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Abstract: This paper proposes an analytical solution and isogeometric analysis numerical approach
for buckling analysis of size-dependent beams based on a reformulated strain gradient elasticity
theory (RSGET). The superiority of this method is that it has only one material parameter for couple
stress and another material parameter for strain gradient effects. Using the RSGET and the principle
of minimum potential energy, both non-classical Euler–Bernoulli and Timoshenko beam buckling
models are developed. Moreover, the obtained governing equations are solved by an exact solution
and isogeometric analysis approach, which conforms to the requirements of higher continuity in
gradient elasticity theory. Numerical results are compared with exact solutions to reveal the accuracy
of the current isogeometric analysis approach. The influences of length–scale parameter, length-to-
thickness ratio, beam thickness and boundary conditions are investigated. Moreover, the difference
between the buckling responses obtained by the Timoshenko and Euler–Bernoulli theories shows
that the Euler–Bernoulli theory is suitable for slender beams.

Keywords: buckling; size effect; microbeams; isogeometric analysis; strain gradient theory

1. Introduction

In the micro-/nano-electromechanical systems (M/NEMS) [1,2], micro/nanobeam
structures are extensively used as actuators, atomic force microscopes [1,3], etc., due to the
small size feature of micro/nanostructures; microstructure effects have been reported in
some experiments [4,5]. On the other hand, the buckling instability problem observed in
micro/nanobeams may happen when subjected to high compressive stress [6,7]. However,
it is difficult to predict the size-dependent deformation behaviors in micro-scale structures
using classical continuum theories as there is a lack of microstructure-scale parameters to
consider the microstructure effects. Therefore, numerous higher-order continuum theories,
including strain gradient theories [8,9], non-local elasticity theory [10,11], micropolar
theory [12] and couple-stress theory, [13–15] which contain additional material parameters,
have been developed to describe the microstructure effect.

Strain gradient elasticity theory was first presented by Mindlin [8], considering an isotropic
elastic material with 16 intrinsic material parameters. The strain energy density function of this
theory can be presented with three typical forms [9,16] and functions of the infinitesimal
strain. Based on Fleck and Hutchinson’s work [17], Lam et al. [4] reduced the material pa-
rameters in strain gradient theory to three, which is also known as modified strain gradient
theory (MSGT). Since then, numerous non-classical beam models have been developed
based on MSGT. By using MSGT, Kong et al. [18] presented a non-classical Euler–Bernoulli
beam theory, and Wang et al. [19] established a non-classical Timoshenko beam theory.
Akgöz et al. [20,21] applied the Euler–Bernoulli microbeam theory to study buckling
and bending size-dependent behavior under various boundary conditions. Furthermore,
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Akgöz and Civalek [22] and Ansari et al. [23] extended it to the functionally graded (FG)
microbeams problem. As for non-local elasticity theory, lots of studies investigated the
size-dependent effects on mechanical behavior using Eringen’s non-local elasticity the-
ory [10,11]. Reddy [24] applied non-local elasticity theory to study the mechanical response
of microstructure beams. Barretta et al. [25] presented a consistent variational formulation
to deal with the improper boundary conditions problem in non-local strain gradient beam
formulation. After, Barretta et al. [26] unified Lam’s strain gradient [4] and Eringen’s
non-local [10,11] theory through a variational formulation. The non-local strain gradient
Timoshenko theory [26] is also used to calculate the Young modulus of carbon nanotubes
(CNTs) [27]. Thang et al. [28] applied non-local strain gradient theory to study the me-
chanical response of bi-directional functionally graded (BDFG) nanobeams. By combining
non-local strain gradient theory with a quasi-3D beam theory, Jalaei et al. [29] studied
the viscoelastic transient behavior of magnetically imperfect FG nanobeams. Moreover,
a simplified strain gradient elasticity theory (SSGET) [30,31] (known as dipolar gradient
theory [32]) with only one material length scale parameter for the strain gradient effect was
proposed by Altan and Aifantis [33]. Based on the SSGET, Hong et al. [34] extended it to
the Kirchhoff microrods problem. According to the SSGET, Liang et al. [35] proposed a
Euler–Bernoulli microbeam theory.

The couple-stress theory is also an important high-order continuum theory. It is worth
noting that the classical couple-stress elasticity theory with four material–scale parameters pro-
posed by Mindlin [14]. Afterwards, Yang et al. [36] developed a modified couple-stress theory
(MCST) with only one scale parameter. Based on modified couple-stress theory and non-local
elasticity theory, a non-local couple-stress theory was developed by Ebrahimi et al. [37] for
functionally graded (FG) nanobeams. On the other hand, the modified strain gradient
theory [4] can be further simplified to the MCST [36,38,39] by neglecting the symmetric
second gradient of displacement. Based on MCST, a large amount of non-classical mi-
crobeam models have been developed for Euler–Bernoulli [39,40], Timoshenko [41,42] and
Reddy–Levinson beams [43,44]. Recently, Hong et al. [45,46] extended the MCST to the
static, free vibration and wave propagation problems of the magneto-electro-elastic (MEE)
FG microbeam and MEE FG porous microbeam.

