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Abstract: Positron emission tomography (PET) is widely used in the diagnosis of tumors, cardio-
vascular system diseases, and neurological diseases. Scintillation crystals are an important part of
PET scanners; they can convert γ photons into fluorescent photons to obtain their energy, time, and
position information. Currently, an important research goal in PET is to find scintillation crystals with
better performance. In this work, the principle of scintillation crystals is introduced, and the prop-
erties and requirements of scintillation crystals in different PET scanners are analyzed. At present,
Lu2(1−x)Y2xSiO5 (LYSO) is the scintillation crystal with the best comprehensive properties. LaBr3 per-
forms even better regarding the timing characteristics and light output; however, LaBr3 has not been
used in any PET scanner because of its deliquescence. Detectors made of Gd3(Ga, Al)5O12 (GAGG)
exhibit a high depth of interaction (DOI) resolution and have considerable application potential. The
application fields of PET are constantly expanding, and its future development aims to achieve high
spatial resolution and high sensitivity, which require scintillation crystals with better performance.

Keywords: scintillation crystal; positron emission tomography

1. Overview

Scintillation materials are only slightly affected by temperature and exhibit stable
performance; they thus have a wide range of applications in the field of radiation de-
tection [1,2]. There exist many types of scintillation materials. Compared with organic
scintillators, scintillation ceramics, and other scintillation materials, inorganic scintillation
crystals have the advantages of a high density, a strong stability, a high transparency, and
an excellent luminous performance; they have thus become the mainstream choice of scin-
tillation materials [3]. The scintillation phenomenon was first discovered in pure water in
1903 [4], and Rutherford used a ZnS screen to observe α-particle scattering in 1908 [5]. This
experiment represents the first time that scintillation crystals have been used to observe the
internal structure of atoms, which is considered to be the starting point of modern physics.
NaI (Tl), which was discovered in 1948, is the first scintillation crystal to exhibit excellent
scintillation performance [6,7].

In the same period, the invention of photomultiplier tubes (PMTs) enabled weak
light signals produced by scintillation crystals to be accurately detected [8], and detectors
made of scintillation crystals and photosensors could accurately measure high-energy γ

photons. Since then, many types of scintillation crystals have been discovered, and various
scintillation detectors have been used in high-energy physics, nuclear physics, astrophysics,
nuclear medicine, and other areas of radiation detection [9–12]; this created the conditions
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for the invention of nuclear medicine imaging equipment, such as computed tomogra-
phy (CT), positron emission tomography (PET), and single-photon emission computed
tomography (SPECT).

In 1972, the first annular PET was designed using NaI (Tl) [13]; this PET was composed
of 32 scintillation crystal detectors arranged in a ring structure. Since then, almost all PET
scanners have had a ring structure because of its advantages in image reconstruction. In
1977, Budinger proposed for the first time the concept of time-of-flight PET (TOF-PET) [14],
which can considerably improve the image quality by detecting the TOF of two photons
generated by a coincidence event. In 1998, the first PET/CT system was developed [15].
This PET scanner was made of Bi4Ge3O12 (BGO) crystals, and the CT scanner was employed
to obtain an attenuation correction in order to achieve a better imaging quality.

Scintillation crystals are an important part of PET scanners, and their properties
determine the performance of PET scanners. In this study, the principle of scintillation
crystals and PET is presented, and possible developments of PET and scintillation crystals
to be used in PET are proposed. The aim of this work is to guide researchers and engineers
working in the PET field in selecting suitable scintillation crystals as well as to provide new
ideas for designing scintillation crystals with better performance.

