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Abstract: Despite a growing interest in graphene, an aspect which is less studied is the electrical
and optical characterization of graphene oxide (GO)-based transparent conductors obtained using
thermal annealing. In addition, few research works have studied the electrical properties of GO and
reduced graphene oxide (RGO) films using electrical impedance measurements. In this study, electric
impedance measurements are performed on GO and thermally reduced GO films dip-coated on
glass substrates. The electric resistance of RGO films decreases by about two orders of magnitude
compared to GO films. Moreover, optical microscopy and variable angle spectroscopic ellipsometry
(VASE) were carried out on the same samples. Thermal annealing increases the optical conductivity
and the absorption coefficient of GO films. Such findings could be used in many optoelectronic
applications, improving future GO applicability.
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1. Introduction

The outstanding properties of graphene-based materials are compelling for several
applications [1–23]. We investigated the graphene-based films’ optical properties in our
previous works [24–29].

The study of the electric properties of graphene-based materials opens new possibilities
for solid state electronics and for composite materials [30].

Although the result of weak disorder on the electrical conductivity of a single graphene
sheet has been widely investigated [31,32], there are not a lot of research works regarding
the conductivity of a disordered graphene-based material, such as graphene oxide (GO).
GO is insulating because of the breaking of the conjugated electronic structure by means of
oxidized functional groups, and it contains permanent defects and disorders [33]. Hence,
the electrical properties of GO sheets are dissimilar from those of pristine graphene. The
insulating GO films have resistance values higher than about 1010 Ω/sq due to their
reduced carrier mobility [34]. The reduction in GO is the key to re-establishing the excellent
electrical conductivity of graphene. The attached oxygen-containing groups and lattice
defects change the GO electronic structure and are scattering centers that influence electrical
transport. Consequently, GO reduction aims to remove the oxygen-containing groups and
to recover the conjugated network of the graphitic lattice [35], allowing the retrieval of the
electrical conductivity of graphene [36].

Even though most of the oxidized groups are suppressed during the reduction process,
the residual ones may restrict reduced graphene oxide (RGO) electron transport properties.

Thus, GO reduction restores the conductivity at orders of magnitude values below
that of pristine graphene [37]. RGO conductivity varies from 0.05 S/cm to 500 S/cm based
on the degree of reduction, which is associated with the ratio of the graphitic regions (sp2)
to the oxidized regions (sp3) [38,39].

Chemical and thermal reduction are two main methods of GO reduction [40]. Another
method of GO reduction is the use of broadband visible light [41].
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Reducing GO by using chemical reduction is a very scalable method. Unfortunately,
this method uses ecologically harmful reagents, such as hydrazine and hydrazine hy-
drate [42]. Thus, there is a need to study other low-cost and environmentally friendly GO
reduction methods.

Thermal reduction is non-toxic, environmental friendly and ideal for large-scale in-
dustrial applications [42]. The thermal reduction in GO is typically achieved above 200 ◦C
and is successful at higher temperatures [43].

GO-based transparent conductors have more defects with lower electrical conductivity,
but they may be promising for mass production because of their low cost. Nevertheless,
many challenges are still ahead, e.g., the relatively low conductivity, before full-scale
industrial application of these materials is possible.

The research on the reduction in GO films using thermal annealing may facilitate its
application in optoelectronic devices. Indeed, GO and RGO find several applications in
optoelectronic devices, such as perovskite solar cells and photodetectors [44–47].

Various work on the electrical and optical properties of GO and RGO has already
been published [48]. However, research on the electrical and optical characterization of
RGO films obtained with thermal annealing is less explored [49] in comparison to other
reduction methods, such as chemical reduction [50] and UV reduction [51]. Moreover,
few research works study the electrical properties of GO and RGO films using electrical
impedance measurements, according to our knowledge. Our work wants to fill this gap.

Therefore, the aim of this work is to characterize GO and thermally reduced GO
films deposited on glass substrates, using optical microscopy, impedance spectroscopy and
variable angle spectroscopic ellipsometry (VASE) measurements [52].

