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Abstract: In the present work, machine learning (ML) was employed to build a model, and through
it, the microstructural features (parameters) affecting the stress concentration (SC) during plastic
deformation of magnesium (Mg)-based materials are determined. As a descriptor for the SC, the
kernel average misorientation (KAM) was used, and starting from the microstructural features
of pure Mg and AZ31 Mg alloy, as recorded using electron backscattered diffraction (EBSD), the
ML model was trained and constructed using various types of ML algorithms, including Logistic
Regression (LR), Decision Trees (DT), Random Forest (RF), Naive Bayes Classifier (NBC), K-Nearest
Neighbor (KNN), Multilayer Perceptron (MLP), and Extremely Randomized Trees (ERT). The
results show that the accuracy of the ERT-based model was higher compared to other models, and
accordingly, the nine most-important features in the ERT-based model, those with a Gini impurity
higher than 0.025, were extracted. The feature importance showed that the grain size is the most
effective microstructural parameter for controlling the SC in Mg-based materials, and according
to the relative Accumulated Local Effects (ALE) plot, calculated to show the relationship between
KAM and grain size, it was found that SC occurs with a lower probability in the fine range of
grain size. All findings from the ML-based model built in the present work were experimentally
confirmed through EBSD observations.

Keywords: Mg alloys; stress concentration; KAM; grain size; machine learning; accumulated local
effects; EBSD

1. Introduction

Magnesium (Mg) and its alloys are among the most promising materials for sev-
eral fields, including structural and medical applications [1]. This is due to its natural
abundance (2.5%) and lightweight nature (33% and 75% lighter than aluminum and
steel, respectively) [2]. In addition, Mg-based alloys exhibit both biocompatibility [3]
and suitable mechanical properties [1] to be employed as implants in medical applica-
tions [4]. The mechanical properties, including strength, ductility, and toughness, of
Mg alloys are mainly associated with their microstructural parameters, such as grain
size and morphology, grain boundaries, and texture, which, in turn, evolve after the
processing of these materials. Nowadays, there is huge interest in Mg-related research
due to the high potentiality of these materials in various fields. Most of the work on
Mg-based materials are focused on the improvement of mechanical performance. In this
regard, ductility is one of those properties, which is in great need of improvement. To
achieve that, various techniques, processes, and procedures have been used to control
the microstructure of the targeted material, and thus to improve the ductility [1]. It is
well known that the task of improving the ductility in Mg-based materials can be done
successfully by a concrete understanding of the processing–microstructure–property
relationships. Indeed, a huge number of studies have been conducted to solve the ductile
issue in Mg-based materials using various strategies, and those are mostly experimental
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works [5–7], with some present works done based on computational methods (DFT [8]
and MD [9]). Up to now, very few studies have discussed the application of data-based
methods (machine learning (ML)) to figure out the relation between the structure and
ductility of Mg materials. Very recently, these methods have received great interest by
researchers in the various fields of medicine, science, and engineering. For example, in
materials science and engineering, ML was used successfully to accelerate the discovery
of new materials with high performance [10–15]. In this work, the built ML model intends
to give an insight into the stress concentration and ductility relationship of Mg and AZ31
Mg alloy; specifically, the kernel average misorientation (KAM) is the chosen indicator
of ductility that will be utilized and investigated. Generally, the KAM values reflect the
residual stress level and dislocation density in the microstructure. Gui et al. [16] reports
the KAM value evolution at specific levels in the tensile curve of Mg-4Y-3Nd-2Sm-0.5Zr
alloy. Some conclusions can be withdrawn regarding the overall average KAM values:
firstly, the average KAM value evolves incrementally with increased strain, as can be seen
from the work done by Gui et al.; secondly, the distribution of KAM values in the sample
highly relates to the residual stress concentration and dislocation density distribution,
where the average KAM value increases as the strain increases up to the point where
energy dissipation through cracks is initiated [16].

Up to here, the present work was designed to build an ML model through which
structure–ductility relationship can be interpreted. For this purpose, experimentally col-
lected data from two materials (pure Mg and AZ31 Mg alloy) were used in a learning
process to build the model. This model, accordingly, relates the ductility (the output) and
microstructural parameters, hereafter called features by known convention, including grain
size, morphology, misorientation, and orientation.

