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Abstract: In the present work, pure and Cr-doped MoO3 microrods were successfully prepared
through the sol gel auto combustion method. The phase evaluation and microstructural, dielectric,
and optical properties of synthesized samples were investigated by using X-ray diffraction (XRD),
scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and an impedance
analyzer (1 MHz–3 GHz). All the samples showed hexagonal structure with space group (P63).
According to Vegard’s law, lattice parameters increase with the increase in chromium (Cr3+) contents.
In addition, the Williamson–Hall (W–H) plot was drawn for evaluating the micro-strain (εW-H)
and crystallite size (DW-H) parameters. From microstructural analysis it was found that the size of
microrods increased along with Cr3+ contents. Decreasing band gap energy was observed (from 2.98
to 2.71 eV) with increasing Cr3+ contents. The variation of the dielectric constant and tangent loss of
MoO3 microrods with respect to frequency were analyzed.

Keywords: Cr-doped MoO3 microrods; X-ray diffraction; microstructure; band gap energy; dielectric
properties

1. Introduction

Transition metal oxides have been used in recent research innovations due to their
excellent properties. They produce different phase structures due to their different metal–
oxygen ratios. Molybdenum trioxide (MoO3) has good electrical, optical, and microwave
dielectric properties due to its structural orientation [1]. MoO3 has wide band gap en-
ergy (2.8–3.6 eV) with n-type semiconductor conductivity [2]. Basically, there exist three
polymorphous structures of MoO3: β-MoO3 (monoclinic), α-MoO3 (orthorhombic), and
h-MoO3 (hexagonal). Thermodynamically, the structure of α-MoO3 is very stable and
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attractive for practical uses because of its anisotropic compositions along the (010) direc-
tion [3]. This anisotropic chemistry is created by stacking a bi-layer sheet of octahedral
Mo2O6 bonded through Van der Waal forces. Due to intrinsic structural anisotropy and
the ability of transformation of oxidation states between molybdenum-IV and V ions,
α-MoO3 (orthorhombic) has been verified to have exceptional applications in the fields of
catalysis, field emissions, lithium-ion batteries, energy storage devices, gas sensing, and
electrochromic and photochromic devices [4,5].

Over the last couple of years, molybdenum trioxide has received extensive attention
because of its many applications in various fields. The various significant aspects of
molybdenum trioxide have led to this interest, including strong photo catalytic ability,
battery device assembly, and Li storage performance [6]. As a result, MoO3 is widely
employed in industry, including catalysts [7], field effect transistors [8], gas sensors, and
battery electrodes [9]. Many researchers reported that MoO3 has outstanding properties
and vast uses in the field of super capacitors, memory devices, OLEDs (organic light-
emitting diodes), dielectric resonator devices, and solar cell equipment [10–17]. MoO3
has three polymorphic phases: (a) orthorhombic, (b) hexagonal, and (c) monoclinic. Of
these phases, the orthorhombic phase is more stable, and along with bi-layered octahedral
distortion it has good electrical, optical, and magnetic properties [18]. Many researchers
study it and found it in the form of nanowires, nanorods, thin film, microrods, quantum
dots, and nanobelts [19–23].

In the current research work, we focused on synthesizing chromium Cr-doped MoO3
microrods and use the sol gel auto combustion route. The effect of (Cr+3) cation substitution
is simultaneously evaluated on structural and microstructural development and band gap
energy of MoO3 microrods. Correspondingly, the prepared pure and Cr-doped MoO3
microrods were characterized using X-ray diffraction (XRD), scanning electron microscopy
(SEM), energy dispersive spectroscopy (EDS), and diffuse reflectance spectroscopy (DRS).

