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Abstract: The main objective of this study is to present a methodology to model the microstructure
and mechanical properties of ZE41-xCa-ySr alloys for integrated optimization calculation of the heat
treatment process of gearbox casting. Firstly, the models of microstructure and mechanical properties
of ZE41-xCa-ySr alloys (0≤ x≤ 2, 0≤ y≤ 0.2) are developed using an artificial neural network (ANN)
and multivariate regression. The dataset for ANN and regression models is generated by investigating
the microstructures and mechanical properties of the ZE41-xCa-ySr alloys. The inputs for ANN and
regression models are Ca and Sr contents, aging temperature and aging time. The outputs are grain
size, ultimate tensile strength, elongation and microhardness. The optimal ANN model is obtained
by testing the performance of different network architectures. In addition, multivariate regression
models have been built based on the Least Squares method. Secondly, based on SiPESC software,
an Integrated Computing Platform is constructed by combining the scripting language with the
command line operation of simulation software, realizing the “process—microstructure—property”
optimization calculation. Finally, based on the developed regression model, an Integrated Computing
Platform batch called MATLAB achieves the heat treatment process optimization based on mechanical
property prediction. The optimum aging temperature of the ZE41-0.17Ca-0.2Sr alloy is 322 ◦C, and
the corresponding aging time is 11 h. Furthermore, the optimized results are validated by the ANN
model, suggesting that ANN predicted results are in good agreement with optimized results. As
a consequence, this work provides a new strategy for the research and development of Mg alloys,
contributing to acceleration in the development of magnesium alloys.

Keywords: integrated computing; artificial neural network; multivariate regression analysis; Mg alloys

1. Introduction

Magnesium (Mg) has the potential to provide 60–75% mass savings relative to steel
or cast iron, and die casting can be used to economically produce large and thin-wall Mg
alloy castings to replace steel subsystems [1]. Mg alloys containing rare-earth (RE) elements
are considered to be promising alternatives to commercially available alloys, due to their
good oxidation resistance and high strength [2]. In addition, mechanical properties of
Mg alloys can be improved by employing relevant heat treatment and other engineering
processes [3–5]. The processes of tailoring the alloy to deliver application-dependent
property requirements play key roles in accelerating the conversion of improved Mg alloys
into products.

In 2008, Integrated Computational Materials Engineering (ICME) was first proposed,
which involved the tools for modeling and simulation, as well as design optimization.
ICME aims to reduce the time to market of innovative products by exploiting the design
and development of material and process path [6]. Since 2012, ICME has been gradually
applied to the research and development of alloys and their components. This approach
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integrates the multiscale models and key experiments into the entire process of aluminum
alloys development. Therefore, ICME promotes the research and development mode to
change from “Traditional Design” to “Predictive Design”.

Designing materials for targeted property as required in ICME demands modeling
and simulation, which includes both process–microstructure and microstructure–property
relations. However, it is a difficult task to briefly summarize a range of multiscale modeling
approaches for all process–microstructure and microstructure–property relations for all
the alloys.

A few experimental research efforts were devoted to studying the strengthening
mechanism, heat treatment technology and microstructure evolution of the Mg-Zn-RE-Zr
alloys [7–10]. The relationship between process parameters and mechanical properties
for Mg-Zn-RE-Zr alloys has only been studied empirically. The “composition/process-
microstructure-property” relation that is foundational to the design of the alloy composition
and process has not yet been studied. The few systematic efforts that have been made
to analyze trends in experimental data as a basis for predictions have, in large part, been
inconclusive, not the least of which is due to the lack of large amounts of organized data,
and even more importantly the challenge of sifting through them in an efficient manner.

In recent decades, artificial neural networks (ANNs) and various regression methods
have been powerful and flexible modeling tools that can lead to significant improvements
in materials science, modeling complex problems and exploring the correlations between
different materials’ properties [11–14]. Yang employed the ANN model with a backpropa-
gation (BP) algorithm to explore correlations that exist between heat treatment processes
and mechanical properties of A357 alloy [15]. Conduit developed an ANN to enable the
prediction of individual materials properties both as a function of the composition and heat
treatment routine [16]. In addition, linear and nonlinear regression models were applied to
develop the input–output relationship in many casting processes [17,18]. Chen applied the
nonlinear mathematical model to quantitatively analyze the effects of the heat treatment on
Vickers hardness of the Al-Si-Mg alloy, and achieved the optimum heat treatment process
using the sequential approximation optimization method [19]. Akhtar optimized process
parameters in the turning of Aluminum Alloy 7075 using a Computer Numerical Control
machine [20].