2. Materials and Experiments

Pure Mg in the form of hot-rolled plates used in the present work were supplied
by Goodfellow Cambridge Limited (Huntingdon, UK). Rolled plates of AZ31 Mg alloy
provided by POSCO (Pohang-si, Korea) was also used in the present work; in total 3 spec-
imens were used for each material (pure Mg and AZ31 Mg alloy). The microstructural
features of the as-received materials were characterized using electron backscattered
diffraction (EBSD) in a scanning electron microscope (SEM). For electron back backscatter
diffraction (EBSD), samples were prepared using a cross-sectional polisher (IM4000, Hi-
tachi, Tokyo, Japan) and were observed by SEM (SU-5000, Hitachi, Chiyoda City, Tokyo)
equipped with the EBSD analysis system (VelocityTM Super, EDAX, Pleasanton, CA,
USA). For detailed crystallographic orientation analysis, TSL, OIM version v8.6 (EDAX,
Pleasanton, CA, USA) was used. For the EBSD-SEM observations, samples cut from a
rolling direction–transverse direction (RD-TD) were prepared using mechanical grinding
followed by cross-sectional polishing; the rolling-direction here was parallel to the tensile
axis. Room-temperature tensile tests were conducted on a dog-bone-shaped sample cut
from the two materials at a strain rate of 10−3 s−1. Samples from the two materials were
strained for 5 and 10%, respectively, and the microstructure evolution after the straining
was observed using SEM-EBSD.

3. Learning Procedure
3.1. Microstructural Features

Before discussing the data to be used in the learning process employed in the present
work, the microstructure, texture, and tensile properties of the pure Mg and AZ31 Mg
alloy used in the present work were introduced and compared. Figure 1 summarizes the
structure and properties of the pure Mg and AZ31 Mg alloy. In terms of grain structure,
both materials exhibit an equiaxed grain morphology (Figure 1a), but with different
sizes, where the grain size distribution in Figure 1b shows an average size of ~30 and
~10 µm in the pure Mg and AZ31 Mg alloy, respectively. The grain aspect ratios, in turn,
were somehow similar in the two materials, where average ratios of 0.6 and 0.65 were



Crystals 2022, 12, 1247 3 of 16

recorded for pure Mg and AZ31 Mg alloy, respectively (Figure 1c). The texture of the
two materials presented by the (0001) pole figures in Figure 1d show that both materials
(pure Mg and AZ31 alloy) exhibit a strong basal texture, and that was stronger in the pure
Mg as compared to that of AZ31 Mg alloy, as shown by the maximum intensities (15 vs.
13, Figure 1d). The room-temperature tensile curves presented in Figure 1e show the
expected behaviors, in which the pure Mg exhibited less ductility as compared to that of
AZ31 Mg alloy, indicating the more brittle nature of this pure Mg sample. The main and
the well-known reason that explains the brittleness in pure Mg is the lack of slip systems
that can be operated at room temperature [17]. This, in turn, is related to the gap between
the critical resolved shear stresses (CRSS) of the various slip systems. For example, at
room temperature, the CRSS of the pyramidal slip system is 100 times bigger than that
of the basal slip system, and due to this nature, only the basal slip system containing
3 distinct slip systems, where 2 of them are independent systems, will be available at
room temperature. Considering the 5 required independent slip systems, as determined
by the von Mises criterion [17,18], the 2 independent basal systems are not enough to
achieve a uniform deformation in the material, leading to a non-uniform deformation,
stress concentration, and, finally, to early fracture in this material. Generally, the stress
concentration caused due to the non-uniform deformation is followed using the kernel
average misorientation (KAM) measurements, which are easily reached through EBSD
observations. The KAM values represent the concentration of geometrical necessary
dislocations activated during the plastic deformation [19]. This, in fact, can be an implicit
indicator of ductility in a material, as discussed earlier. In the present experiments, pure
Mg and AZ31 Mg alloy samples were strained into 5% and 10%, respectively, and the
EBSD measurements were conducted to determine the microstructural parameters of
the deformed samples. Those strains were basically chosen according to the full tensile
behaviors of the samples (Figure 1e), where those are in the range of approximately 30%
from the total elongation of the counterpart sample. The KAM measurements (maps
and profiles) of the 5%-strained Mg and 10%-strained AZ31 alloy in Figure 1f,g show
that, even though the amount of strain applied on the pure Mg sample was less than that
applied on the AZ31 Mg alloy sample, this sample exhibited a higher KAM, suggesting
that the stress concentration occurred more frequently in the pure Mg sample, which
resulted in its lower ductility as compared to the AZ31 Mg alloy. Up to here and in
order to understand how structural parameters influence the stress concentration in the
Mg samples investigated in the present work, those parameters, including grain size,
morphology (aspect ratio), misorientation, and orientation, were collected based on the
EBSD observations, as shown by the maps presented in Figure 2. The data of 4694 grains
from the two materials (pure Mg and AZ31 alloy) was collected. In addition to those
parameters, the applied strain (5 and 10% in pure Mg and AZ31 alloy, respectively)
and the composition of these materials were also considered in the basic feature space
used in the learning process. In terms of the grain orientation, the Schmid factor (SF)
of various slip systems was employed as a feature, and here, basal slip, <a> prismatic
slip, <c> prismatic slip, 1st order <a> pyramidal slip, 1st order <c> pyramidal slip, 2nd
order <a + c> pyramidal slip, were considered (Figure 2). To show the distribution of the
collected features, their histograms are presented in Figure 3. Table S1 shows the features
used in this work in more detail.