2. Basic Properties of Scintillation Crystals

Scintillation crystals used in PET are all inorganic scintillation crystals, which can
convert high-energy (511 keV in PET) γ photons into a large number of fluorescent pho-
tons [16]. Then, the energy, time, and position information of the γ photons can be obtained
through photoelectric sensors. The physical principle on which scintillation crystals are
based is the photoelectric effect [17]. When high-energy γ photons pass through a scin-
tillation crystal, the electrons inside the crystal are likely to be excited, and their energy
levels transition to the excited state; then, the excited state decays through the emission of
photons of a specific wavelength. The luminescence process of scintillation crystals can be
simplified into three stages [18–21], as shown in Figure 1. In the first stage, the electrons
inside the scintillation crystal are excited after interacting with high-energy γ photons,
and the electron valence state transitions to the conduction band. At the same time, the
same number of high-energy holes is generated, giving rise to high-energy electron–hole
pairs; this is the process through which the energy is converted. In the second stage, the
high-energy electron–hole pairs migrate toward the emission center inside the scintillation
crystal and transfer energy to the luminescent center. This is the process through which the
energy is transferred. However, the crystal contains internal defects, which act as hole and
electron traps, resulting in a very-low-efficiency energy transfer. Therefore, it is usually
necessary to add specific rare-earth elements inside scintillation crystals to improve their
luminous efficiency [22]. In the third stage, the luminescent center is excited, the electrons
are de-excited and are transferred from the conduction band to the valence band, and the
excess energy is released in the form of photons. There are activators in the scintillation
crystals to introduce additional energy levels within the bandgap to allow emission of
light with energies below the bandgap and to avoid reabsorption of light by the scintillator
material. It can be seen that there are several parameters that can be used for evaluating
the performance of scintillation crystals, namely the stopping power, luminous properties,
timing characteristics, and other properties.

2.1. Stopping Power

It can be seen from the luminescence process of scintillation crystals that the probability
of a good scintillation crystal of reacting with γ photons should be as high as possible,
which is beneficial to the improvement of the sensitivity of PET scanners. The stopping
power indicates the ability of scintillation crystals to intercept γ photons [11]. To achieve a
high stopping power, scintillation crystals should have a high density and a large effective
atomic number (Zeff). Although there are no concrete expressions of Zeff, the effective
atomic number for photoelectric absorption can be expressed as Zeff = (ΣwiZi

4)1/4 [23],
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where wi and Zi are the fraction of the total mass associated with the ith element and the
atomic number of the ith element, respectively. For instance, BGO, Lu2SiO5 (LSO), and
Lu2(1−x)Y2xSiO5 (LYSO) are scintillation crystals with a high density, a large effective atomic
number, and a high stopping power.
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2.2. Luminous Properties

The luminescent properties of scintillation crystals include the light output and the
wavelengths of the emission spectrum [24]. The light output of scintillation crystals is an
important parameter. A high light output signifies that under the same conditions, more
fluorescent photons are generated, which improves the decoding precision and signal-to-
noise ratio (SNR) of PET detectors. At the same time, scintillation crystals with a high
light output also have a good energy resolution, which is beneficial for distinguishing
the different energies of γ photons and neglect the γ photons redirected by the Compton
scattering. LSO and LYSO are the most commonly used scintillation crystals with a high
light output. In addition, LaBr3 and Gd3(Ga, Al)5O12 (GAGG) exhibit an even higher
light output and are considered to be the scintillation crystals with the greatest application
potential in the future.

The maximum emission wavelength of the emission spectrum of scintillation crystals is
also an important parameter; this wavelength is determined by the energy level transition
of the luminescence process of scintillation crystals. The weak light signals produced
by scintillation crystals are detected by photoelectric sensors. Photoelectric sensors are
more sensitive at specific wavelengths; thus, it is important that the maximum emission
wavelength matches the most sensitive wavelength of the sensor. Otherwise, the decoding
precision and SNR ratio are significantly reduced. At present, Si photomultipliers (SiPMs)
are the most commonly used photoelectric sensors; their most sensitive wavelength is
420 nm. LSO and LYSO are the best scintillation crystals with a maximum emission
wavelength that can match that of SiPMs.