However, strain gradient elasticity theory or couple-stress theory only considers the
effect of strain gradient or couple stress. In order to contain both effects and with fewer
material parameters, Zhang and Gao [47] derived a reformulated strain gradient elasticity
theory (RSGET) with one material constant for each. A new Euler–Bernoulli microbeam
model was developed using the RSGET [47] and extended for mechanical behavior of FG
microbeams [48]. On the other hand, as the higher continuity requirements of higher-order
continuum theories, the traditional finite element method needs special technology to
establish the strain gradient [49–52]. Therefore, a higher-order numerical approach combined
with higher-order continuum theories must be developed for size-dependent analysis of
microstructures.

Isogeometric analysis (IGA) based on splines basis functions is a higher-order com-
putational approach proposed by Hughes et al. [53]. Due to the higher-order approxi-
mation, it has been extensive applied to study the size effect of micro/nanostructures.
Nguyen et al. [54] investigated size effects on the bending, vibration and buckling be-
haviors of FG nanoplates by utilizing IGA with non-local elasticity theory. Ansari and
Norouzzadeh [55] applied IGA to study the buckling behavior of FG nanoplates with the
non-local and surface effects. Phung-Van et al. [56] studied the nonlinear behaviors of FG
nanoplates by IGA and provided a computational optimization [57,58] for functionally
graded sandwich nanoplates. Nguyen et al. [59] combined an isogeometric approach with
the MCST for functionally graded microplates problems. Liu et al. [60] developed an
isogeometric analysis approach based on MCST and surface energy for thin nanoplates.
Using MCST and isogeometric analysis, Thanh et al. [61] and Farzam et al. [62] studied the
mechanical behavior of FG carbon-nanotube-reinforced composite plates. Thai et al. [63]
uses isogeometric analysis approach and modified strain gradient theory [4] to investigate
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the static, vibration and buckling responses of FG microplates. The non-classical Timo-
shenko and Euler–Bernoulli isogeometric analysis approaches, based on the MCST and
the surface elasticity theory, are presented by Yin et al. [64,65]. By using an isogeometric
analysis approach and RSGET, Yin et al. [66,67] investigated the microstructure effect on the
mechanical response of microbeam. Phung-Van et al. [68] use isogeometric analysis with
a non-local strain gradient theory to investigate the porosity of the metal foam nanoscale
plates. However, based on literature review, an isogeometric analysis approach for buckling
analysis of microbeam considering both couple stress and strain gradient effects has not
been developed yet.

The main aim of this work is to introduce a non-classical microbeam model for buck-
ling analysis which includes couple stress and strain gradient effects by a reformulated
strain gradient elasticity theory. The paper is structured as follows. Section 2 presents
the reformulated strain gradient elasticity theory, the non-classical Euler–Bernoulli beam
theory, and the Timoshenko beam theory. Section 3 describes the analytical solution of
non-classical Euler–Bernoulli and Timoshenko beam formulations. Section 4 focuses on
NURBS-based isogeometric analysis discretization equations. The numerical examples are
presented in Section 5 and the isogeometric analysis results are compared with analytical
solutions. Finally, the conclusions and summary are presented in Section 6.

2. Basic Formulation
2.1. A Brief of Reformulated Strain Gradient Elasticity Theory

In this study, a reformulated strain gradient elasticity theory (RSGET), originally
proposed by Zhang and Gao [47], is adopted. The superiority of this theory is that it can
simultaneously incorporate the couple-stress effects and strain gradient effects with only
one scale parameter for each. Considering an isotropic linear elastic body, the strain energy
U from RSGET [47] is defined by

U =
∫

Ω
(σijεij + τs

ijkηs
ijk + mijχij)dV (1)

where the Cauchy stress tensor, σij, the symmetric part of the double-stress tensor, τs
ijk, and

the couple-stress tensor, mij, are given by

σij = λεkkδij + 2µεij (2)

τs
ijk = 2l2

s µηs
ijk (3)

mij = 2l2
mµχij (4)

in which the Lamé constants λ and µ are defined as

λ =
Ev

(1 + v)(1− 2v)
, µ =

E
2(1 + v)

(5)

where δij refers to the Kronecker delta, ls and lm are the material length–scale parameter for
the strain gradient effect and the couple-stress effect, respectively. E is Young’s modulus and
v is Poisson’s ratio. The strain tensor, εij, the symmetric part of second-order displacement
gradient tensor, ηs

ijk, and the curvature tensor, χij, are, respectively, expressed by

εij =
1
2
(ui,j + uj,i) (6)

ηs
ijk =

1
3
(ui,jk + uj,ki + uk,ij) (7)