3.2. Features Engineering

Based on the established features mentioned before—let us call them basic or elemen-
tal features for the rest of this article—we opted to increase this elemental feature space
by including different mathematical transformations such as sine, cosine, exponential,
mean, standard deviation, and summation, to name a few. Table S2 shows a full list of
the features that were generated alongside their base features that were built upon. This
expansion of the feature space serves two main purposes that need to be clarified: The
first is that mathematical transformations of already-set features will lead to a better
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performance of the predictive model overall [20]. This is due to the fact that a normal
distribution in ML is the most desirable distribution that will increase the predictive
capability of the model significantly because a normal distribution, simply put, makes the
math easier. Most ML/DL algorithms and architectures in their innerworkings assume a
normal distribution; i.e., they are derived from a normal distribution assumption. The
data distribution in this work is hardly ever normal in their nature, as shown in Figure 3;
the grain aspect ratio, for example, is as normal as it gets in the elemental feature space
followed by SF <Basal>. Other elemental features, such as the grain size, for example,
follows a Poisson distribution. The second purpose for expanding the feature space to
include different mathematical transformations is simply to enhance the interpretability
of the predictive model. This interpretability is mainly associated with not only under-
standing which feature contributes the most to the model, which can be interpreted by
experimental insight, but also at which mathematical format (log, sine, cosine, etc.) it
is more likely to be at, giving an analytical edge to the constructed model that can be
used in a further step to construct a compact and comprehensive equation [21]. Most of
the transformations that are used in this work are non-linear; therefore, it reduces the
possibility of our model being too complex by incorporating many linearly correlated
features that serve no purpose but to overcomplicate our model and render it overfitted
in many cases. All in all, this feature-engineering process has resulted in 53 features, as
presented in Table S2.
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profile in Figure 1g shows the KAMs that are higher than 1° (1–5°). 

 

Figure 1. (a) Inverse pole figure (IPF) maps, (b) grain size distributions, (c) grain aspect ratio
distribution, and (d) pole figures (PF) of the as-received pure Mg and AZ31 Mg alloy, respectively.
(e) Room temperature tensile curves of the as-received pure Mg and AZ31 Mg alloy. (f) Kernel
average misorientation (KAM) maps, and (g) KAM distributions of the 5%-deformed pure Mg and
10%-deformed AZ31 Mg alloy, respectively. The scale bar interested in the KAM map of the two
materials in Figure 1f represents misorientations from 0◦ to 5◦ of neighboring points in these maps.
The profile in Figure 1g shows the KAMs that are higher than 1◦ (1–5◦).
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Figure 2. Grain size, grain aspect ratio, misorientation, and Schmid factor maps obtained from the
EBSD observations on the pure Mg samples. These maps together with those recorded for the alloy
(not shown here) were used to extract the basic microstructural features employed in the present
learning work. Those were obtained grain by grain.
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3.3. Initial Dataset and Data Analysis

