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Abstract: [NH3(CH2)5NH3]MnCl4 crystals are grown via slow evaporation, and the crystal undergoes
a phase transition at 298 K (TC) according to differential scanning calorimetry, and the structures
determined via X-ray diffraction at 173 and 333 K are orthorhombic systems in the space group Imma.
These results differed slightly from those previously reported, and the reasons for this are analyzed.
The thermal stability is relatively high, with a thermal decomposition temperature of approximately
570 K. The 1H spin-lattice relaxation times t1ρ exhibited very large variations, as indicated by the
large thermal displacement around the 1H atoms, suggesting energy transfer at ~TC, even if no
structural changes occurred. The influences of the chemical shifts of 1H of NH3 and short t1ρ of C1
adjacent to NH3 in cation are insignificant, indicating a minor change in the N−H· · ·Cl hydrogen
bond related to the coordination geometry of the MnCl6 octahedron. These properties will be make it
a potential application for eco-friendly solar cells.

Keywords: crystal structure; organic–inorganic hybrid; [NH3(CH2)5NH3]MnCl4; phase transition;
nuclear magnetic resonance; thermodynamic properties

1. Introduction

Hybrid perovskite compounds are of scientific interest because of the diversity of
their crystal structures, which govern their structural dynamics and ferroelastic and ther-
modynamic properties. In addition, ferroelasticity is commonly observed in compounds
with perovskite crystal structures, and the ferroelastic twin domains in organic–inorganic
hybrid perovskites attract much attention [1–6]. The organic cation of the hybrid material
contributes to properties such as structural flexibility and optical characteristics, whereas
the inorganic anion is responsible for the thermal and mechanical properties [7,8]. More-
over, the fabrication of hybrid perovskites was recently reported as a major challenge in
the context of developing ferroelastic semiconductors [9]. Furthermore, successful hybrid
perovskite ferroelectric performances render hybrid perovskites suitable candidates for use
in flexible and wearable devices [10,11]. Additionally, solar cells based on CH3NH3PbX3
(X = Cl, Br, or I) organic–inorganic hybrid compounds recently attracted interest. However,
perovskites containing Pb are toxic and decompose in humid air, and thus, developing
alternative green hybrid perovskite solar cells is necessary [4–6,12–16]. Hence, detailed
characterizations of perovskite structures and the dynamics of novel organic–inorganic
hybrid compounds [NH3(CH2)nNH3]MX4 (n = 2, 3, 4, . . . , MII is a transition metal, such as
Mn, Fe, or Cu, and X is a halogen ion), which crystallize in perovskite-type layer structures
in various configurations, are increasingly necessary due to their potential applications
as green alternatives. The diammonium hybrid perovskites [NH3(CH2)nNH3]BX4, with
one-dimensional (0D) and two-dimensional (2D) structures, have been extensively inves-
tigated [17–30]. In the case of B = Mn, Cu, and Cd, the crystal structures consist of an
alternate octahedrally coordinated (BX6)2− and organic cations. In the case of B = Co and
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Zn, isolated tetrahedral (BX4)2− is coordinated between the organic cations [31,32]. These
2D hybrid perovskite types have various potential applications in electrochemical devices
such as chemical sensors, supercapacitors, batteries, and solar cells [17,24,25,33].

Layered 2D hybrid perovskite [NH3(CH2)5NH3]MnCl4 crystals (n = 5, M = Mn, and
X = Cl) comprise organic and inorganic ions. The organic [NH3(CH2)5NH3]2+ cations
and inorganic [MnCl4]2− anions are alternately stacked along the longest axis, with the
inorganic layer extended via corner-shared octahedra. The organic and inorganic layers
are interconnected by N−H· · ·Cl hydrogen bonds [23]. The phase transition associated
with the order–disorder transition between two orthorhombic phases is from Pnma to
Imma at 299.6 K (= phase transition temperature TC) [31]. The lattice constants at 298 K
reported by Mondal et al. [23] are a = 7.1742 Å, b = 7.3817 Å, c = 23.9650 Å, and Z = 4.
The crystal structure at 298 K is shown in Figure 1 (CCDC 1401387) [23], with each layer
of alkylenediammonium chains inserted between two infinite sheets of corner-sharing
MnCl6 octahedra.
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Figure 1. Orthorhombic structure of a [NH3(CH2)5NH3]MnCl4 crystal at 298 K [23].