ZE41 magnesium alloy is one of the most popular magnesium alloys in the Mg-Zn-RE-
Zr based alloy and has been widely used for the aircraft gearbox and generator housings on
military helicopters [21–23]. In this study, we take ZE41-xCa-ySr alloy as a research object.
Firstly, we focus on modeling and correlating the microstructure and mechanical properties
of the heat-treated ZE41-Ca-Sr alloys, with alloying elements and aging process using
the ANN approach and regression models. Secondly, based on the developed regression
model facilitating Integrated Computing Platform, the heat treatment process and alloying
composition of ZE41-xCa-ySr alloy are optimized by the Integrated Computing Platform.
Finally, the optimized results are validated by the ANN model. This work aims to provide
a new strategy for the research and development of Mg alloys, which is conducive to
accelerating the development of magnesium alloys.

2. Experiment and Methods
2.1. Experimental Procedure

Figure 1 illustrates the flow chart of this work. In the present work, ZE41-xCa-ySr (Mg-
4.2Zn-1.7RE-0.8Zr-xCa-ySr x = 0, 0.2 wt.%, y = 0, 0.2 wt.%) was used as the casting material
due to its advantages such as excellent fluidity, good heat resistance and low wall-thickness
effect. The casting ingots were produced by high-purity Mg, Zn, Ce-rich mischmetal
(50 wt.% Ce, 28 wt.% La, 16 wt.% Nd, 4% wt.% Pr and 2 wt.% impurity), Mg-30Zr, Mg-20Ca
and Mg-20Sr in an electric resistance furnace under a protected argon atmosphere at 730 ◦C.
Then, the samples were subjected to different heat treatments. Experiments were designed
and accomplished according to underage, peak age and overage conditions at different
temperatures. The chemical compositions of the as-cast alloys were determined by the
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Inductive Coupled Plasma (ICP) method and the results were summarized in Table 1.
The RE element consisted of Ce, La, trace Nd and Pr. The heat-treatment parameters (T1
conditions) used in this work were as follows: artificial aging temperatures (300 ◦C, 325 ◦C
and 350 ◦C) and aging time (0–32) h. After heat treatments, the tensile specimens were
machined with 30 mm in gauge length and 6 mm in diameter. Based on the standard GB/T
228.1-2010, tensile tests were conducted at room temperature. Ultimate tensile strength
(UTS) and elongation to failure (El.) were measured. Furthermore, Vickers hardness tests
were performed with a 1 kg load. Next, 10 indentations per sample were analyzed to
improve precision. The average value was reported as the microhardness (HV). In addition,
microstructural examinations were conducted using an optical microscope (OM). The
specimens for OM observations were etched in a solution of 2.1 g picric acid, 5 mL acetic
acid, 5 mL H2O and 35 mL ethanol. Average grain size was measured using the linear
intercept method described in ASTM standard E 112-88.
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Table 1. Chemical compositions of the experimental alloys (wt.%).

Nominal Alloys Actual Composition

Mg Zn RE Zr Ca Sr

Mg-4.2Zn-1.7RE-0.8Zr Bal. 4.09 1.67 0.70 - -
Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca Bal. 4.14 1.61 0.76 0.18 -

Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr Bal. 4.13 1.72 0.72 0.22 0.21

Based on the previous study, the optical micrographs of the as-cast ZE41-xCa-ySr
alloys are shown in Figure 2 [24]. It can be seen that the as-cast alloys consist of equiaxed
α-Mg matrix and eutectic compounds distributed along grain boundaries. The average
grain size of α-Mg phase decreases with increasing Ca and Sr. Figure 3 presents the
optical micrographs of the peak-aged ZE41-xCa-ySr alloys, wherein the microstructures
consist of primary α-Mg grains and interdendritic phases dispersing along the grain
boundaries, as well as the intermetallic particle existing inside grains [25]. The average
grain sizes for the peak-aged ZE41 and ZE41-0.2Ca-ySr (y = 0, 0.1 and 0.2 wt.%) alloys
are (49.6 ± 2.7) µm, (37.5 ± 2.4) µm, (34.8 ± 2.1) µm, (32.5 ± 2.5) µm and (35.2 ± 2.1) µm,
respectively, revealing a slight growth of α-Mg grains after peak age at 325 ◦C compared
with the as-cast alloys. Therefore, the average grain size is selected as an output variable to
express the microstructure.
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(d) ZE41-0.2Ca-0.2Sr, (e) ZE41-0.2Ca-0.4Sr and (f) partial enlarged drawing of the ZE41-0.2Ca-0.2Sr
alloy [25].