In the initial stages, the data that were collected for the 5%-strained pure Mg and
10%-strained AZ31 alloy combined showed a predicted imbalance in the range of KAM,
with an average of 0.78◦, a variance of 0.34, and a standard deviation of 0.12. The skewness
of the collected data was calculated and is 3.31 with a kurtosis of 13.8. This suggests that
the distribution of the collected data is highly narrow and positively skewed, as shown
in Figure 4a. This distribution is a sign of an imbalanced dataset that is to be balanced
before classification goes underway. One way to balance these data is to choose a suitable
classification threshold that virtually separates the data into equal chunks of two classes.
This is impractical and overexaggerated when viewed from a material science perspective.
In our collected data and based on the previous simplified statistical analysis, a statistical
classification threshold for the KAM would suggest that anything less than the average
(0.78◦) is a suitable starting point for this binary partition that would, more or less, ensure
that the imbalance is alleviated. Yet, this classification threshold is a problem-specific
quantity, and in this problem, what constitutes the boundary between high and low KAM
classes, is highly related to the material and specific distribution of the high KAM values.
Thus, to remedy this problem, we are going to suggest a rather more compact and realistic
threshold, which is an average KAM (0.78◦) and the addition of a one standard deviation
step and rounding it up to a KAM value of 1◦; this value assures that the KAM values
over 1◦ give a higher possibility for stress to be concentrated within those grains that
are in the remaining 15~20%, which, as Figure 4a shows, is 816 cases. From a material
science perspective, this threshold could be based on a study by Wright et al., where
a microstructure can be regarded as a highly deformed structure if its average KAM
value is higher than 1◦ [22], which could rationalize our choice of KAM threshold that
was solely based on statistical analysis. The other way of balancing the data in this case,
as will be expanded upon later in this work, is by utilizing the different resampling
techniques for the collected data. To understand this issue deeper, Figure 4b–e shows a
simple overview of those techniques in action. For a specific imbalanced dataset, as is
presented in Figure 4b, one can observe how the class imbalance is obvious. Class “0”,
which in this case represents the KAM values of less than 1◦, practically represents a
more than 80% fraction from the dataset that was used, leaving the remaining 20% for
the other class, “1”, which represents KAM values that are more than 1◦. This statistical
imbalance can be mitigated by either under-sampling the majority class (“0” in this case),
which is represented in Figure 4c, over-sampling the minority class (Figure 4d), or a
hybrid approach, where a compromise is reached between the two techniques, as shown
in Figure 4e; other techniques in dealing with imbalanced datasets are active learning [23],
cost-sensitive learning [24], and kernel-based methods [25]. The resampling techniques
that were used in this work, i.e., over-sampling and under-sampling, both have their
pros and cons, and the following discussion will expand upon a few of both [26]. The
first is that an imbalanced dataset is detrimental to the operation of the model and
its ability to learn both classes equally, which leads to, in many cases, a misleading
accuracy assessment if the practitioner is not aware. The second benefit of one of those
techniques, namely, over-sampling, is that the data-balancing technique comes at no
cost of the original data, meaning that the additional data generated or “synthesized”
are used to enhance the predictive and exploratory capability of the model with no
information loss. Of course, in the ML research field, there are no free lunches, and
certainly resampling techniques are not exempt from that statement. Over-sampling, for
instance, synthesizes new data that are generated based on a proximity algorithm that
establishes new “guesstimated” points, as will be shown in the next sections, that are
as close as possible to the original minority class in the feature hyperspace [26]. This
procedure is an augmentative one, and with this comes authenticity questions that are
no doubt quite philosophically challenging. However, the methodology works [27] and
this work will show how it can be utilized in the study of stress concertation using
KAM measurements obtained from Mg and AZ31 alloy. Under-sampling, on the other



Crystals 2022, 12, 1247 7 of 16

hand, reduces the amount of data that are used in the training process by restricting
or deleting the majority classes in favor of balancing out the minority. This process
introduces information loss that will reduce the predictive and exploratory power of
the model. As a concluding statement, the resampling techniques mentioned above are
not to blame for arising those concerns about data integrity; this issue stems from the
data imbalance problem itself, which over-sampling and under-sampling try to solve
and are reported to be quite successful at that [26]. After identifying the issues that we
are to face after the short Exploratory Data Analysis (EDA) that was done earlier. We
opted to use over-sampling and a hybrid mixture of both to deal with the imbalanced
data. Over-sampling techniques used in this work are random over-sampling and the
Adaptive Synthetic approach for imbalanced data (ADASYN). For the hybrid approach,
a SMOTE-Tomek algorithm was used. Random over-sampling and under-sampling are
virtually identical, but where in random over-sampling the minority class dataset is
duplicated with replacement to enlarge this category to a point where it has a similar size
as the majority class. This technique is very prone to overfitting, which is considered
by most ML practitioners to be very unreliable in the context of predictive modeling.
The second technique is ADASYN, which is an adaptive method that was first proposed
by He et al. [28], and utilizes the idea of proximity between points of the same class
to generate new data points with similar features to original minority classes. This is
similar to the workings of the Synthetic Minority Over-sampling Technique (SMOTE) [29],
which utilizes the Euclidean distance between each minority points for data syntheses
but each point in the minority class is assigned a density distribution to create new points
according to its nearest neighbors and their classes in a scattering fashion rather than
strictly linear as in SMOTE. A hybrid approach called SMOTE-Tomek includes operating
both methods of over-sampling and under-sampling in tandem, where minority class data
are increased and majority class data are decreased simultaneously; using this technique
affirms that the data is minimally augmented while a considerable amount of information
remains, thus decreasing both information loss and gross overfitting (a discussion about
the mathematical formulation of those algorithms is given in the Appendix A).
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Figure 4. (a) The histogram of kernel average misorientation (KAM) of the 5%-deformed pure Mg
and 10%-deformed AZ31 Mg alloy. (b) Fraction of Class 0 (the grains with KAM less than 1◦; 83%)
and Class 1 (the grains with KAM bigger than 1◦; 17%). (c–e) The sampling methods usually used to
balance the data.