Research regarding [NH3(CH2)5NH3]MnCl4 was initially published by Arend et al. [34,35],
mainly as research reports regarding the crystal structure and TC of 299.6 K based on the heat
capacity. Based on recent results, Mondal et al. [23] studied the crystallographic characteristics
of this crystal, with Lv et al. [36] reporting the dielectric and photoluminescence characteristics.

In this study, [NH3(CH2)5NH3]MnCl4 single crystals were grown using an aqueous
solution-based method, and TC was confirmed using differential scanning calorimetry
(DSC). In addition, the structures of the crystals below TC and above TC were confirmed us-
ing single-crystal X-ray diffraction (XRD). The thermodynamic properties were investigated
as a function of temperature. Finally, the structural dynamics of the [NH3(CH2)5NH3]2+

cation at ~TC were analyzed using nuclear magnetic resonance (NMR) chemical shifts and
spin-lattice relaxation times t1ρ. The physicochemical properties of [NH3(CH2)5NH3]MnCl4
without structural changes at ~TC should render its use in proton conductors viable.

2. Materials and Methods

Single crystals of perovskite-type [NH3(CH2)5NH3]MnCl4 were grown via slow evap-
oration from an aqueous solution containing NH2(CH2)5NH2·2HCl (98%, Sigma-Aldrich,
St. Louis, MO, USA) and MnCl2 (98%, Sigma-Aldrich). The mixture was stirred and heated,
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the resulting solution was filtered, and light-yellow single crystals were obtained after five
weeks in a constant-temperature bath at 300 K.

Fourier transform infrared (FT-IR) spectra were measured between 4000 and 500 cm−1

using an L1600300 spectrometer (PerkinElmer, Waltham, MA, USA) and compressed
KBr pellets.

DSC (DSC 25, TA Instruments, New Castle, DE, USA) was performed to observe the
structural phase transitions by heating in the temperature range 200–480 K at 10 K min−1 un-
der N2 gas. Thermogravimetric analysis (TGA) was performed using a thermogravimetric
analyzer (TA Instruments) in the temperature range 300–870 K at the same heating rate.

The lattice parameters at various temperatures were determined via single-crystal
XRD at the Western Seoul Center of the Korea Basic Science Institute. A crystal was
lifted in paratone oil and mounted in a D8 Venture diffractometer (Bruker, Billerica, MA,
USA) equipped with a Mo-Kα radiation source, PHOTON III M14 detector (Bruker), and
a nitrogen cold atmosphere (−50 ◦C). Data collection and integration were performed
using SMART APEX3 (Bruker, 2016) and SAINT (Bruker, 2016), and absorption correction
was performed using a multiscan method implemented in SADABS (Bruker, 2002). The
structure was analyzed and refined via the full-matrix least-squares method on F2 using
SHELXTL (University of Göttingen, Göttingen, Germany).

In order to check whether the peak obtained from the DSC result is TC or a melt-
ing temperature Tm, it was observed using a polarizing optical microscope (Carl Zeiss,
Oberkochen, Germany) with a THMS600 heating stage (Linkam, Salfords, UK) at an appro-
priate temperature for a single crystal.

NMR spectroscopy of the [NH3(CH2)5NH3]MnCl4 crystals was conducted using a
400 MHz Avance II+ solid NMR spectrometer (Bruker) with a 4 mm magic angle spinning
(MAS) probe (Western Seoul Center, KBSI). 1H and 13C MAS NMR spectra were recorded
at Larmor frequencies of 400.13 and 100.61 MHz, respectively. The MAS speed used to
minimize the spinning sideband overlap was 10 kHz, and NMR chemical shifts were
calibrated using tetramethylsilane (TMS) as the standard. The 1H and 13C t1ρ values were
obtained via the π/2 − τ sequence method by changing the spin-locking pulses—the π/2
pulse widths for 1H and 13C were ~3.7 µs. The temperature variation was determined by
adjusting the heater current and N2 gas flow.

3. Results
3.1. FT-IR Spectroscopy

Figure 2 shows the FT-IR spectrum of the [NH3(CH2)5NH3]MnCl4 crystal at 300 K
in the range 4000–500 cm−1. The bands at 3122 and 3043 cm−1 are characteristic of the
C–H bonds of the protonated ligand, and the band at 2934 cm−1 suggests the presence of
N−H· · ·Cl hydrogen bonds. The band at 1568 cm−1 is due to the asymmetric mode of NH3,
whereas the strong band at 1488 cm−1 is assigned to the symmetric deformation mode of
NH3. Finally, the bands close to 1169 and 980 cm−1 are assigned to the C–N and C–C modes,
respectively. The observed FT-IR bands are consistent with those previously reported [23].