χij =
1
2
(θi.j + θj,i) (8)



Crystals 2022, 12, 1282 4 of 19

where ui is the displacement and θi is the rotation vector, written as

θi =
1
2

eijkuk,j (9)

with eijk as the replacement tensor.
Consider a microbeam under compression P as shown in Figure 1; the geometry

parameters are width, b, thickness, h, and length, L, and the displacement field of any point
on the cross-section of Timoshenko beam can be depicted as

u1 = −zϕ(x), u2 = 0, u3 = w(x) (10)

in which ui(i = 1, 2, 3) represents the displacement of any point (x, y, z) on the beam
section; ϕ denotes the angle of rotation about the y- axis; w is the z-direction displacement
on the x-axis. By setting ϕ(x) = ∂w(x)/∂x in above equations, the displacement field of
Euler–Bernoulli (classical) beam can be derived.
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Figure 1. A schematic of a clamped simple-supported beam.

2.2. Buckling Analysis of Non-Classical Euler–Bernoulli Beam Theory

In Euler–Bernoulli beam, the displacement expression is obtained by setting ϕ(x, t) =
∂w(x, t)/∂x in Equation (10). By substituting the displacement Equation (10) into Equa-
tions (6)–(9), one yields the components of a non-zero strain, the symmetric part of a
second-order displacement gradient, the curvature and the rotation vector as follows:

εxx = −z
∂2w
∂x2 (11)

ηs
xxx = −z

∂3w
∂x3 , ηs

xxz = −
1
3

∂2w
∂x2 (12)

χxy = −1
2

∂2w
∂x2 (13)

θy = −∂w
∂x

(14)

As ηs
xxx is higher order than the displacement gradient ηs

xxz [69,70], hence, the rest of
the formulation ignored the effect of ηs

xxx.
As for a large aspect ratio, the slender beam assumption is adopted and the Lamé

constants (λ + 2µ) is simplified to Young’s modulus E. By using Equations (11)–(14) and
(2)–(4), the non-zero Cauchy stress and the symmetric parts of the double stress and couple
stress are written as

σxx = −Ez
∂2w
∂x2 , σyy = σzz = −Ez

∂2w
∂x2 (15)

τs
xxz = −

2
3

l2
s µ

∂2w
∂x2 (16)

mxy = −µl2
m

∂2w
∂x2 (17)
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Based on the variational principle, the total strain energy derived by substituting
Equations (15)–(17) and (11)–(13) into Equation (1), is as follows:

δU =
∫ L

0

(
−Mxδ ∂2w

∂x2 −Yxδ ∂2w
∂x2 −Qxδ ∂2w

∂x2

)
dx

= −
∫ L

0

(
∂2 Mx
∂x2 + ∂2Yx

∂x2 + ∂2Qx
∂x2

)
δwdx +

[(
∂Yx
∂x + ∂Mx

∂x + ∂Qx
∂x

)
δw

+ (−Mx −Yx −Qx)δ
∂w
∂x

]∣∣∣L
0

(18)

where

Mx =
∫

A σxxzdA = −EI ∂2w
∂x2 ,

Yx =
∫

A mxydA = −µAl2
m

∂2w
∂x2 ,

Qx =
∫

A τs
xxzdA = − 2

3 l2
s µA ∂2w

∂x2

(19)

Equation (19) is the stress results of the current Euler–Bernoulli beam model, where A
and I are, respectively, the area and the second moment of cross-sectional given by

A = bh, I =
∫

A
z2dA =

1
12

bh3 (20)

For buckling analysis, the virtual work done by the transverse load q and the in-plane
axial compressive force, P, on the current beam model can be given as [39,71]

δW =
∫ L

0
(qδw + cδθy + P

∂w
∂x

δ
∂w
∂x

)dx +

[
Vδw− Hδ(

∂w
∂x

)

]∣∣∣∣L
0

(21)

in which q denotes the body force per unit length in z-direction; c represents the body
couple per unit length in y-direction; θy is given from Equation (14); V and H are the
transverse shear force and the high-order bending moment, respectively.

The first variation of the total potential energy can be obtained as [38,72]

δΠG = δU − δW (22)

Using Equations (18) and (21) in Equation (22), and applying the principle of total
minimum potential energy, i.e., δΠG = 0, and the fundamental lemma of the calculus of
variations [73] will be obtained in the equilibrium equation of the Euler–Bernoulli beam
as follows:

− ∂2Mx

∂x2 −
∂2Yx

∂x2 −
∂2Qx

∂x2 + P
∂2w
∂x2 −

∂c
∂x
− q = 0 (23)

where the boundary conditions are

−Mx −Yx −Qx + H = 0 or ∂w
∂x = ∂w

∂x at x = 0, L
∂Yx
∂x + ∂Mx

∂x + ∂Qx
∂x − P ∂w

∂x + c−V = 0 or w = w at x = 0, L
(24)

Substituting Equation (19) into Equation (23) and considering q = c = 0, we then
obtained the equilibrium equation of the Euler–Bernoulli beam in regard to displacement,
w, as follows: (

EI + µl2
m A
)∂4w

∂x4 +
2
3

l2
s µA

∂4w
∂x4 + P

∂2w
∂x2 = 0 (25)

It can be observed from Equation (25) that the present Euler–Bernoulli beam formula-
tion includes two material–scale parameters (i.e., ls and lm) for describing the microstructure-
dependent elastic properties.

