm)2 . (26)

The effective polarizability anisotropy of the rod-like cavity is also given by a simple
expression:

∆α∗cavity =
V
4π

(εm − 1)2

1 + εm
. (27)

Thus, one concludes that two neighboring elongated cavities in the chiral dielectric
medium should also twist with respect to each other, although the equilibrium twist angle
can be relatively small.

4. Conclusions

In this paper, we derived a general expression for the effective chiral interaction
potential between two nonchiral rod-like macromolecules in the chiral nonionic solvent,
which was modeled as an isotropic chiral dielectric medium. The effective chiral interaction
potential was expressed in terms of the anisotropy of the effective polarizability and the
effective gyration tensor (which determines the optical activity) of a macromolecule in the
chiral solvent. The macromolecules were modeled as long hard rods filled with anisotropic
nonchiral dielectric medium. It was shown that a nonchiral macromolecule embedded
in a chiral solvent possesses an effective optical activity, which is proportional to the
optical activity of the solvent. Explicit analytical expressions for the effective polarizability
and effective gyration tensor of a rod-like macromolecule in a chiral solvent were also
obtained. A change in the dielectric susceptibility of the solvent may cause the sign
inversion of the effective chiral interaction coupling constant. At the same time, strong
effective chiral interaction between nonchiral macromolecules can exist only when the
longitudinal susceptibility of the macromolecule is significantly larger than the solvent
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dielectric constant while the transverse susceptibility is smaller than the solvent dielectric
constant. This means that this effect can be observed in nonpolar solvents with relatively
low dielectric constant.

The effective chiral interaction between nonchiral macromolecules in a chiral solvent
creates a torque acting on the long axes of the two molecules resulting in their mutual twist.
Such a twist, however, is expected to be relatively small because the same macromolecules
interact also via strong nonchiral dispersion forces which promote parallel orientation of
elongated macromolecules. At the same time, such a twist may be of the same order as
the one in typical cholesteric polymers where similar chiral and nonchiral intermolecular
interactions are also present. Thus, one may conclude that cholesteric twisting in the
nematic polymer liquid crystal phase can be induced by a simple chiral solvent. The pitch
of the macroscopic helical structure of the existing cholesteric polymer phase can also
be modified by adding a low molecular weight chiral dopant, which may be important
for practical applications. A similar effect may also be observed in the cholesteric phase
exhibited by chiral cellulose nanocrystals [21,22].
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