3.2. Phase Transition and Crystal Structure

The DSC thermogram measured at a heating rate of 10 K min−1 under an N2 atmo-
sphere is shown in Figure 3. An endothermic peak is observed at 298 K, and the TC of
298 K is consistent with that reported previously [36]. The enthalpy for the phase transition
was 689 J/mol.
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Figure 3. Differential scanning calorimetry curve of [NH3(CH2)5NH3]MnCl4.

The structures obtained via single-crystal XRD are identical to the orthorhombic
structures below TC and above TC. The lattice constants at 173 K (<TC) are a = 24.1756 Å,
b = 7.1535 Å, and c = 7.3314 Å in the space group Imma, whereas those at 333 K (>TC) are
a = 23.9162 Å, b = 7.1877 Å, and c = 7.3898 Å in the space group Imma. Table 1 shows the
single-crystal data collection and refinement parameters of the [NH3(CH2)5NH3]MnCl4
crystal at 173 and 333 K, and the atomic numbering scheme and thermal ellipsoids of the
H atoms are shown in Figure 4. The Mn atom is coordinated to six Cl atoms, forming an
almost regular octahedron, MnCl6, and the six N-linked hydrogen atoms in one formula
unit form N−H· · ·Cl hydrogen bonds. The lattice constants as functions of temperature
are shown in Figure 5. The lattice constants do not change at ~TC, and it does not appear to
be significantly related to the TC. The detailed results of XRD of the crystal structure are
shown in the Supplementary Information S1 and S2.
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Table 1. Crystal data and structure refinement for [NH3(CH2)5NH3]MnCl4 at 173 K and 330 K. The
full data are available in the CIF files.

Chemical Formula C5H16N2MnCl4 C5H16N2MnCl4

Weight 300.94 300.94
Crystal system Orthorhombic Orthorhombic
Space group Imma Imma
T (K) 173 330
a (Å) 24.1756 23.9162
b (Å) 7.1535 7.1877
c (Å) 7.3314 7.3898
Z 4 4
V (Å3) 1267.89 1270.32
Radiation type Mo-Kα Mo-Kα

Wavelength (Å) 0.71073 0.71073
Reflections collected 5418 5258
Independent reflections 867 863
Goodness of fit on F2 1.070 1.118
Final R indices [I > 2sigma(I)] R1 = 0.0383, wR2 = 0.1178 R1 = 0.0312, wR2 = 0.0957
R indices (all data) R1 = 0.0394, wR2 = 0.1190 R1 = 0.0330, wR2 = 0.0974
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3.3. Thermodynamic Properties

To determine whether the endothermic peaks were related to phase transitions or
decomposition, TGA and differential thermal analysis (DTA) were performed at the
same heating rate as that used during DSC. The TGA and DTA thermograms shown
in Figure 6 reveal that the crystals are virtually stable up to approximately 570 K. The
molecular weight of [NH3(CH2)5NH3]MnCl4 decreases with increasing temperature above
570 K, and the amount of residue based on the total molecular weight is obtained using
Equation (1) [37,38]:
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Figure 6. Thermogravimetric analysis and differential thermal analysis curves of
[NH3(CH2)5NH3]MnCl4 (Inset: Changes in crystal by optical polarizing microscopy at (a) 300 K and
(b) 617 K).

1st step

[NH3(CH2)5NH3]MnCl4 (MW: 300.94 g)→ [NH2(CH2)5NH2·2HCl]MnCl2

→ [NH2(CH2)5NH2·HCl]MnCl2 (s) + HCl (g)

Residue:

[NH2(CH2)5NH2·HCl]MnCl2 (s)/[NH3(CH2)5NH3]MnCl4 = 87.88%

2nd step:
[NH3(CH2)5NH3]MnCl4 → [NH2(CH2)5NH2·2HCl]MnCl2

→ [NH2(CH2)5NH2]MnCl2 (s) + 2HCl (g)

Residue:

[NH2(CH2)5NH2]MnCl2 (s)/[NH3(CH2)5NH3]MnCl4 = 75.77% (1)

The temperature at which mass loss commences, based on the TGA thermogram, is
approximately 570 K. Therefore, 570 K is the partial thermal decomposition temperature Td.
Mass losses of approximately 12% and 24% close to 617 and 630 K may be attributed to the
loss of HCl and 2HCl, respectively, as shown in Figure 6. The molecular weight of the crystal
decreases sharply between 600 and 700 K, with a mass loss of 50% at approximately 700 K.