When ls = 0, Equation (25) degenerates to the governing equation of the non-classical
Euler–Bernoulli beam model, derived by the modified couple-stress theory [39], as follows:

(
EI + µl2

m A
)∂4w

∂x4 + P
∂2w
∂x2 = 0 (26)
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When ls = lm = 0, the governing equation from Equation (25) will degenerate to the
classical Euler–Bernoulli beam formulation (classical), which is given as

EI
∂4w
∂x4 + P

∂2w
∂x2 = 0 (27)

2.3. Buckling Analysis of Non-Classical Timoshenko Beam Theory

For Timoshenko microbeams, the derivation is the same as above; using Equation
(10) and Equations (6)–(9), the non-zero strain tensor, second-order displacement gradient
tensor, curvature tensor and rotation vector are, respectively, derived as

εxx = −z
∂ϕ

∂x
, εxz =

1
2

(
∂w
∂x
− ϕ

)
(28)

ηs
xxx = −z

∂2 ϕ

∂x2 , ηs
xxz =

1
3

∂2w
∂x2 −

2
3

∂ϕ

∂x
(29)

χxy = −1
4

(
∂2w
∂x2 +

∂ϕ

∂x

)
(30)

θy = −1
2

(
∂w
∂x

+ ϕ

)
(31)

It is important to note that, the higher-order displacement gradient ηs
xxx is also ne-

glected in the Timoshenko formulation.
By using Equations (28)–(31) and (2)–(4), the non-zero Cauchy stress, symmetric part

of double stress and couple stress are written as follows:

σxx = − E(1−v)
(1+v)(1−2v) z ∂ϕ

∂x

σyy = σzz = − Ev
(1+v)(1−2v) z ∂ϕ

∂x

σxz =
E

2(1+v)

(
∂w
∂x − ϕ

) (32)

τs
xxz = 2l2

s µ

(
1
3

∂2w
∂x2 −

2
3

∂ϕ

∂x

)
(33)

mxy = −1
2

µl2
m

(
∂2w
∂x2 +

∂ϕ

∂x

)
(34)

Substituting Equations (28)–(31) and Equations (32)–(34) into Equation (1), we obtain
the first variation of the total strain energy as

δU =
∫ L

0

[
−Mxδ

∂ϕ
∂x + Rxδ

(
∂w
∂x − ϕ

)
− 1

2 Yxδ
(

∂2w
∂x2 + ∂ϕ

∂x

)
+ Qxδ

(
∂2w
∂x2 − 2 ∂ϕ

∂x

)]
dx

=
∫ L

0

(
∂Mx
∂x − Rx +

1
2

∂Yx
∂x + 2 ∂Qx

∂x

)
δϕdx +

∫ L
0

(
− ∂Rx

∂x −
1
2

∂2Yx
∂x2 + ∂2Qx

∂x2

)
δwdx

+
[(
− 1

2 Yx −Mx − 2Qx

)
δϕ +

(
Rx +

1
2

∂Yx
∂x −

∂Qx
∂x

)
δw +

(
Qx − 1

2 Yx

)
δ ∂w

∂x

] ∣∣∣L
0

(35)

in which

Mx =
∫

A σxxzdA = − E(1−v)I
(1+v)(1−2v)

∂ϕ
∂x , Rx =

∫
A σxzdA = KSµA

(
∂w
∂x − ϕ

)
,

Yx =
∫

A mxydA = − 1
2 µl2

m A
(

∂2w
∂x2 + ∂ϕ

∂x

)
, Qx =

∫
A τs

xxzdA = 2l2
s µA

(
1
3

∂2w
∂x2 − 2

3
∂ϕ
∂x

) (36)

Equation (36) is the stress result of the current Timoshenko beam model. The shear
constant is given as KS = (5 + 5v)/(6 + 5v).
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For buckling analysis, the virtual work done by external forces can be given by [41,71]

δW =
∫ L

0
(qδw + cδθy + P

∂w
∂x

δ
∂w
∂x

)dx +

[
Vδw−Mδϕ− Hδ(

∂w
∂x

)

]∣∣∣∣L
0

(37)

where θy is given from Equation (31) and M is the bending moment.
According to the principle of total minimum potential energy, substituting Equations (35)

and (37) into Equation (22) and employing the principle of the calculus of variations [73],
the equilibrium equations of the Timoshenko beam are achieved as