2.2. ANN Modeling

An ANN is a mathematical model consisting of many highly interconnected processing
elements organized into layers. ANN keeps knowledge with connection weights [26].
Input signals are processed in the course of the hidden layer, and the following outputs are
computed in the output layer. Input–output pairs are presented to the ANN and weights
are adjusted to minimize the error between the predicted output and actual value. The
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multilayered neural network (MLP) is utilized to establish an ANN model, which is used
to predict the microstructure and mechanical properties of ZE41-xCa-ySr alloys. Since
the Back Propagation (BP) algorithm is a representative method used to reduce the errors
created by the gradient descent method, it is used to train the multilayer feed forward
network. A three-layered ANN model is developed using the MATLAB R2018a. Figure 4
shows the network configuration of the ANN model. As it seen in Figure 2, the network
structure includes three layers: an input layer (four neurons), one hidden layer and an
output layer (four neurons). The input variables consist of Ca, Sr content, aging temperature
(Ta) and aging time (ta). The outputs correspond to average grain size (D), ultimate tensile
strength (UTS), elongation (El.) and microhardness (HV). The dataset has been generated
from a series of experiments on samples, as discussed in Section 2.1, which are listed in
Appendix A. In order to avoid overfitting in the ANN training, 120 groups of data are
divided randomly into three subsets: 70% training set, 15% testing set and 15% validation
set. Both input variables and output variables are fed into the neural network toolbox.
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The ANN model training parameters are presented in Table 2. Based on the training
parameters, the mathematical model of the ANN is shown in Figure 5. The data are nor-
malized to reduce the order of magnitude difference between the various dimensions [27].
As activation transfer functions, the hyperbolic tangent “tan-sigmoid” function and the
linear transfer function “Purelin” are used. Compared with the standard gradient descent
algorithm, the Levenberg–Marquardt (LM) algorithm possesses fast convergence and a
small mean square error [26]. As a result, a BP neural network with LM algorithm is
adopted to train the ANN model. In addition, the number of hidden neurons is estimated
according to the empirical formula:

M =
√

n + m + a (1)

where m and n are the number of neurons in the input and output layers, respectively, and
a is a constant in the range of 1 to 10 [28,29]. According to the empirical formula, nine kinds
of ANN architectures with different neurons in the hidden layer are tested to determine
the optimal one. The correlation coefficient (R) is used to evaluate the linear correlation
between the experimental and predicted results. However, it is unable to evaluate when
the prediction is biased towards a local scope. Therefore, mean squared error (MSE) is also
adopted to evaluate the ANN performance. The corresponding functions are as follows:

R =
∑n

i=1
(
Ti − T

)(
Yi −Y

)√
∑n

i=1
(
Ti − T

)2
∑n

i=1
(
Yi −Y

)2
(2)
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MSE =
1
nt

t

∑
m=1

n

∑
i=1

[Ti(m)−Yi(m)]2 × 100% (3)

where Ti is the experimental value, Yi is the predicted value and T and Y are the mean
values of all the experimental and predicted results, respectively. n denotes the number of
outputs and t denotes the amount of training sets. The convergence to MSE of 0.0167 is
established in 1000 epochs.

Table 2. The ANN model training parameters.

Parameters ANN Model

Number of layers 3
The number of neurons on the layers Input: 4, Hidden: 4~12, Output: 4

Transfer functions Hidden layer: Tan-Sigmoid
Output layer: Purelin

Training method Levenberg–Marquardt (LM)
Initial weights and biases Randomly between −1 and 1

Target error value 0.0167
Learning rate Variable learning rate

Crystals 2022, 12, x FOR PEER REVIEW 6 of 16 
 

 

𝑅 =
∑ (𝑇𝑖 − 𝑇)(𝑌𝑖 − 𝑌)𝑛

𝑖=1

√∑ (𝑇𝑖 − 𝑇)2 ∑ (𝑌𝑖 − 𝑌)2𝑛
𝑖=1

𝑛
𝑖=1

 
(2) 

𝑀𝑆𝐸 =
1

𝑛𝑡
∑ ∑[𝑇𝑖(𝑚) − 𝑌𝑖(𝑚)]2 × 100%

𝑛

𝑖=1

 

𝑡

𝑚=1

 (3) 

where Ti is the experimental value, Yi is the predicted value and 𝑇 and 𝑌 are the mean 

values of all the experimental and predicted results, respectively. n denotes the number 

of outputs and t denotes the amount of training sets. The convergence to MSE of 0.0167 is 

established in 1000 epochs. 

Table 2. The ANN model training parameters. 