To verify the results of TGA and DSC, a single crystal was observed using a polarizing
optical microscope while varying the temperature. At 300 K, the crystal is transparent
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and light yellow, as shown in Figure 6a. The crystal turns slightly opaque at ~580 K due
to partial thermal decomposition. Upon heating further to 617 K, HCl is eliminated, the
crystal turns brown, and the surface also appears to melt slightly, as shown in Figure 6b.
Based on the results of DSC, TGA, and polarizing microscopy, TC = 298 K, as shown in the
DSC, whereas Td = 570 K.

3.4. 1H and 13C NMR Chemical Shifts

The 1H MAS NMR spectra of the [NH3(CH2)5NH3]MnCl4 crystals recorded at ~TC
are shown in Figure 7. The observed resonance lines at low temperatures are asymmetric
because of the overlap of the signals representing NH3 and CH2. The linewidths A and
B on the left- and right-hand sides of the half-maximum shown in Figure 7 are not equal.
Above 300 K, the NH3 and CH2 signals are resolved, and the respective chemical shifts
of the resonance lines of NH3 and CH2 are observed at 9.29 and 2.89 ppm. The spinning
sidebands are marked with “+” and “o” to represent 1H in NH3 and CH2, respectively.
The 1H chemical shifts of CH2 do not vary significantly at ~TC, whereas changes in the 1H
chemical shifts of NH3 are observed at ~TC. The larger changes in the 1H NMR chemical
shifts of NH3 compared to those in the 1H NMR chemical shifts of CH2 at ~TC suggest a
change in the N−H· · ·Cl hydrogen bonding between Cl around Mn and H of NH3.
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Figure 7. 1H NMR chemical shifts of [NH3(CH2)5NH3]MnCl4 at 200, 250, 300, 310, 320, and 350 K. +
and o are the spinning sidebands.

In addition, the 13C NMR chemical shifts in the MAS NMR spectra of CH2 in
[NH3(CH2)5NH3]MnCl4 were recorded at ~TC. The 13C signal of TMS was observed at
38.3 ppm at 300 K, and thus, 38.3 ppm was set as the origin for the 13C chemical shifts. Here, C3
in the [NH3(CH2)5NH3] cation is located at the center of the cation, C1 is located adjacent to the
NH3 in the cation, and C2 is located between C1 and C3, as shown in the inset of Figure 8. The
respective chemical shifts of C1, C2, and C3 at 300 K are observed at 113.44, 88.92 and 80.96 ppm,
as shown in Figure 8. The 13C chemical shifts of C1 do not vary significantly at ~TC, whereas
those of C2 and C3 vary at ~TC.

3.5. 1H and 13C NMR Spin-Lattice Relaxation Times

The 1H and 13C MAS NMR method has a very important for understanding the local
dynamics. The spin-lattice relaxation times T1ρ for 1H and 13C in the rotating frame are the
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important experiment for studying the dynamical processes. By studying the relaxation
of the nuclei in different environments within the cation, it is possible to obtain a detailed
picture of the motions. The T1ρ relaxation parameters are particularly informative since it
is directly related to those motions in the low- to mid-kHz frequency range [39–41].
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o are the spinning sidebands.

The 1H and 13C MAS NMR spectra were acquired at several delay times at each
temperature. The relationship between the intensities of the NMR signals and delay time is
represented by an exponential function. The magnetization decay rates for protons and
carbon are characterized by t1ρ as follows [42,43]:

P(τ)/P(0) = exp(−τ/t1ρ), (2)

where P(τ) and P(0) are the NMR signal intensities at τ and τ = 0, respectively. The
1H and 13C NMR spectra of [NH3(CH2)5NH3]MnCl4 were recorded with various time
delays. The decay curves may be represented by a single exponential function, as shown in
Equation (2). However, the 1H t1ρ values of NH3 and CH2 at low temperatures may not
be distinguished because of the overlapping 1H NMR signals. The 1H t1ρ values depend
highly on the temperature, as shown in Figure 9. The 1H t1ρ values of CH2 and NH2
display significant changes at ~TC, indicating that the 1H energy transfer of CH2 and NH3
changes significantly. Moreover, the 13C t1ρ values of C1, C2, and C3 are obtained from the
slopes of their recovery traces. The 13C t1ρ values of C1, C2, and C3 at ~TC are virtually
continuous. Notably, the t1ρ values of C1, which are adjacent to NH3, are the shortest. The
low t1ρ values of C1, which are close to the Mn2+ ions, are related to the magnetic moments
of the Mn2+ ions, which are paramagnetic.
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4. Discussion