2. Materials and Methods
2.1. Synthesis and Thermal Reduction in GO Films

Corning glass substrates were washed using a mix of sulfuric acid (H2SO4) and
hydrogen peroxide (H2O2), known as “piranha solution”.

The samples were produced using 12 mg of GO (Sigma Aldrich, St. Louis, MO, USA),
3 mL of double distilled H2O and 3 mL of methanol (Sigma Aldrich, St. Louis, MO, USA).

The dip-coating process [53] was used to deposit GO thin films on glass substrates
with a homemade apparatus at a speed of 1 mm/min.

GO films on glass substrates were then heated at 450 ◦C for 20 min in an Ar atmo-
sphere furnace.

2.2. Characterization of GO and RGO Films

Optical microscopy images of the samples were acquired with a Zeiss Axioskop (Zeiss,
Oberkochen, Germany).

The electrical impedance measurements were performed using a 4294 Precision
Impedance Analyzer (Agilent, Santa Clara, CA, USA) with a 42941A pin probe kit that
permits measurements in the range 40 Hz–30 MHz. The measurements were performed by
using two close (about 1 mm) gold-tipped electrodes.

The optical conductivity of the films was studied using the VASE technique.
Spectra of the ellipsometric angles ψ and ∆ were obtained using a M2000 F (Wool-

lam Co., Lincoln, NE, USA) ellipsometer (Rotating Compensator Ellipsometer) in the
(1.2–4.1) eV photon energy range. The data were obtained at 50◦, 60◦ and 70◦ incident
angles (room temperature).

The optical model and the best fitting values were determined with the WVASE32
(J.A. Woollam) application, which uses the nonlinear Levenberg–Marquardt algorithm [54]
to determine the minimum value of the mean squared error (MSE) [55].

In Scheme 1, the schematic diagram of the synthesis process is reported.
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Scheme 1. Schematic diagram of the synthesis process.

3. Results and Discussion
3.1. Optical Microscopy Images

In Figure 1, the optical microscopy images of GO and RGO films after thermal anneal-
ing are reported.
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Figure 1. (a) Optical microscopy images of GO and (b) RGO films after thermal annealing. Figure 1. (a) Optical microscopy images of GO and (b) RGO films after thermal annealing.

Optical observation is an immediate way to see the modifications in GO films before
and after thermal annealing. The color transition of GO films from dark yellow (Figure 1a)
to black in the initial reduction stage (Figure 1b) is confirmed by optical microscopy
images [56]. When GO was reduced, the absorption coefficient increased (see Figure 11).
This high absorption coefficient is in accordance with the films becoming black, i.e., the
films absorbed light at all wavelengths. Additional morphological analysis of the samples
is available in the Supplementary Materials.
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3.2. Impedance Measurements

Figure 2 shows the electrical impedance of GO and RGO films on glass (modulus
and phase).
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Figure 2. (a) Impedance and phase of GO films and (b) RGO films on glass substrates.

We noticed that, after the annealing treatment, the resistance of the film declined by
about two orders of magnitude, although not uniformly.

As a comparison, the electrical impedance (modulus and phase) of a commercial CVD-
grown monolayer graphene on the SiO2/Si substrate (Graphenea, San Sebastián, Spain) is
reported in Figure 3, in which it is possible to observe similar behavior as in RGO films.
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Figure 3. Impedance and phase of CVD-grown monolayer graphene on SiO2/Si substrate.
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3.3. Variable Angle Spectroscopic Ellipsometry Measurements

First, we examined the bare glass substrates by VASE measurements.
Glass substrates were described using a Cauchy–Urbach model [55].
GO and RGO films on glass substrates were modeled as the sum of Lorentz oscillators.

The complex dielectric function is described with the following relation [55]:

ε̃(hv) = ε1 + iε2 = ε∞ + ∑N
k=1

Ak
Ek

2 − E2 − iΓkE
(1)

where E is the incident photons energy, ε∞ is the real part of the dielectric function when
E→ ∞ , Ak is the amplitude (eV2), Γk is the broadening (eV) end and Ek (eV) is the central
energy of the k-th oscillator.

Table 1 shows the parameters obtained from the best fit values of GO and RGO films
on glass substrates.