2. Experimental Method

The Cr-substituted MoO3 microrods with 3 wt% and 6 wt% were prepared by the
sol–gel auto combustion technique. The stoichiometric amounts of MoO3 (purity 99.97%,
Sigma-Aldrich chemicals, St. Louis, MI, USA) and chromium chloride (purity 99.5%, Sigma-
Aldrich chemicals, St. Louis, MI, USA) including those with with nitric acid were used
to prepare the product powders. We used the nitric acid (HNO3) as a chelating agent to
obtain a homogenous and straightforward solution. The solution was stirred with the help
of a hot plate and magnetic stirrer at 90 ◦C for one hour to dissolve reactants in distilled
water. Then, the concentration of chromium chloride (CrCl3) (3 wt%, and 6 wt%) was
doped into the solution. At that point, the solution was stirred magnetically at 90 ◦C for 6 h,
adding ammonia drop by drop to maintain the pH value at 6–7. At the end, the solution
changed into a viscous brown gel and then self-combustion happened, as shown in the
graphical abstract. After complete crushing and grinding, the fine powder was then used in
vacuum furnace sintering at 500 ◦C for 2 h in the nitrogen and hydrogen atmosphere. X-ray
diffractometer (XRD) (JDX-3532, JEOL, Japan) was used for studying the crystal structure
of all fabricated samples functioned with Cu-K radiations of wavelength λ = 0.1540598 nm,
at 45 × 103 V and 40 × 10−3 A in the 2θ range of 5–60◦. The microstructures functional at
20 KV were analyzed using a scanning electron microscope (SEM) (JSM-5910, JEOL).

3. Results and Discussion
3.1. Phase Analysis

The crystal structure of the synthesized pure and Cr-doped MoO3 microrods was
investigated by XRD method, as shown in Figure 1a,b. The observed diffraction peaks
revealed the formation of a single-phase base composition MoO3 that corresponded to
PDF card no. 00-021-0569, which shown the hexagonal crystal structure with space group
(P63) [24,25]. The sharp and intense peaks depict the crystalline behavior of all the samples.
Among these planes, the (2 1 0) plane at 26.07◦ revealed the maximum intensity. The base
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sample was indexed properly by using WinXpow software. It can also be observed that
the lattice parameters as well as lattice volume increased with Cr-doped MoO3 microrods.
Compared with the pure MoO3 sample, the corresponding diffraction peaks shifted to lower
angles, the intensity of peaks increased, and the width of peaks also increased following
the doping of Cr3+ contents. Moreover, the change of the peaks’ positions could be ascribed
to the inhomogeneity and micro-strain in the samples or may be due to the substitution
of the relatively larger ionic radius of Cr3+ (RCr = 0.61 Å) than Mo (RMo = 0.59 Å), which
is consistent with the deduction of Bragg’s diffraction law (2dSinθ = mλ), as shown in
Figure 1b [26,27].
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Figure 1. (a) XRD patterns of un-doped and Cr-doped MoO3 microrods. (b) Displays the zoomed
view of (2 0 0) and (2 1 0) peak shifting toward lower angle.

The Debye Scherer equation is used to calculate the average crystalline size of all
samples using the reflection of the 2θ value of the XRD data [28],

D =
kλ

β cos θ
(1)

where ‘D’ is the average crystallite size, the value of Scherer constant ‘k’ is 0.94, λ = 0.15406
nm is the wavelength of the X-ray beam, and β is the full-width half. This technique is used
with XRD data, where the crystallite size (D) is associated with the expansion of intensive
peaks. The instrumental contribution of β was removed before the analysis of the crystallite
size and micro-strain.

Figure 2 presents the behavior of crystallite size. The crystallite size depended on the
lattice micro-strain and radius of the substituted ions. It has been observed that generally
the average crystallite size decreases with the increasing Cr3+ content (x), and this may be
attributed to the growth of the crystal structure, which may be due to that the ionic radius
of the substitution element, Cr3+, is larger than molybdenum [26].
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Figure 2. Plot of average crystallite size (D and DW-H) of un-doped and Cr-doped MoO3 (3 wt% and
6 wt%).

A W–H (Williamson–Hall) plot is a very important technique for measuring the values
of lattice parameters and crystallite size as well. Equation (2) was used to plot (W–H)
graphs for all the samples [29].