The crystal structures, phase transitions, thermal stabilities, and molecular dynamics
of the [NH3(CH2)5NH3]MnCl4 crystals were investigated using XRD, DSC, TGA, and NMR
spectroscopy. First, we reconfirmed that the structure was an orthorhombic system in the
space group Imma at 173 and 330 K, and Table 2 shows our results and those previously
reported. Arend et al. suggested the space group as Ima2 or Imma at ~TC [34,35], and
Chhor et al. [31] reported that the structure was orthorhombic in the space groups Pnma
below TC and Imma above TC. According to Lv et al. [36], the space groups below TC
and above TC were Pnma and Imma, respectively, and Modal et al. [23] reported that the
space group at TC, not below TC or above TC, was I212121. In this study, the space group
and lattice parameters of the crystal structure differ slightly, and thus, to study the phase
transition, an accurate structural analysis is required. Our results are similar to those above
TC reported by Lv et al. [36].

Table 2. Phase transition temperature TC (K), structure, space group, lattice constants (Å), Z, and
measured temperature (K) for [NH3(CH2)5NH3]MnCl4 crystal.

Arend et al. Chhor et al. Lv et al. Mondal et al. Present Work

TC 301 299.6 298 298

Structure Orthor. Orthor. Orthor. Orthor. Orthor. Orthor. Orthor. Orthor.
Space
group

Ima2 or
Imma Pnma Imma Pnma Imma I212121 Imma Imma

Lattice
constants a = 7.152 a = 7.149 a = 23.94 a = 7.1742 a = 24.1756 a = 23.9162

b = 7.360 b = 24.171 b = 7.191 b = 7.3817 b = 7.1535 b = 7.1877
c = 23.986 c = 7.334 c = 7.399 c = 23.9650 c = 7.3314 c = 7.3898

Z 4 4 2 4 4 4 4 4

Measured At room
temp. 299.6 < TC 299.6 > TC 173 333 298 173 333

Temperature
Reference [34,35] [31] [31] [36] [36] [23]

Our results showed that the thermal stability was relatively high, with a thermal
decomposition temperature of approximately 570 K. The NMR spectra further suggested
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that the energy transfer of 1H at ~TC was very large, as indicated by the large thermal
displacement around the 1H atoms.

5. Conclusions

As previously reported by other groups, the space groups under TC were Pnma
or I212121. Thus, we analyzed Pnma and I212121 by XRD results, but determined to be
closer to Imma. Based on the results of XRD, the structures below TC and above TC were
orthorhombic in the space group Imma. There may be several reasons for the slightly
different results. TC is 298 K, and thus, the temperature required to characterize the
structure should be accurately determined. The difference in the single crystal structure
may be due to the observed temperature difference, and it is thought that it may be slightly
different depending on the crystal growth conditions; a single crystal may be grown into
a naturally occurring structure or a single crystal having a new structure depending on
temperature, which is one of the growth conditions. For example, the direction of the twin
domain wall in the case of BiVO4 having a ferroelastic twin structure was different [44]. The
phase transition at 298 K is due to the energy transfer of 1H, with no structural change. The
influences of the chemical shifts of 1H of NH3 and short molecular weight of C1 adjacent to
NH3 in the [NH3(CH2)5NH3]MnCl4 crystal were insignificant, indicating a minor change
in the N−H···Cl hydrogen bond related to the coordination geometry of the MnCl6 anion.
The structural phenomenon revealed by XRD and NMR at ~TC shows the potential for the
realization of solar cells for use in various applications.
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https://www.mdpi.com/article/10.3390/cryst12091298/s1, Table S1: Crystal data and structure
refinement for Imma_a; Table S2: Atomic coordinates (×104) and equivalent isotropic displace-
ment parameters (Å2 × 103) for Imma_a; Table S3: Bond length [Å] and angle [◦] for Imma_a;
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nates (×104) and isotropic displacement parameters (Å2 × 103) for Imma_a.
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