3.4. Training and Testing

In the training process, we have opted to use a myriad of different classification
algorithms that allow us to explore different classification approaches with different in-
nerworkings, such as Logistic Regression (LR) [30], Naive Bayes Classifier (NBC) [31],
K-Nearest Neighbor (KNN) [32], Multilayer Perceptron (MLP) classifier [33], Decision Trees
(DT) [34], Random Forest (RF) [35], and Extremely Randomized Trees (ERT) [36]. These
algorithms were primarily used to construct an optimum classifier that is capable of distin-
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guishing between low and high stress concentration in individual grains based on collected
data from experimental EBSD analysis. Before delving into the results of the training and
establishing the interpretability analysis, it is imperative to discuss the classification metrics
that will be used to assess the model. It is conventional to use a confusion matrix as a basis
for accuracy measurements in a specific classification procedure [37]. A confusion matrix
consists of positive predictions (in this case, KAM > 1◦) that are correctly predicted, called
true positives (TP), and the countering incorrect ones, called false positives (FP). The same
applies for negative predictions (KAM < 1◦) that are correctly and incorrectly predicted,
as mentioned before called true negatives (TN) and false negatives (FN), respectively. A
robust model tends to decrease FNs and FPs as much as possible, but there is an inherent
tradeoff here between a model that can correctly predict TP and TN. To assess the accuracy
of the models on hand, accuracy and F1-score were used. Accuracy is a metric that is
defined by the following equation [37]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Although this metric seems fairly reliable at first, it is not. In this work, it is obvious
that this metric will be high regardless of the actual performance. This is by in large due
to the fact that our original data are imbalanced by default, which means that even if the
classifying algorithm is based on choosing a negative prediction every time, it will show a
high accuracy (80%) by virtue of having an 80/20 proportion between the negative and
positive classes. Therefore, due to the previous fact, ML practitioners have introduced two
additional flagship accuracy measures that give more insight into how an ML model is
behaving. These are recall and precision, and in mathematical terms they are defined by
the following equations [37]:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Precision, in simple terms, represents how many of the predicted positives are actually
true according to our initial dataset; this is to assess if the model is capable of capturing
true negatives in its prediction. Recall, however, represents how many of our positive
values were correctly classified; therefore, it is a measure of how good our model is in
predicting true positives. Both emphasize different quantities of prediction, and because in
our work we are to require a balanced importance of high and low KAM regions without
discrimination, the F1-score measure was used; this measure is defined as the harmonic
mean of the recall and precision [37]:

F1 score = 2
Precision× Recall
Precision + Recall

(4)

This score gives a clear image of the model’s performance without prioritizing a
specific class over another (high KAM or low KAM); thus, it can be used to compare
between different models. The 10 k-fold cross-validated accuracy and F1-scores of the
used models are provided in Figure 5. Specifically, Figure 5a represents unbalanced data;
Figure 5b random over-sampling; Figure 5c over-sampling with ADASYN; and Figure 5d
the hybrid approach of over/under-sampling using SMOTE-Tomek. It is clearly shown
that the imbalance in the data affected the results and using the resampling techniques
helped in overcoming this issue. The highest accuracy and F1-score between these models
were recorded for the ERT algorithm, with a 0.89 score for the hybrid over/under-sampling
technique; therefore, this model can be used for further analysis.
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sampling (ADASYN) (c), and over/under sampling (SMOTE-Tomek) (d).