2.3. Timing Characteristics

Unlike CT, PET is a molecular imaging equipment that images a lesion by detecting
pairs of γ photons generated by positron annihilation, which indicates that it is necessary
to accurately measure the reaction time of each γ photon to determine whether two γ

photons are produced by the same coincidence event. Therefore, PET scanners place high
requirements on the timing characteristics of scintillation crystals. The timing characteristics
of scintillation crystals consist of the signal rise time and the decay time [11]. The signal
rise time represents the time that elapses between the moment in which the scintillation
crystal detects γ photons and the moment in which fluorescent photons are generated. A
shorter signal rise time indicates that the errors introduced in the time measurement of
the γ photons are smaller, and thus the time resolution of the PET detector will be higher.
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The SNR of the image will also be higher. At present, improving the time resolution is
the most important research direction in PET. The decay time represents the time that
elapses between the moment in which the scintillation crystal starts to generate fluorescent
photons and the moment in which it stops generating them. If the decay time is sufficiently
long, the luminous process generated by any γ photon will not be over by the time the
subsequent γ photon generates another luminous process. As the two luminous processes
are indistinguishable, considerable noise is created, which seriously affects the image
quality. The signal rise time and the decay time are basically determined by two factors:
One is the speed of the high-energy electron–hole pairs transferring from the ionization
track to the emission center; the other is the lifetime of the luminescence state of the
activator. Scintillation crystals with excellent timing characteristics, such as LSO, YSO, and
LaBr3, are preferred for PET detectors with a good time resolution.

2.4. Other Properties

There are also other important properties of scintillation crystals in PET; for instance,
scintillation crystals used in PET scanners need to have a strong physical stability and
an excellent chemical durability; otherwise, the processing and maintenance costs of the
scintillation crystal will be very high. This requires that the scintillation crystal is not
easily deliquescent and not easily oxidized. Scintillation crystals often work in a high-
radiation environment, so they must exhibit a long luminous life, and the light output
changes little with the environment [25]. Since the invention of PET, the scintillation crystals
most extensively used have been NaI (Tl) [13], BGO [15], GSO [26], LSO [27], LYSO [28],
LaBr3 [29], and GAGG [30]. The basic properties of these crystals are listed in Table 1. LSO
and LYSO are the scintillation crystals with the best overall performance. Compared with
LSO, LYSO exhibits a lower spontaneous radiation [31] and has become the most commonly
used scintillation crystal. Although new scintillation crystals, such as LaBr3 and GAGG,
have many performance advantages, they cannot replace LYSO due to the existence of
several shortcomings.

Table 1. Basic properties of common scintillation crystals used in PET scanners.

Property NaI (Tl) BGO GSO LSO LYSO LaBr3 GAGG

Chemical Formula NaI Bi4Ge3O12 Gd2SiO5 Lu2SiO5 Lu2(1−x)Y2xSiO5 LaBr3 Gd3(Ga, Al)5O12
Zeff 51 74 59 66 60 47 48

Density (g/cm3) 3.67 7.13 4.89 7.4 7.2 5.3 6.63
Light output (ph/keV) 41 9 10 31 30 67 54

Wavelength (nm) 410 480 440 420 420 370 540
Decay time (ns) 230 300 60 40 41 25 94
Hygroscopic? Yes No No No No Yes No

3. Basic Properties of PET Scanners

PET scanners realize imaging by detecting the position of the high-energy γ-photon
pairs generated by the decay of the tracer (fluorodeoxyglucose (FDG) is the most com-
monly used tracer) injected into the organism [32,33]. As shown in Figure 2, a pair of γ
photons originated from a coincidence event form a line of reaction (LOR), which contains
information regarding the reaction site; then, metabolic images of the organism can be
obtained by combining thousands of LORs through image reconstruction. Detectors are
the core part of PET scanners [28], which are mainly composed of scintillation crystals
and photoelectric sensors [34]. Scintillation crystals intercept high-energy γ photons and
generate fluorescent photons; photoelectric sensors then detect the fluorescent photons and
send the corresponding electrical signals to the electronic system to obtain the time, energy,
and position information of the γ photons. The metabolic level and functional activity infor-
mation can be obtained through image reconstruction [17], which can detect the presence of
lesions earlier than magnetic resonance imaging (MRI) and CT scans [35,36]. The two most
important parameters of PET scanners are their sensitivity and spatial resolution [37,38],
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and the performance of scintillation crystals is directly related to the sensitivity and spatial
resolution of PET scanners [28].
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3.1. Sensitivity