E(1−v)I
(1+v)(1−2v)

∂2 ϕ

∂x2 + KsµA
(

∂w
∂x − ϕ

)
+ 1

4 µl2
m A
(

∂3w
∂x3 + ∂2 ϕ

∂x2

)
− 4l2

s µA
(

1
3

∂3w
∂x3 − 2

3
∂2 ϕ

∂x2

)
− 1

2 c = 0

−KsµA
(

∂2w
∂x2 −

∂ϕ
∂x

)
+ 1

4 µl2
m A
(

∂4w
∂x4 + ∂3 ϕ

∂x3

)
+2l2

s µA
(

1
3

∂4w
∂x4 − 2

3
∂3 ϕ

∂x3

)
+ P ∂2w

∂x2 − q− 1
2 c = 0

(38)

and the boundary conditions are obtained as

Rx +
1
2

∂Yx
∂x −

∂Qx
∂x −V − P ∂w

∂x + 1
2 c = 0 orw = w atx = 0, L

1
2 Yx + Mx + 2Qx + M = 0 orϕ = ϕ atx = 0, L

Qx − 1
2 Y + H = 0 or ∂w

∂x = ∂w
∂x atx = 0, L

(39)

It also can be seen from Equation (38) that two material–scale parameters (i.e., ls and
lm) for describing the microstructure dependent elastic properties are contained in the
present Timoshenko beam formulation.

When ls = 0 and q = c = 0, Equation (38) degenerates to the governing equations of
non-classical Timoshenko beam model derived from the modified couple-stress model [41],
as follows:

E(1−v)I
(1+v)(1−2v)

∂2 ϕ

∂x2 + KsµA
(

∂w
∂x − ϕ

)
+ 1

4 µl2
m A
(

∂3w
∂x3 + ∂2 ϕ

∂x2

)
= 0

−KsµA
(

∂2w
∂x2 −

∂ϕ
∂x

)
+ 1

4 µl2
m A
(

∂4w
∂x4 + ∂3 ϕ

∂x3

)
+ P ∂2w

∂x2 = 0
(40)

When ls = lm = 0 and q = c = 0, Equation (38) will degenerate to the classical Timoshenko
beam model (classical) [41], which is given as follows:

E(1− v)I
(1 + v)(1− 2v)

∂2 ϕ

∂x2 + KsµA
(

∂w
∂x
− ϕ

)
= 0

− KsµA
(

∂2w
∂x2 −

∂ϕ

∂x

)
+ P

∂2w
∂x2 = 0 (41)

3. Analytical Solution

The critical buckling load of a simply supported microbeams as shown in Figure 1, are
solved by analytical method with both Euler–Bernoulli beam theory (EBT) and Timoshenko
beam theory (TBT) based on the reformulated strain gradient elasticity theory.

The Fourier series expansions are considered for w(x) and ϕ(x), given as follows

w(x) =
∞

∑
n=1

Wn sin
(nπx

L

)
, ϕ(x) =

∞

∑
n=1

Φn cos
(nπx

L

)
(42)

in which Wn and Φn are Fourier coefficients with respect to n. It shows that the boundary
conditions in Equations (24) and (39) can be achieved by w(x) and ϕ(x) in Equation (42)
for any Wn and Φn. It also should be noted that the ϕ(x) should be ignored for Euler–
Bernoulli beam.
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3.1. Analytical Solution of Non-Classical Euler–Bernoulli Beam

In view of Equations (23) and (24), the simply supported boundary conditions of this
Euler–Bernoulli beam can be described as

w|x=0 = w|x=L = 0, EI
∂2w
∂x2 + µAl2

m
∂2w
∂x2 +

2
3

l2
s µA

∂2w
∂x2 = 0 at x = 0, L (43)

Substituting Equation (42) into Equation (25), the critical buckling load Pcr of Euler–
Bernoulli beam can be obtained as follows:

Pcr =

(
EI +

2
3

µAl2
s + µAl2

m

)(
π2

L2

)
(44)

When ls = 0, Equation (44) reduced to the formulation of non-classical Euler–Bernoulli
beam derived from MCST [71], as follows:

Pcr =
(

EI + µAl2
m

)(π2

L2

)
(45)

When ls = lm = 0, Equation (44) degenerates to

Pcr = EI
(

π2

L2

)
(46)

which is identical to the well-known critical buckling load given by the classical beam
theory shown in Figure 1 from the mechanics of materials.