Parameters ANN Model 

Number of layers 3 

The number of neurons on the layers Input: 4, Hidden: 4~12, Output: 4 

Transfer functions 
Hidden layer: Tan-Sigmoid 

Output layer: Purelin 

Training method Levenberg–Marquardt (LM) 

Initial weights and biases Randomly between −1 and 1 

Target error value 0.0167 

Learning rate Variable learning rate 

 

Figure 5. The mathematical model of the ANN. 

2.3. Multivariate Regression Modeling 

Multivariate regression analysis is a statistical tool that can be used to analyze the 

effects of parameters, develop the input–output relationship and obtain the optimal pro-

cess parameter settings [17]. In this study, regression analysis is used to establish nonlin-

ear regression models for the outputs, namely grain size (D), ultimate tensile strength 

(UTS), elongation (El.) and microhardness (HV). 

The input variables are coded to reduce the difference in the scales of variables. Cod-

ing is performed for each input based on its minimum and maximum. The corresponding 

formula is as follows: 

𝑥𝑖 = 2
𝑋𝑖 − 𝑋𝑖0

∆𝑋𝑖
 (4) 

Figure 5. The mathematical model of the ANN.

2.3. Multivariate Regression Modeling

Multivariate regression analysis is a statistical tool that can be used to analyze the
effects of parameters, develop the input–output relationship and obtain the optimal process
parameter settings [17]. In this study, regression analysis is used to establish nonlinear
regression models for the outputs, namely grain size (D), ultimate tensile strength (UTS),
elongation (El.) and microhardness (HV).

The input variables are coded to reduce the difference in the scales of variables. Coding
is performed for each input based on its minimum and maximum. The corresponding
formula is as follows:

xi = 2
Xi − Xi0

∆Xi
(4)

where xi (i = 1, 2, 3, 4) is the coded input variable, Xi is the actual input variable, Xi0 is the
value of Xi at the center level and ∆Xi is the variation range in Xi. Regression models and
statistical analysis are established based on the data in Appendix A. The fitted second-order
polynomial regression model describing Y (output variables) expressed as a function of
input variables is listed below:

Y(x) = b0 +
4

∑
i=1

bixi +
4

∑
i=1

4

∑
j=i+1

bijxixj +
4

∑
i=1

biix2
i (5)
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where b0 is a constant, and bi, bii and bij (i, j = 1, 2, 3, 4) are the coefficients of linear, quadratic
and cross product terms, respectively. Furthermore, the coefficients are calculated using
the Least Squares method, which is a trial-and-error process. The statistical adequacy
of regression models is determined by the coefficient of determination (R2) and Fisher’s
criterion (F-test). The developed regression models can provide predictive models for
integrated optimization calculation of heat treatment process of the ZE41-xCa-ySr alloy
gearbox casting.

2.4. Integrated Computing Platform Building

The Integrated Computing Platform is constructed based on an integrated software
platform SiPESC (Software Integration Platform for Engineering and Scientific Computa-
tion) [28]. SiPESC adopts the “microkernel and plugin” architecture, achieving the dynamic
combination, extension and cooperative work of plugins. Therefore, the Integrated Com-
puting Platform integrates multiple software by combining the scripting language with
command line operation of simulation software, realizing the entire process simulation
from CAD model input to “process-microstructure/defect-property” simulation. In addi-
tion, many algorithms are embedded in the Integrated Computing Platform, such as BFGS,
SLP, SQP, MMA and GA algorithms, which are used to search for optimal parameter values.

In this work, the optimization calculation of composition and heat treatment processes
for the ZE41-xCa-ySr alloy gearbox casting is implemented using the Integrated Computing
Platform. Integrated Computing Platform batch calls MATLAB, achieving the optimization
calculation of “heat treatment process/composition—microstructure/property” for the
gearbox casting. However, before that, developed regression models need to be compiled
into a “m.” script file for MATLAB. Figure 6 presents the architecture diagram showing
“heat treatment process/composition-microstructure/property” integrated computing
system. The optimization calculation of heat treatment and composition parameters for
ZE41-xCa-ySr alloy gearbox casting involves the following steps:

1. Input the geometric model of ZE41 alloy gearbox casting.
2. Add design variables, such as Ca content (X1), Sr content (X2), aging temperature (X3)

and aging time (X4). Moreover, set initial values and calculation ranges of separate
variables, as shown in Table 3.

3. Add an external program for the Integrated Computing Platform to call. Here, it is
MATLAB.

4. Set the target variable. Set the target variable to UTS in order to obtain the optimal
design variables corresponding to the maximum UTS.

5. Select the optimization algorithm. The SQP (Sequential Quadratic Programming)
method is selected as the optimization algorithm, which is an iterative method for
nonlinear optimization.