βcosθ =
kλ

D
+ 4εsinθ (2)

where ‘β’ is the full width at half maximum (FWHM), ‘θ’ is the Braggs angle, ‘k’ is the
size factor, ‘λ’ is the wavelength of X-rays, and ‘D’ is the average crystallite size. Finding
the slope of a linear plotted graph against 4sinθ gives the information about the lattice
strain and crystalline size (DW–H) for all the samples (un-doped and Cr-doped), as shown
in Figure 3 [30]. The effective values of crystallite size (DW–H) were measured by the
Williamson–Hall (W–H) technique and were found to be 104.251 nm, 87.204 nm, and
71.842 nm for each sample. The average values of crystallite size (DW–H) and micro-strain
(εW–H) along with uncertainties were measured by the Williamson–Hall (W–H) technique,
as shown in Table 1. Around the fitted line, the points are noticed to be widely scattered.
It was observed that certain additional parameters of the characterized sample were not
taken into consideration or some alternative method should have been adopted.
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Figure 3. Williamson–Hall (W-H) plots of (a) un-doped, (b) 3 wt%, and (c) 6 wt% Cr-doped MoO3.

Table 1. Data on (DW–H) and (εW–H) of un-doped and Cr-doped MoO3 microrods along
with uncertainty.

Composition Average Crystalline Size
(DW–H)

Uncertainty in Average
Crystallite Size (DW–H)

Average Micro-Strain
(εW–H)

Uncertainty in Average
Micro-Strain (εW–H)

MoO3 104.251 nm ±0.158 5.828 ±0.462

3 wt% Cr-doped MoO3 87.204 nm ±0.006 2.255 ±0.391

6 wt% Cr-doped MoO3 71.842 nm ±0.222 1.308 ±1.392

3.2. Surface Morphology

Figure 4a–c show the surface micrographs of un-doped and Cr-doped MoO3 microrods
with (×20,000) magnification, respectively. In Figure 4a,b it can be clearly observed from
SEM images that the size of microrods grow with the increase in Cr content. The surfaces
of the synthesized rods are clean, but their crystal structures are found in spherical shape
whose sizes are in the range of microns, which indicates its one-dimensional hexagonal rod
geometry [6,31]. Figure 4c shows irregular surface structure microrods. Basically, these are
the small microrods that are stacked together in a cluster shape, and their appearance shows
to develop on the microrods’ surface [32]. It is clear from the image that the nanorods have
poor morphology because the lengths and diameters of the nanorods are not uniform. The
diameter of the microrods varies from 0.07 µm to 0.21 µm, seen by using ImageJ software.
In addition, they are not well aligned in the direction perpendicular to the substrate. The
reason for that may be that the surface of the substrate may not be smooth at the microscale
or due to the miss-matching lattice structure, which greatly affects the morphology of
microrods [33].
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Figure 4a–c show that the EDX analysis was used to confirm the exact deposited
number of elements in un-doped and Cr-doped MoO3 microrods. Figure 4b,c confirm
the presence of Cr elements. The 3 wt% and 6 wt% of Cr was doped in the solid solution
of MoO3 microrods. These compositions of Cr by atom % were calculated by using the
following formulae:

C′1 =
C1A2

C1A2 + C2A1
× 100% (3)
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C′2 =
C2A1

C1A2 + C2A1
× 100% (4)

where C′1 is the atom %, C1 is weight %, and A1 is the atomic number of the un-doped
elements, while C′2 is the atom %, C2 is weight %, and A2 is the atomic number of the
doped elements. Equations (3) and (4) represent the conversion of wt% into atom % of two
elements. The values of all the samples by weight % and atom % are shown in Table 2.

Table 2. Elemental compositions by atom % and weight % of the Cr-doped MoO3 samples.

Elements Atom %
(MoO3)

Atom %
(MoO3–3%Cr)

Atom %
(MoO3–6%Cr)

Weight %
(MoO3)

Weight %
(MoO3–3%Cr)

Weight %
(MoO3–6%Cr)

Molybdenum 66.66 65.25 63.83 53.77 52.96 52.12

Chromium – 1.10 2.21 – 1.52 3.10

Oxygen 33.34 33.65 33.96 46.23 45.52 44.78

Total 100 100 100 100 100 100

3.3. Diffuse Reflectance Spectroscopy

The optical absorption characterization of pure and Cr-doped MoO3 microrods was
performed by diffuse reflectance spectra (DRS) in the range of 200 to 800 nm, as depicted in
Figure 5. It was observed that there was a strong reflectance behavior between 450 nm and
500 nm that revealed the high absorption behavior within the visible region [34]. The sharp
characteristic absorption band edge was found to be around 325 to 475 nm for each rod
and the transition of the band gap was attributed to it by absorbing light from the visible
range. The reflectance spectra demonstrated that the reflection percentage increased from
350 nm to 800 nm for upper absorption. The 340 nm spectrum indicated that the reflectance
percentage was decreased due to the absorption behavior of the sample [35].
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3.4. Optical Properties