3.2. Analytical Solution of Non-Classical Timoshenko Beam

Using Equations (36) and (39), the simply supported boundary condition of Timo-
shenko beam can be rewritten as

w|x=0 = w|x=L = 0
4l2

s µA
(

1
3

∂2w
∂x2 − 2

3
∂ϕ
∂x

)
− E(1−v)I

(1+v)(1−2v)
∂ϕ
∂x −

1
4 µl2

m A
(

∂2w
∂x2 + ∂ϕ

∂x

)
= 0

1
4 µl2

m A
(

∂2w
∂x2 + ∂ϕ

∂x

)
+ 2l2

s µA
(

1
3

∂2w
∂x2 − 2

3
∂ϕ
∂x

)
= 0

(47)

Substituting Equation (42) into Equation (38) results in[
1
4 µl2

m A
( nπ

L
)3 − KsµA

( nπ
L
)
− 4

3 µl2
s A
( nπ

L
)3
]
Wn +

[ 8
3 µl2

s A
( nπ

L
)2

+ E(1−v)I
(1+v)(1−2v)

( nπ
L
)2

+ KsµA + 1
4 µl2

m A
( nπ

L
)2
]
Φn = 0

[
2
3 µl2

s A
( nπ

L
)4

+ 1
4 µl2

m A
( nπ

L
)4

+ KsµA
( nπ

L
)2 − P

( nπ
L
)2
]
Wn

+
[

1
4 µl2

m A
( nπ

L
)3 − KsµA

( nπ
L
)
− 4

3 µl2
s A
( nπ

L
)3
]
Φn = Qn

(48)

Hence, the solution of critical value for the axial compressive load, Pcr, is acquired,
as follows:

Pcr =
µA
(

3
2 l2

s l2
mµA( π

L )
2
+C1+C2

)
8
3 µl2

s A+ E(1−v)I
(1+v)(1−v)+KsµA( L

π )
2
+ 1

4 µl2
m A

C1 =
( 2

3 l2
s + l2

m
)
µAKs

C2 =

[
2
3 l2

s +
1
4 l2

m + Ks

(
L
π

)2
](

π
L
)2 EI(1−v)

(1+v)(1−2v)

(49)



Crystals 2022, 12, 1282 9 of 19

When ls = 0, Equation (49) degenerates to formulation of the non-classical Timoshenko
beam based on the MCST [71], as follows:

Pcr =

µA
[

1
4 l2

m + Ks

(
L
π

)2
](

π
L
)2 EI(1−v)

(1+v)(1−2v) + Ksµ2 A2l2
m

E(1−v)I
(1+v)(1−v) + KsµA

(
L
π

)2
+ 1

4 µl2
m A

(50)

When ls = lm = 0, Equation (49) reduces to

Pcr =
µAKs

(
L
π

)2(
π
L
)2 EI(1−v)

(1+v)(1−2v)

E(1−v)I
(1+v)(1−v) + KsµA

(
L
π

)2 (51)

which is the equation for the classical Timoshenko beam model.

4. Isogeometric Analysis

In this section, the isogeometric analysis approach is developed here for buckling
analysis of microbeams based on the above non-classical Euler–Bernoulli and Timoshenko
beam models.

4.1. NURBS Basis Functions

A one-dimensional non-uniform rational B-spline (NURBS) basis functions with a
polynomial order, p, is constructed from a weight B-spline function as follows

Ri,p(ξ) =
Ni,p(ξ)wi

n
∑

j=1
Nj,p(ξ)wj

(52)

in which wi is the ith weight and ξ is the parametric coordinate; n represents the number of
NURBS basis functions, which also is the number of control points; the ith B-splines basis
function Ni,p(ξ) with degree of p is defined as

Ni,0(ξ) =

{
1 i f ξi ≤ ξ ≤ ξi+1

0 otherwise
for p = 0

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) for p ≥ 1 (53)

The generalized midplane displacement of the beam are approximated by the above
NURBS basis functions given as

uh =
NP

∑
I

RIuI (54)

in which NP = p + 1 is the number of control points in each element; uI and RI denote,
respectively, the displacement vector and the NURBS basis function at control point I.

4.2. A NURBS-Based Non-Classical Euler–Bernoulli Beam Formulation

According to the above non-classical Euler–Bernoulli beam formulation, the general-
ized displacement only includes the deflection given as

uI = wI (55)



Crystals 2022, 12, 1282 10 of 19

Substituting Equation (55) into Equations (11)–(13), we can derive the following:

εxx = −z
NP
∑

I=1
B1

I uI

ηs
xxz = −

NP
∑

I=1
B1

I uI

χxy = −
NP
∑

I=1
B1

I uI

(56)

with
B1

I = RI,xx (57)

For buckling analysis, the discretized equations of the buckling microbeam can be
written as [

K− PcrKg
]
X = 0 (58)

where Pcr is the critical buckling load and X is the eigenvector (deflection) at all control
points. K is the global stiffness given by

K =
∫ L

0

(
B1

I

)T
D1B1

I dx +
∫ L

0

(
B1

I

)T
DsB1

I dx +
∫ L

0

(
B1

I

)T
DmB1

I dx (59)

with
D1 =

∫ h/2
−h/2 z2bEdz = bh3

12 E
Ds =

∫ h/2
−h/2 2z2bµl2

s dz = bh3

6 µl2
s

Dm =
∫ h/2
−h/2 bµl2

mdz = bhµl2
m

(60)