4. Results and Discussions

After training and testing the various ML-based models using the different data
balancing techniques, the final model (ERT-based model) with the highest score in this
grid (resampling technique and ML algorithm) was chosen for further inspections. Here,
interpretability is the main objective of ML, and will be used for that purpose through
feature important analysis that will be laid out in the rest of the work. The top 9 important
features in this model (ERT), those with a higher decrease in Gini impurity [38] than
others, were extracted and are shown in Figure 6a. Here, the logarithmic transformation
of the grain size is the most important feature, with an impurity of 0.083. Interestingly,
grain size has contributed the most of these features—7 features out of the 9—confirming
the significant effect of grain size on the plasticity and SC of Mg-based materials. Of
course, this observation can be done experimentally by examining the relationship and
coming to the same conclusion based on expertise; yet, here it is important to know which
mathematical transformation of grain size gives a stronger correlation, and thus it can help
immensely in further modeling and for mathematical equation formulation of the stress
concentration based on KAM measurements, increasing the accuracy and interpretation of
such models. To show how a feature is significant, a global model-agnostic interpretability
measure—the min–max normalized relative Accumulated Local Effects (ALE) [39] (more
information about the normalization process is given in the Supplementary Materials)
plots—are presented for some targeted features; those plots describe the 1st-order effects
of the features and are shown in Figure 6b, and this metric reflects the dependency of
the output (KAM) on the feature, where higher values of relative ALE indicate that the
stress concentration (KAM > 1◦) is more likely to occur as compared to lower values (a
short discussion about ALE is given in Appendix A). A quick note would be necessary
here regarding the choice of the interpretability metric between the Partial Dependence
Plots (PDP) or ALE, as the rationale is that most of the features used in this work are
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indeed interrelated to one another making the partial dependence plots useless in our
case [40]. Out of the 9 features presented in Figure 6a, 4 features were selected to show their
counterpart relative ALE plots, and those are log (GS), exp[H(GS*AR)], SF (<c> prism), and
SF (<a> prism) (Figure 6b). The results presented in Figure 6b reveal a complicated trend in
the relative ALE probability as a function of the selected features, reflecting the complex
nature of structure–property relationships in metals. For example, in the case of log GS
(Figure 6b), the relative ALE value was found to be higher in the range of ultrafine-grained
structure (GS < 1 µm), and it decreased by increasing the grain size to get a minimum value
between 1.3 and 3.5 µm followed by another increase in the ALE value in the range of 14 to
20 µm. A similar trend of decreasing and increasing was also noted for the exp[H(GS*AR)].
Differently, in the case of SF, for both <a> and <c> prismatic slips, the relative ALE was
high at an SF of ~0.45.
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important parameter that highly influences the KAM formation during straining of Mg-
based materials, especially in the range of finer-grained structures; however, one can 
question the interpretation of these results. The low (minimum) ALE values noted be-
tween 1.3 and 3.5 µm can be explained based on the occurrence of grain boundaries slid-
ing as an additional softening mechanism, leading to a lower accumulation of disloca-
tions, and accordingly, less stress concentrations. The occurrence of such a mechanism in 
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Figure 6. (a) The top 9 important features, as found by the ERT ML model built in the present work.
(b) The relative probability related to 4 important features out of the top 9 in Figure 6a. (c–e) Inverse
pole figure (IPF), image quality (IQ), and partitioned twin maps, respectively. The colorful lines in
IQ map (Figure 6d) represent the boundaries, which are classified according to their misorientation,
where a red line represent the twin boundaries with misorientation of ~86o. (f) The (A,B) twined
grains, as partitioned from the full microstructure presented in Figure 6c,d, and the point-to-point
misorientation profiles taken along the inserted arrows. The profiles in (f) shows the evolution of the
tension twins. (g) The kernel average misorientation of the two partitioned grains (A,B). The unit of
GS is micrometer, and AR and SFs are dimensionless.

Considering the finding of the ML model reached in the present work, the GS is
an important parameter that highly influences the KAM formation during straining of
Mg-based materials, especially in the range of finer-grained structures; however, one
can question the interpretation of these results. The low (minimum) ALE values noted
between 1.3 and 3.5 µm can be explained based on the occurrence of grain boundaries
sliding as an additional softening mechanism, leading to a lower accumulation of disloca-
tions, and accordingly, less stress concentrations. The occurrence of such a mechanism in
this range of grain size was introduced by Zeng et al. [41], who reported the occurrence
of grain boundaries sliding in the near-micron grains of pure Mg samples extruded at
80 ◦C, and that happened at the expense of the other in-grain mechanisms, including
dislocation slip and twinning. This reduces the probability to build the in-grain stress
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needed for fracture. On the other hand, the higher relative ALE values of the grains with
a size between ~14 and 20 µm can be attributed to the twinning ability in this range of
grain size, where it is well-known that the twining activity increases with increasing the
grain size [42,43]. Indeed, the evolution of twins were noted more frequently in the coarse
grains (>10 µm). To confirm this point, two grains were chosen from the 5%-deformed
pure Mg samples to be analyzed separately, and this is summarized in Figure 6c–g. As
shown by Figure 6f, the two selected grains were twinned due to the plastic deformation,
and the related twin boundaries (TBs) measured by point-to-point misorientation profiles
across those twins (Figure 6f) indicated that those represent TBs of ~86◦

〈
1120

〉
, which, in

turn, are the characteristic of
{

1012
}

extension twins. Figure 6g shows the evolution of a
high KAM within and round these twins, which is in good agreement with the increase
noted in the relative ALE plot of the log GS, in the range of ~14 to 20 µm, as presented in
Figure 6b.