The sensitivity of PET indicates the efficiency of detection of γ photons. A higher
sensitivity of the PET scanner permits the dose of the FDG tracer injected into the patient
and/or the scan time to be reduced [40]. To improve the sensitivity of PET, the scintillation
crystal used in the PET scanner needs to have a high stopping power for γ photons, which
means that the scintillation crystal is required to have a high effective atomic number
and a high density [41]. The scintillation photons generated by the scintillation crystal
are detected by photoelectric sensors, such as PMTs and SiPMs, which means that the
scintillation crystal also needs to have a high light output [41], and its maximum emission
wavelength needs to match the sensitive wavelength of the photodetectors. Additionally,
if the flight time of a pair of γ photons originated from the same coincident event can be
accurately measured, the location of the positron annihilation event can be more accurately
determined, noise can be removed, and the effective sensitivity of the PET scanner can
be improved [42]. This method is called TOF technology, and a higher light output is
beneficial for increasing the TOF resolution. Most scintillation crystals are optically dense
media, and many scintillation photons cannot be detected by photoelectric sensors due to
total reflection; thus, the ideal scintillation crystal should have as low a refractive index as
possible [43,44].

The stopping power is the most important attribute related to the sensitivity; BGO has
a high effective atomic number and a high density; thus, it has a high stopping power for γ
photons. However, PET scanners now rarely use BGO because of its low light output. LYSO
and LSO have a slightly lower stopping power than BGO but an overall better performance;
therefore, they have become the most commonly used scintillation crystals in PET.

3.2. Spatial Resolution

The spatial resolution indicates the sharpness of the PET image. The empirical expres-
sion to calculate the spatial resolution of PET is [45]:

RFWHM = 1.25

√
(d/2)2 + (0.0044R)2 + s2 + b2 +

(12.5r)2

r2 + R2 (1)
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where RFWHM is the full width at half maximum of the point spread function (PSF) of
compact radioactive sources, representing the spatial resolution of the system; d is the
size of the scintillation crystal; R is the radius of the PET scanner ring; s is the positron
annihilation stroke, which is related to the type of isotope (the average annihilation path
of positrons generated by 18F in tissue fluid is approximately 0.5 mm); b is the error in
the crystal decoding; r is the distance from LOR to the center of the ring; (12.5r)2/(r2 + R2)
and the 1.25 coefficient represent the effects of the depth of interaction (DOI) and the
image reconstruction on the system spatial resolution. The spatial resolution of the PET
scanner is directly related to its geometric structure, and scintillation crystals with excellent
performance can provide more degrees of freedom for the design of PET scanners.

The scintillation crystals used in high-spatial-resolution PET need to be easy to process;
therefore, the size of the scintillation crystal can be very small, and the spatial resolution
will be improved. For the same geometry of the PET scanner, the high decoding precision
of the scintillation crystal position can improve the spatial resolution [46]. From this
point of view, high-spatial-resolution PET scanners require scintillation crystals with a
high light output and an emission spectrum that matches the sensitive wavelength of the
photodetectors. PET scanners based on LSO or LYSO exhibit a high spatial resolution. With
the continuous development of the biology and medicine fields, high-spatial-resolution PET
is increasingly required, and consequently scintillation crystals with better performance
are extensively investigated.