The geometrical stiffness matrix, Kg, is given as

Kg =
∫ L

0

(
BKg

I

)T
PBKg

I dx (61)

with
BKg

I =
dR
dx

(62)

4.3. A NURBS-Based Non-Classical Timoshenko Beam Formulation

According to the above non-classical Timoshenko beam formulation, the generalized
displacement of the microbeam includes deflection and angle of rotation, as follows:

uI = [wI φI ]
T (63)

From Equations (11)–(13), the strain, curvature and displacement gradient are rewrit-
ten as the following matrix:

εxx = −z ∂ϕ
∂x = C1ε1

εxz =
1
2

(
∂w
∂x − ϕ

)
= C2ε2

χxy = − 1
4

(
∂2w
∂x2 + ∂ϕ

∂x

)
= C2χ

ηs
xxz =

1
3

∂2w
∂x2 − 2

3
∂ϕ
∂x = C2η1

(64)

with
C1 = [1 z], C2 = [1 1]

ε1 =

[
0
− ∂ϕ

∂x

]
, ε2 =

[ 1
2

∂w
∂x

− 1
2 ϕ

]
, χ =

[
− 1

4
∂2w
∂x2

− 1
4

∂ϕ
∂x

]
, η1 =

[
1
3

∂2w
∂x2

− 2
3

∂ϕ
∂x

]
(65)
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Substituting Equation (63) into Equation (64), the strain matrix, curvature matrix and
second-order displacement gradient matrix are obtained as follows:

ε1 =
NP

∑
I=1

B1
I uI , ε2 =

NP

∑
I=1

B2
I uI , χ =

NP

∑
I=1

Bm
I uI , η1 =

NP

∑
I=1

Bs1
I uI (66)

with

B1
I =

[
0 0
0 − dRI

dx

]
, B2

I =

[
1
2

dRI
dx 0
0 − 1

2 RI

]
,

Bm
I =

[
− 1

4
d2RI
dx2 0

0 − 1
4

dRI
dx

]
, Bs1

I =

[
1
3

d2RI
dx2 0
0 − 2

3
dRI
dx

]
(67)

Considering the non-classical Timoshenko beam, the global stiffness K in Equation
(58) is given as follows:

K =
∫ L

0

[
B1

I
B2

I

]T[D1 0
0 D2

][
B1

I
B2

I

]
dx +

∫ L

0
(Bs1

I )
T

Ds1Bs1
I dx +

∫ L

0
(Bm

I )
TDmBm

I dx (68)

with

D1 = E(1−v)
(1+v)(1−2v)

[
0 0
0 bh3

12

]
, D2 = 2EbhKs

1+v

[
1 1
1 1

]
,

Ds1 = 3Ebhl2
s

1+v

[
1 1
1 1

]
, Dm = 2Ebhl2

m
1+v

[
1 1
1 1

] (69)

Additionally, the geometrical stiffness matrix, Kg, can be written as

Kg =
∫ L

0

(
BG

I

)T
PBG

I dx (70)

with

BG
I =

[ dR
dx 0
0 0

]
(71)

5. Numerical Examples

This section provides the results of exact and isogeometric analysis solutions of critical
buckling of the microbeams for different material–scale parameters, length-to-thickness
ratio, beam thickness and boundary conditions. The geometry and loading of microbeams
(as shown in Figure 1) are given with L = 20h and b = 2h, and the thickness is h = 17.6 µm.
The material is taken to be epoxy, whose material length–scale parameter lm = 17.6 µm has
been experimentally observed by Lam et al. [4]; E = 1.44 GPa and v = 0.38. In order to certify
the proposed beam model and isogeometric analysis method, the non-dimensional critical
buckling load, PcrL2/EI, acquired by isogeometric analysis based on Euler–Bernoulli and
Timoshenko, without considering size effect, is compared with the exact solution [20,71] in
Table 1. As can be observed in Table 1, the IGA results matched the exact solution [20,71]
very well.
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Table 1. Comparison of the critical buckling load obtained by IGA with exact solutions for the h-h
boundary condition.