Back to the tensile behavior in Figure 1e, due to the grain boundaries strengthening
effect, as reflected by the flow stress in Figure 1e, the lower stress recorded for the pure
Mg can lead to increased activation of the basal slip systems due to their lower CRSS
as compared to non-basal systems [44]. On the other hand, more non-basal dislocations
can be generated within the fine grains of the AZ31 Mg alloy, and this is related to the
higher flow stress of the AZ31 Mg alloy (Figure 1e). The lack of slip systems in the case of
the coarse-grained structure of pure Mg, where the basal family with three independent
systems is majorly available, resulted in the activation of other deformation modes to
accommodate the plastic strain [45]. Here, a considerable number of twin boundaries (TBs)
was detected in the 5%-deformed pure Mg sample, where those formed ~6% of the total
high angle boundaries (HABs), as shown by the red line in Figure 6d. Even though twins
contribute as a secondary deformation mode, which can contribute to accommodate the
plastic strain, those twins can evolve some characteristics [45], which, in turn, induce the
crack initiation and prorogation, finally leading to an earlier fracture.

To conclude the discussion of using ML for interpretability of physical systems and
especially stress concentration in Mg and its alloys, it must be reminded that, for inter-
pretability to be useful, one should assure that the design loop for the work conducted
be sound and applicable to a reasonable extent. For this work, Figure 7 shows the design
strategy that motivates the flow of this work.
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First, the question that was needed to be answered is how can we get statistical insight
into the stress concentration of Mg and its alloys; the answer is to find a suitable estab-
lished descriptor, namely, a kernel average misorientation (KAM), that enables qualitative
and special recognition of the stress concentration, which itself is hard to experimentally
quantify and track as a function of microstructural features. Next, one must mine the
data that is useful for this kind of analysis, and in this work, the experimental EBSD data
of 5%-strained and 10%-strained Mg and AZ31 alloy, respectively, were obtained to con-
struct a dataset. Then two of the most important questions must be asked: The first is the
question regarding which method of machine learning is more useful for the job at hand
given the category of the model that is to be constructed—an explanatory model that is
interested in understanding the relations between features and outputs or a predictive
model that is more oriented towards making an informed prediction, keeping in mind that
interpretability and prediction are not mutually exclusive and can be used in tandem, but
a more informed and uniform direction of ML modeling reduces redundant information
and effort, to further explain whether regression, classification, or clustering is more useful
and which of them has a better insightful direction for the project at hand. In this work,
classification is certainly more important, as our target is not to predict KAM values of new
instances and recognize stress concentration hotspots according to previous data, but to
interpret the outcomes of the data in terms of the relationship between the input features
and output response based on a binary classification process of the existing data at a specific
threshold (KAM > or < 1◦). The second important question to be asked is how to extract a
useful feature space from the available parameters of measurement. The elemental features,
shown in Figure 7, were organized so as to give the maximum amount of information
about the material, such as the microstructural parameters, strain, and composition. Those
elemental features can be further expanded using basic mathematical transformations to
enhance the interpretability and utility of the feature space, as explained earlier. Then, ML,
data balance (if the data are unbalanced), and interpretability algorithms and methods
should be carefully chosen according to accuracy and interpretability measurements. For
example, here, we used a hybrid over/under-sampling technique (SMOTE-Tomek) for
balancing the data as well as an Extremely Randomized Trees Classifier for the classification
process. This was followed by interpretability using feature importance and relative ALE
plots, as shown in Figure 6. All in all, Figure 7 gives the necessary workflow that can be
followed for an interpretable ML project; however, it is by no means a strict plan to be
followed, but it can be used as the starting ground for more interpretable modeling, which
is critically needed in the fields of material science and engineering.

5. Conclusions

This work was designed to construct an interpretable machine learning model that can
be employed to give insight into the stress concentration in magnesium-based materials.
This was done by training data containing the microstructural parameters obtained from
pure magnesium and AZ31 alloy. The following points can be drawn from this study:

The ML model based on Extremely Randomized Trees (ERT) was successfully built
with a high accuracy and an F1 score of ~0.89 for both.

The feature importance in the ERT-based model analyzed using the Gini impurity and
the relative ALE plots showed that grain size is the most important factor to control the
stress concentration, and that was significant in the logarithm-transformed form of the
elemental feature of grain size.

The ML results reached in this study were in good agreement with the metallurgical
aspects of magnesium and its alloy.