4. PET Development and Requirements of Scintillation Crystals

Current PET scanners are capable of attaining high-sensitivity images of lesions [17]
and have a wide range of applications in the diagnosis of tumors [47–49], cardiovascular
system diseases [50–52], and neurological diseases [53,54]. However, compared with other
imaging equipment, such as CT and MRI, there is still room for improvement in the
sensitivity and spatial resolution [41], and the inherent high cost of PET also restricts its
widespread use. To improve the effective sensitivity and the spatial resolution of PET,
the TOF technology and the DOI decoding have been proposed, and scintillation crystals
exhibiting better performance promise to achieve a higher TOF and a higher DOI resolution.
Depending on the object to be scanned, the future development of the PET technology
mainly includes whole-body PET (Wb-PET), small-animal PET (SAP), and organ-specific
PET. The functional requirements and system architectures of these PET scanners differ, as
do the requirements of the corresponding scintillation crystals.

4.1. TOF-PET

Wb-PET has a radial field of view (FOV) greater than 60 cm [55–57], and the annihi-
lation location can be anywhere in the 60 cm long LOR, which severely reduces the SNR
of the image. TOF-PET was first proposed in 1977. As shown in Figure 3a, the TOF-PET
scanner records the flight time of the γ-photon pair reaching the detector module. The
probability of the annihilation event occurring at different positions along the LOR can be
calculated; thus, the SNR of the reconstructed image of the system can be improved. The
TOF technology improves the SNR of the image according to [42]:

SNRTOF =

√
2D
c∆t

SNRnon-TOF (2)

where SNRTOF and SNRnon−TOF represent the SNR of PET with and without the TOF
technology, respectively; D represents the length of the LOR; c represents the speed of light;
∆t represents the coincidence time resolution (CTR). The CTR in TOF-PET is determined by
the time resolution of scintillation crystals and the time error of electronic system. TOF-PET
scanners with a high SNR of the images [58] also offer the following advantages: Improved
image quality in larger patients, reduced isotope radiation dose, ultralow-dose imaging and
measurements, improved image quality in case of missing data, and greater convergence
speed of the image reconstruction algorithm.
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reconstruction [58].

TOF-PET requires an electronic system with a high time-measurement resolution and
scintillation crystals with good timing characteristics. At present, the scintillation crystals
most commonly used in commercial TOF-PET scanners are LSO and LYSO. Scintillation
crystals with good timing characteristics need to have an extremely fast rise signal, a
short decay time, and a high light output [59]. Currently, LaBr3 may be the most suitable
scintillation crystal to improve the TOF resolution of PET scanners [60–62]. Indeed, a
77 ps TOF resolution for an LaBr3 crystal with dimensions of 6 × 6 × 6 mm3 has been
reported [63], and the obtained 6.4% energy resolution is considerably higher than that
of LYSO. A 132.9 ps TOF resolution for an LSO crystal of the same size and a 129 ps TOF
resolution for an LYSO of the same size have also been reported, and the corresponding
energy resolutions are 10.4% and 8.9%, respectively. The performance of an LaBr3-based
PET scanner has also been tested [64], and the obtained 375 ps CTR is superior to that
achieved in commercial TOF-PET scanners (550–600 ps). Indeed, LaBr3 has extremely good
timing characteristics, but it has not become the mainstream choice of scintillation crystals
used in TOF-PET because of its deliquescence. With the development of scintillation
crystals, the CTR of TOF-PET will certainly be improved further.

4.2. DOI-PET

To observe the physiological response and metabolic process of small animals quanti-
tatively and dynamically, PET scanners need to have a high spatial resolution, so they can
have a wide range of applications in the oncology, neurology, and pharmaceutical industry
fields [65–67]. However, in high-resolution PET scanners, as shown in Figure 4, the parallax
errors caused by the DOI are significant [68,69].

In a system with a given DOI resolution w, if only the size of the scintillation crystal
and the size of the scanner are considered, the radial resolution at any given point within
the FOV can be estimated as follows [70]:

Γ ≈

√(
d
2

)2
+

(w2 − d2)

4R2 r2 (3)

To reduce the effects of the DOI, the detectors in PET need to have the ability to
calculate the depth position of the γ photons; in this way, the LORs can be positioned more
accurately. Additionally, simulation studies have demonstrated that high-resolution DOI
decoding also improves the SNR of the image [71]. Currently, the main DOI decoding
methods in PET scanners include the multilayer [72,73], dual-ended readout [74], and
light-sharing [75,76] methods. Although the structures of these DOI detectors are differ-
ent, they all require scintillation crystals with a high light output to improve the DOI
decoding resolution.
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the LOR in the axial direction caused by the DOI.