Figure 6a–c show that the defect-free band structure was identified and the optical
band gap was derived from the Kubeka–Munk function, which is [36];

F(R) =
K(λ)
S(λ)

=
(1− R)n

2R
∝ α =

(hv− Eg)
n

hv
(5)

where ‘F(R)’ is the re-emission function, ‘s(λ)’ is the scattering coefficient, ‘K(λ)’ is the
absorption coefficient, ‘hν’ is the photon energy, ‘Eg’ is the band gap energy, ‘R’ is the diffuse
reflectance, and ‘n’ is the exponent term that identifies the transition types, i.e., indirect
transition (n = 1/2), direct transition (n = 2), indirect forbidden energy gap transitions
(n = 1/3), and direct forbidden energy gap transition (n = 2/3). In this work, only indirect
transition was considered for all samples. The band gap energy was predictable from
the plot of F(R)2 and energy. Figure 6d shows the band gap energy of the un-doped
and Cr-doped MoO3 microrods. The energy band gap of the pure MoO3 (2.98 eV) is
greater than that of the Cr-doped MoO3 (2.71 eV). The band gap energy increases due to
decreasing the particle size of the synthesized sample and reduces with increasing the
dopants’ concentration, i.e., Cr or Ni [37–39]. Generally, band gap energy decreases with
increasing doping compositions.
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There is also the possibility of creating oxygen vacancy, which can also reduce the
band gap energy of MoO3. The band gap energy values of pure and doping samples are
shown in the Table 3.

Table 3. Data on structural and physical parameters of un-doped and Cr-doped MoO3 microrods.

Composition a = b (Å) c (Å) D (nm) Eg (eV)

MoO3 10.53 14.88 76.69 2.98

3% Cr-doped MoO3 10.54 14.88 71.88 2.80

6% Cr-doped MoO3 10.55 14.89 70.57 2.71
Eg = band gap energy; a, b and c = lattice parameters; D = average crystallite size.

3.5. Dielectric Properties

Figures 7 and 8 show the frequency dependence of the dielectric constant (εr) and
dielectric loss (Tanδ) of un-doped and Cr-doped MoO3 microrods. The value of the dielectric
constant of MoO3 decreases with the increases in frequency as well as Cr3+ (Figure 7). This
might be due to the alignment of permanent dipoles with the direction of the electric field
at lower frequencies, which contributes to the dielectric material’s total polarization. On
the other hand, the dipole can no longer follow the field at higher frequencies since the field
rapidly varies [40]. The dielectric loss of MoO3 increases with the increases in frequency as
well as Cr3+ contents (Figure 8). It increases to a maximum value, after which it goes to a
lower value. The peak is observed between 1.6–1.8 GHz frequency ranges. This may be
due to the dielectric relaxation phenomena occurring in the compound [41]. The tangent
loss (tanδ) caused by the dipole relaxation phenomena decreases with frequency, as seen in
the tanδ frequency plots [42].
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4. Conclusions

In the current study, pure and Cr-doped MoO3 microrods were successfully synthe-
sized via the sol gel auto combustion method. The average crystallite size, lattice parameter,
and average micro-strain value change when Cr3+ ions are doped in MoO3 were found. The
formation of a hexagonal structure with P63 symmetry was confirmed by phase analysis.
The average crystallite size (D) also decreased from 76.69 nm to 70.57 nm. The optical band
gap energies of 2.98, 2.80, and 2.71 eV were recorded for 0 wt%, 3 wt%, and 6 wt% Cr-
doped MoO3 microrods, respectively. The surface morphology of all the samples revealed
the formation of microrods with different sizes (small and large). The micropores were
observed in the group of hexagonal microrods. Dielectric studies showed that both the
dielectric constant and tangent loss are frequency- as well as concentration-dependent. The
obtained results declared that MoO3 is an appropriate host material for all the transition
metals or minerals which are used for the application of optoelectronic devices.
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