Lastly, this work is set to increase the applicability of ML techniques as interpretation
methods rather than as conventional black box modeling in material science.
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Appendix A.

Appendix A.1. ADASYN Algorithm

The main idea about data balancing in general is to try and create or synthesize data
that are from a minority class in order to bring them to the same or a close proportion
to the majority class that constitute the original dataset. Adaptive Synthetic Sampling
Approach for Imbalanced Learning, or ADASYN for short, is an algorithm that tries to
improve on the existing Synthetic Minority Over-sampling Technique (SMOTE) that tries
to synthesize random data from a minority class, depending on the hyperplane in the
feature subspace that connects the data from the minority class. The synthesized data exist
explicitly in that hyperspace and are randomly generated without regarding the weight
of a specific sample and whether it is an outlier or a regular sample. ADASYN, on the
other hand, deals with generating data according to a specific distribution to overcome
the randomness of SMOTE by generating more data points at points that include a higher
clustering of the minority class data, hence the name adaptive. ADASYN also tries to
overcome the problem of SMOTE, which strictly generates datapoints on the feature
hyperplane by introducing variance into each generated dataset, making the generated
data as authentic as possible. The proposed algorithm as mentioned in the original paper
by He et al. [28] is as follows:

- Input:

Training Data with m samples (xi,yi) where i = (1, . . . , m) in a specific feature space X
with n dimensions. The output is a two-class Y = (−1,1) and where the number of minority
and majority classes is denoted as ml and ms for majority and minority, respectively, and
given that ml > ms where ms + ml = m.
- Procedure:

(1) Specify the degree of imbalance by the following equation:

d =
ms

ml
(A1)

https://www.mdpi.com/article/10.3390/cryst12091247/s1
https://www.mdpi.com/article/10.3390/cryst12091247/s1
https://github.com/russlanj/KAM-classification-Data
https://github.com/russlanj/KAM-classification-Data
https://kotibahamad995.wixsite.com/aem-skku/machine-learning-codes
https://kotibahamad995.wixsite.com/aem-skku/machine-learning-codes
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(2) Calculate the number of synthetic data to be generated in the minority class (if the
degree of imbalance is at a specific maximum tolerated threshold):

G = (ml −ms)× β (A2)

where β is the desired balance level ∈ [0, 1]; if β = 1, then the data after balancing will be
fully balanced.

(3) For each sample in the minority class (xi) calculate the Euclidean K-nearest neighbor
distance in n dimensions (meaning L2 norm of two vectors), and calculate a ratio ri that is
defined as:

ri =
∆i

K
(A3)

i = (1, . . . , m)

where ∆i is the number of examples in K-nearest neighbors of xi that belongs to a majority
class; then, ri is normalized, to obtain a distribution density of the majority classes around
a minority point. A distribution density r̂i = ri/ ∑ms

i=1 ri is used to calculate the number of
samples needed to be synthesized for each minority class by the following equation:

gi = r̂i × g (A4)

(4) Generating a synthetic data si, around a minority xi with a nearest K neighbor
example xiz:

si = xi + (xiz − xi)× γ (A5)

where γ is a random number between 0 and 1.

Appendix A.2. Tomek Links

In data under-sampling, randomness in eliminating a specific datapoint poses a
concern about data loss in general, which means that the under-sampling technique has to
have a specific understanding of the relationship between the data points at hand. Tomek
Links, as described by Suoto et al. [46], establishes an algorithm at which data from the
majority class can be removed in order to reduce the crucial information loss for two data
instances from the majority and minority classes, xs and xl. The Euclidean distance of xs
and xl is denoted as dsl. The pair of xs and xl is called a Tomek Link if there does not exist a
point xk such that the distance dkl or dks < dsl. If that is true, then, in this Tomek Link, the
majority point (xl) can be omitted.

Appendix A.3. Accumulated Local Effects (ALE)

In the process interpretability of the ML models, various methods can be used in
order to assess the participation of different features in the employed model. One of those
methods is the Accumulated Local Effects (ALE), which describes how a specific feature
influences the output of an ML model by accumulating the differences in predictions of a
specific local grid rather than the conventional Partial Dependence (PD) method, solving
two main problems: the first is the inherent correlation of some features with each other,
and second the conditional distribution that allows for a more precise estimation of the
effect of a specific feature. For a condensed mathematical explanation, Apley et al. [31]
discuss in depth the mathematical foundation of ALE, which are used to plot the 1st-, 2nd-,
and nth-order primary and marginal effects for a specific feature and its variable response.
We have used a relative max–min normalization in this work to enable easy interpretation
and comparison of the ALE plots.
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