LYSO and LSO are the most commonly used scintillation crystals in PET; DOI resolu-
tions of 1.9 ± 0.1 mm and 1.76 ± 0.13 mm have been reported for an LSO crystal with dimen-
sions of 1.5 × 1.5 × 20 mm3 and an LYSO crystal with dimensions of 0.62 × 0.62 × 20 mm3,
respectively [74,77]. In recent studies, it has been found that GAGG with a high light out-
put and no spontaneous radiation can achieve a higher DOI resolution [78,79]. Choghadi
et al., [80] reported a DOI resolution of 1.2 ± 0.08 mm for a GAGG crystal with dimensions
of 1.2 × 1.2 × 20 mm3 using the dual-ended readout method, and the corresponding energy
resolution is 12.4% ± 0.6%, which is acceptable. The DOI resolution of GAGG is higher
than that of LYSO and LSO and closer to the size of the crystal. Thus, the DOI factor for
GAGG can be little, which indicates that GAGG has the potential to further improve the
spatial resolution of PET scanners in the future.

4.3. Wb-PET

The most important function of PET is imaging the metabolic processes of the human
body to monitor human health. The structure of the Wb-PET scanners comprises a ring
of detectors, as shown in Figure 5a, and the axial FOV (AFOV) of the Wb-PET scanners
currently in use is generally 20–30 cm [55–57]. Data is acquired by moving the patient,
and multiple tomographic images are stitched together into a whole-body image. The
sensitivity of the system is low because the geometric angle covered by the detector is small;
furthermore, the scan time is at least 20 min, and imaging multiple organs simultaneously
can be difficult. To solve this problem, the concept of a long-AFOV PET was proposed [81];
its working principle is illustrated in Figure 5b. The first studies on the uEXPLORER
total-body PET scanner on human subjects were performed in 2019 [82]. With an AFOV of
194 cm, the uEXPLORER total-body PET scanner can obtain high-quality dynamic metabolic
images of the entire human body in less than 2 min. Furthermore, the sensitivity, SNR,
and imaging FOV of the long-AFOV PET are far superior to those of traditional Wb-PET
scanners. The long-AFOV PET is likely to be the future direction of human-body PET.
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AFOV PET.

The long-AFOV PET scanner has a greater axial length than the traditional Wb-PET
scanners; thus, the LOR position error caused by the axial DOI is also larger, which
means that scintillation crystals should have a perfect performance regarding both the
time resolution and the DOI decoding. Theoretical studies have shown that the sensitivity
and image quality of the long-AFOV PET with both 320 ps TOF and 4 mm DOI are more
than four times those of the long-AFOV PET without the TOF and DOI technologies [71].
LSO and LYSO are considered to be the most suitable scintillation crystals, and almost all
Wb-PET scanners use LSO or LYSO. However, the cost of the LSO and LYSO crystals is very
high, and cheaper scintillation crystals, such as BGO or GSO, could be considered for the
long-AFOV PET scanner [83]; however, this leads to a compromise in the spatial resolution
and the sensitivity of PET scanners. The scintillation crystals most commonly used in
commercial Wb-PET scanners are listed in the Table 2 alongside their respective properties.

Table 2. Scintillation crystals used in WB-PET and their properties.