Table 1. Lorenz oscillators parameters for GO and RGO films on glass substrates. Amplitude Ak has
unit of eV2, center energy Ek and broadening Γk have units of eV, d is the thickness of film in nm, the
frequency dielectric constant ε∞ is dimensionless.

GO/Glass RGO/Glass

d (nm) 38.5 ± 1.1 38 ± 1
ε∞ 2.47 ± 0.04 1.94 ± 0.04

A1 (eV2) 7.6 ± 2.5 9.9 ± 3.8
Γ1 (eV) 1.8 ± 0.1 11.3 ± 1.7
E1 (eV) 4.7 ± 0.1 4.0 ± 0.3

A2 (eV2) 6.8 ± 2.9 38.59 ± 8.2
Γ2 (eV) 0.0010 ± 0.0001 66.82 ± 5.3
E2 (eV) 5.1 ± 0.2 4.6 ± 0.1

The models provide outstanding data fittings (MSE ~8).
As we can see from Table 1, we found the π* peak of plasma excitation at 4.7 eV [50]

for the GO films.
After the annealing treatment, the quantity of oxygen decreased, a transition from

sp3 to sp2 hybridization happened and the absorbance peak showed a red shift [57]. The
reduction process caused a variation in the coverage of functional groups, thus changing
the RGO [50] electronic density of states.

The red shift of the absorption peak from 5.1 eV (for GO films) to 4.6 eV (for RGO
films) was due to an excitonic effect [50].

The complex dielectric constants for GO and RGO films on glass derived from the
analysis of VASE measurement are shown in Figures 4 and 5, respectively.
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zation. The solid curves represent the real (red curve) and the imaginary (black curve) part of the
dielectric constant.

Moreover, the refractive index and the extinction coefficient of GO and RGO films are
reported in Figures 6 and 7, respectively.
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Figure 7. Estimated dispersion laws of RGO films on glass substrates by ellipsometry characterization.
The curves represent the index of refraction (red curve) and the extinction coefficient (black curve).

These measurements show an increase in the values of the index of refraction and
the extinction coefficient of GO films after the annealing, in accordance with the work of
Jung et al. [49].

The complex optical conductivity σ = σ1 + σ2 is connected to the complex dielectric
constant ε = ε1 + ε2 by the following relations [58]:

σ1 = vε2ε0 and σ2 = vε1ε0 (2)

where v is the angular frequency and ε0 is the free space dielectric constant.
The optical conductivities of GO and RGO films on glass substrates are reported in

Figures 8 and 9, respectively. Thermal annealing increased the optical conductivity of GO
by about one order of magnitude.
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The absorption coefficient is calculated from the estimated extinction coefficient k(hv):

α(hv) =
4π k(hv)

λ
(3)

where hν and λ are the energy and wavelength of the light, respectively.
Figures 10 and 11 show the absorption coefficient against hν photon energy for GO

and RGO films, respectively. Thermal annealing increases the absorption coefficient of GO
films, as is visible in Figure 11.
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4. Conclusions

Herein, we investigated the properties of GO and thermally reduced GO (RGO) thin
films dip-coated on glass substrates. The electrical and optical properties were studied by
optical microscopy, impedance and VASE measurements.

From optical microscopy pictures of the samples, it is possible to observe that a color
transition from dark yellow to black occurs as a sign of GO reduction.

We found from impedance measurements that the electric resistance of RGO films
decreased by about two orders of magnitude in comparison to GO films.

We found from VASE measurements that thermal annealing increased the optical
conductivity of GO by about one order of magnitude. In addition, thermal annealing
increased the absorption coefficient of GO films.

Hence, the electrical and optical properties of GO films are significantly enhanced
using a thermal annealing treatment.

RGO films on glass substrates, obtained using thermal annealing, could thus find use
in several fields, such as solar cells and other optoelectronic applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12091312/s1, Figure S1: Scanning electron microscopy
image of GO films on Si/SiO2 substrates. Figure S2: Scanning electron microscopy image of RGO
films on Si/SiO2 substrates.
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the published version of the manuscript.
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