Theory Method Control
Points

h (µm)

17.6 52.8 88 123.2 158.4

EBT Analytical [20] 52.7809 14.6375 11.5861 10.7453 10.3994
Analytical [71] 52.7809 14.6375 11.5861 10.7453 10.3994

IGA 15 52.7813 14.6376 11.5861 10.7454 10.3994
IGA 20 52.7810 14.6376 11.5861 10.7454 10.3994
IGA 30 52.7809 14.6375 11.5861 10.7453 10.3994

TBT Analytical [20] 60.3571 22.9608 19.9491 19.1188 18.7770
Analytical [71] 60.3571 22.9608 19.9491 19.1188 18.7771

IGA 15 60.3572 22.9609 19.9491 19.1188 18.7771
IGA 20 60.3571 22.9608 19.9491 19.1188 18.7771
IGA 30 60.3571 22.9608 19.9491 19.1188 18.7771

Figure 2 shows the variation of critical buckling loads obtained by analytical and
isogeometric analysis (IGA) of EBT and TBT based on classical theory; Figure 2 also shows
MCST and RSGET for simply supported beams with different length-to-thickness ratios.
The geometries are b = 2h and h = 17.6 µm, and the loading of microbeams is shown in Fig-
ure 1. The classical theory and MCST results can be obtained from RSGET by set ls = lm = 0
and ls = 0, respectively. The material–scale parameter of RSGET is assumed as ls = 1.2lm.
It is shown from the figure that the IGA results matched very well with the analytical
solutions for both beam problems. Additionally, the critical buckling load predicted by
RSGET and MCST is always higher than that obtained by classical model, which also
explains the size-dependent behavior. It can also be observed that the critical buckling load
decreases as the beam length increases, which is due to a decrease in microbeam stiffness
as the beam length increases.
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Bernoulli; (b) Timoshenko.

Considering the former example, Figure 3a,b shows the effect of different strain
gradient length–scale parameters, ls, on critical buckling load predicted by the Euler–
Bernoulli and Timoshenko theories. The differences between critical buckling load obtained
by RSGET, MCST and classical theory are significant when the length-to-thickness ratio, L/h,
is low. The critical buckling load increases as the strain gradient length–scale parameter,
ls, increases.
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Figure 4 presents the comparison of critical buckling loads obtained by EBT and TBT
based on classical theory, MCST and RSGET with ls = 1.2lm. It can be clearly observed that
the critical buckling load obtained by TBT is smaller than those obtained by EBT and the
results obtained by TBT converge to EBT as the beam length increases. This matched with
the general trends that suggest that the EBT is better suited to long beams or slender beams.
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(a) 

Figure 4. Comparison of critical buckling loads between EBT and TBT.

The influence of beam thickness on the critical buckling loads of EBT and TBT with
different strain gradient length–scale parameters, ls, are shown in Figure 5a,b, respectively.
In this example, the geometries are L = 20h and b = 2h and the material–scale parameter
is lm = 17.6 µm. For both the Euler–Bernoulli and the Timoshenko beam problems, the
IGA results matched very well with the analytical solutions. It shows that the critical
buckling load increased as the beam thickness and strain gradient length–scale parameter,
ls, increased. On the other hand, it reveals that the size-dependent behavior can be described
by the present IGA approach.
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Considering the former example, the comparison of critical buckling loads, obtained
by EBT and TBT based on classical theory, and the MCST and RSGET with ls = 1.2lm for
different beam thickness, are shown in Figure 6. It shows that the difference between EBT
and TBT is negligible for small values of beam thickness.
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In order to show the flexibility of the IGA approach, the effect of boundary conditions
on the critical buckling load of EBT and TBT based on RSGET with ls =1.2lm are presented
in Figure 7a,b. The geometry in here is defined by letting L = 20h and b = 2h and the
material length–scale parameter is lm = 17.6 µm. It is observed that the results obtained by
clamped–clamped (c-c) boundary conditions are higher than those obtained by clamped–
simply (c-s) and simply–simply (s-s) boundary conditions, respectively. Furthermore, the
differences increased as the beam thickness increased. This is due to the stiffness changing
with the boundary conditions, and led to the variation in critical buckling load, especially
for thick beams.
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Finally, the influence of Poisson’s ratio on the critical buckling load of EBT and TBT with
simply supported boundary condition are shown in Figure 8. The geometries are b = 2h and
h = lm = 17.6 µm. It can be clearly seen that the effect of Poisson’s ratio increased as the L/h
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decreased and the critical buckling load decreased as Poisson’s ration increased, which is
in line with the general trends obtained in [41,71]. Therefore, a significant error may be
produced by neglecting Poisson’s ratio for thick beams.
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6. Conclusions

In this work, the analytical method and an isogeometric analysis based on RSGET are
presented for assessing the size-dependent buckling of Euler–Bernoulli and Timoshenko
beams. The advantage of the present method is that it includes couple-stress and strain
gradient effects with only one material parameter for each. Using the principle of minimum
potential energy, the governing equations and boundary conditions of EBT and TBT can be
derived. Moreover, the isogeometric analysis approach which satisfied the higher gradient
requirements is proposed to solve the governing differential equations. The isogeometric
analysis results are compared with exact solutions to validate its accuracy. The effects
of the length–scale parameter, the length-to-thickness ratio, the beam thickness and the
boundary conditions are studied. Moreover, the differences between the critical buckling
loads obtained by the Euler–Bernoulli and Timoshenko beam theories shows that the
Euler–Bernoulli theory is more suitable for slender beams.
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