Crystal
Material

Crystal
Size (mm3)

Array
Structure DOI? CTR (ps) Spatial

Resolution (mm)
Sensitivity
(kcps/MBq) Name

LYSO 2.76 × 2.76 × 18.1 5 × 14 Yes 412 ~3.0 174 uEXPLORER
[84–86]

LYSO 3.2 × 3.2 × 20 5 × 5 No 210 ~3.5 16.4 Biograph
Vision [87]

LSO 4 × 4×20 13 × 13 No N/A ~4.7 N/A Biograph
Horizon [88]

LYSO 3.95 × 5.3 × 25 4 × 9 No 381.7 ~4.6 13.3 Discovery
MI [89,90]

LYSO 4.2 × 6.3 × 25 6 × 9 No 552.7 ~4.6 6.3 Discovery
MI-DR [90,91]

LYSO 4 × 4×22 23 × 44 No 585 ~4.8 6.6 Gemini TF [92]

4.4. SAP

Imaging of metabolic processes in small animals using PET has a wide range of
applications in the oncology, neurology, and pharmaceutical industry fields [65–67]. It is
necessary to develop dedicated high-resolution SAP scanners because Wb-PET scanners
are too large and expensive for small-animal imaging and exhibit a low sensitivity and a
poor spatial resolution [93]. In 1992, the first SAP scanner called RAT-PET was launched
by CTI (US), using BGO crystals with dimensions of 2.4 × 2.4 × 4.6 mm3. In 1999, an SAP
scanner with a diameter of 17.2 cm using LSO crystals was developed, which achieved
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a spatial resolution of 1.8 × 1.8 × 1.8 mm3 and an absolute sensitivity of 0.56% [94]. To
achieve high-spatial-resolution SAP scanners, small-sized scintillation crystals need to be
used, which means that the scintillation crystals need to have good processing properties.
Clearly, the size of the scintillation crystal cannot be too small, and it should match the
decoding precision of the detector. The DOI affects considerably the spatial resolution in
SAP; therefore, currently used SAP scanners often possess a DOI decoding ability, which
enables them to achieve a high spatial resolution. SAP does not need the TOF technology
because the radial FOV of SAP is much smaller than that of Wb-PET; furthermore, it is
unclear how the TOF technology could improve the SNR of the images. Table 3 lists the
crystals most typically used in SAP and their properties.

Table 3. Scintillation crystals used in SAP and their properties.

Crystal
Material

Crystal
Size (mm3)

Array
Specification DOI? Spatial

Resolution (mm) Sensitivity Name

GSO 2 × 2 × 10 N/A No 2.32 2.83% Mosaic HP [95]
LYSO/LuYAP 2 × 2 × 10 8 × 8/8 × 8 Yes 1.94 3.03% ClearPET [96]

BGO 2.32× 2.32 × 9.4 8 × 8 No 2 5.90% FLEX Triumph [97]
LYSO 1.89 × 1.89 × 13 13 × 13 No 1 2.04% Trans-PET [98]

NaI(Tl) 51 × 38 × 9.5 Continuous Yes 0.55 0.20% U-PET [99]
LYSO 25.4 × 25.4 × 8 Continuous Yes 0.85 12.60% Beta_CUBE [100]

4.5. Organ-Specific PET

There are also several other PET scanners for inspecting specific organs; the most common
and effective of these are brain-PET and dedicated-breast PET (Db-PET) scanners. The only
commercially available brain-PET is the HRRT-PET developed by Siemens [101,102]; however,
this system has been discontinued for various reasons. Recent studies have shown that PET
can be used as a diagnostic tool for neurological diseases, such as Alzheimer’s disease [103],
Parkinson’s disease [104], and epilepsy [105]. Brain-PET also consists of a ring-like structure,
but it covers only the head of the human body; thus, it has a better sensitivity and a greater
spatial resolution for the brain than Wb-PET. The diagnosis of brain diseases and brain research
require a high image quality, so it is necessary for brain-PET to achieve a high TOF resolution
and a high DOI decoding resolution. LSO and LYSO are currently the best scintillation crystals
also in the case of brain-PET scanners. Brain-PET scanners have a simpler structure than
Wb-PET scanners. Thus, implementing brain-PET scanners based on difficult-to-process
scintillation crystals, such as LaBr3, could provide high-quality images for brain science
research and neurological research, which also have the potential to develop in the future.
Table 4 presents some of the crystals used in brain-PET scanners and their properties.

Table 4. Scintillation crystals used in brain-PET and their properties.

Crystal
Material

Crystal
Size (mm3)

Array
Structure DOI? TOF? Spatial

Resolution (mm) Sensitivity Name

GSO 4.9 × 5.9 × 8 11 × 8 Yes Yes ~4.0 0.72% PET-Hat [106]
LSO/LYSO 2.44 × 2.44 × 10 8 × 8 Yes No ~3.0 0.5% HRRT [101,102]

LYSO 1.5 × 1.5 × 10 32 × 33 No No 2–4 0.5% Helmet-PET [107]
LYSO 3 × 3 × 10 10 × 10 No No N/A N/A Mind-tracker [108]

Breast cancer is the most common malignant tumor in women, but early breast cancer
may not be visible in a Wb-PET scan [109]. To overcome this limitation, several Db-PET
scanners have emerged nowadays aiming to improve the spatial resolution and sensitivity
of breast imaging. The scan mode of Db-PET scanners is different from that of normal PET
scanners; the patient is either sitting or lying prone with the breast in the center of the FOV.
Most of Db-PET scanners are characterized by a double-plate structure, and each plate
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consists of multiple detector modules. TOF and DOI are not required to improve the image
quality. Table 5 lists some of the crystals used in Db-PET scanners and their properties.

Table 5. Scintillation crystals used in Db-PET and their properties.

Crystal
Material Size (mm3) Array Planar

Detector (cm)
Spatial

Resolution (mm)
Relative

Sensitivity Name

LGSO 3 × 3 × 10 20 × 30 15 × 20 4.1 5% PET Mammography [110]
LSO 3 × 3 × 20 9 × 9 40 × 30 N/A N/A DbPET/CT [111]

LYSO 2 × 2 × 15 96 × 72 12 × 20 ~2 6.88% PEM/PET [112]

5. Conclusions

Since the discovery of NaI (Tl), the PET technology has gradually developed, and
the currently used PET scanners mainly use LSO or LYSO crystals in combination with
SiPMs for detectors. PET scanners are often combined with CT or MRI scanners to perform
multimodal imaging; they play an important role in the diagnosis of tumors, neurological
diseases, and cardiovascular diseases and have wide application in the biopharmaceutical
industry, scientific research, and other fields. At present, the predominant limitations of
PET scanners include their low sensitivity, low spatial resolution, and high cost.

To improve the effective sensitivity, the TOF technology has been widely investigated
in PET research; furthermore, LaBr3 and other scintillation crystals are believed to be
able to further improve the CTR of TOF-PET. In addition, with the development of the
pharmaceutical industry, brain science research, and neuroscience research, ultra-high-
resolution PET has the potential to make a breakthrough in these fields. GAGG exhibits a
better energy resolution, a superior light output, and no spontaneous radiation compared
with LYSO. In a recent study [30,78,79], PET detectors using GAGG crystals have been found
to possess a very high decoding precision. LaBr3 and GAGG have a greater light output
than LYSO; therefore, it may be possible to obtain a PET scintillation crystal with better
comprehensive performance by further improving the light output of LYSO scintillation
crystals. Although the long-AFOV PET exhibits a great performance, its high cost limits its
widespread use, which brings cheaper and less powerful scintillation crystals, such as BGO
and GSO, back into consideration.

It will be very difficult to find an ideal scintillation crystal for all PET scanners within a
short time, and the design of each individual PET scanner should be based on the functional
requirements, reaching compromises in terms of the sensitivity, spatial resolution, and cost,
and the selection of an appropriate scintillation crystal. Clearly, researchers and engineers in
the PET field also expect the discovery of scintillation crystals with enhanced performance.
At present, if a scintillation crystal with a light output greater than 100 ph/keV and a decay
time less than 5 ns is found on the basis of LYSO, the performance of PET scanners can be
significantly improved, and this is what researchers in the PET field have been working on.
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