6. Solve. The Integrated Computing Platform starts to make iterative optimization calcu-
lations and output each calculation result. Outputs include grain size (D), ultimate
tensile strength (UTS), elongation (El.) and microhardness (HV).

Table 3. Initial values and calculation ranges of separate variables.

Values Ca Content
(X1)/wt.%

Sr Content
(X2)/wt.%

Aging Temperature
(X3)/◦C

Aging Time
(X4)/h

Initial values 0.1 0.1 325 16
Calculation ranges 0–0.2 0–0.2 300–350 0–32
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3. Results and Discussion
3.1. Subsection

The aim of using the ANN model is to develop a prediction model which correlates
between the input variables such as Ca, Sr content, aging temperature and aging time, and
outputs such as D, UTS, El. and HV of the alloys. ANN Models are developed based on trial
and error by adjusting the number of neurons in the hidden layer until maximum R and
minimum MSE are obtained. The values of R and MSE for the different ANN models are
shown in Figure 7, respectively. The results suggest that the ANN model with 12 neurons
in the hidden layer obtains the maximum R value and the minimum MSE value, suggesting
that 12 hidden-layer neurons of the ANN model exhibit favorable performance. As a result,
the optimal ANN architecture is 4-12-4 (4 neurons in the input layer, 12 neurons in the
hidden layer and 4 neurons in the output layer).
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Figure 8 shows the performance of the optimal ANN model, indicating that the ANN
model prediction exhibits good correlation with experimental results in training (R = 0.997),
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testing (R = 0.999), validation (R = 0.995) and whole (R = 0.996) datasets. The training
convergence curve for the optimal ANN model is given in Figure 9. In the training stage
of the ANN model, it is observed that the MSE decreases with the increasing number of
iterations and reaches the error goal at about 120 epochs. Therefore, the well-trained ANN
model has robust generalization ability.
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Figure 10 presents the comparisons between the experimental and the predicted results
for the entire datasets, suggesting that the ANN model has an adequate approximation to
experimental values. Therefore, the microstructure and mechanical properties of the heat-
treated ZE41-xCa-ySr alloy can be predicted with high accuracy using this ANN model.
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Table 4 shows the predicted and experimental values of the BP neural network and
percentage error. The results show that, for all the input parameters, the neural network
projections agree very well with the experimental values. The percentage of error (P)
between the experimental and ANN results is within 5%. These error levels are acceptable.
As a consequence, the accuracy of the ANN model is validated. The percentage of error (P)
is quantified as follows:

Percentage o f error (%) = 100
(

Ti −Yi
Ti

)
(6)

where Ti is the experimental value and Yi is the predicted value, respectively.

Table 4. Predicted and experimental values of the BP neural network and percentage error.

Group 1 Group 2 Group 3

Inputs
Ca

Content
(wt.%)

Sr
Content
(wt.%)

Ta (◦C) ta (h)
Ca

Content
(wt.%)

Sr
Content
(wt.%)

Ta (◦C) ta (h)
Ca

Content
(wt.%)

Sr
Content
(wt.%)

Ta (◦C) ta (h)

Values 0.175 0.2 325 8 0.2 0.2 325 12 0.4 0.4 325 30

Outputs D/
µm

UTS
/MPa

El.
/% HV D/

µm
UTS

/MPa
El.

/% HV D/
µm

UTS
/MPa

El.
/% HV

ANN model predicted values 37.12 183.3 3.93 71.9 26.19 202.5 3.45 74.9 50.21 163.2 3.11 60.2

Experimental values 39.03 185.4 3.77 70.0 25.45 208.0 3.50 77.1 48.72 159.8 3.20 61.2

Percentage of error between the experimental and
ANN results

PD
(%)

PUTS
(%)

PEl.
(%)

PHV
(%)

PD
(%)

PUTS
(%)

PEl.
(%)

PHV
(%)

PD
(%)

PUTS
(%)

PEl.
(%)

PHV
(%)

4.89 1.13 −4.24 −2.71 −2.91 2.64 1.43 2.85 −3.06 −2.13 2.81 1.63
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3.2. Model Development Using Regression Model

Equations (7)–(10) present the multivariate regression models and their adequacy
validations. The coefficients of the terms suggest the influence of the variables on the
response variables. The coefficient of determination (R2) is adopted to test the fit of re-
gression models. For the model of D, the value of R2 is 0.747, which indicates that 74.7%
of the variability in the response (D) can be explained by the regression model. In ad-
dition, the F-test is used to determine whether all the terms of regression models are
statistically significant. If the calculated F ratio exceeds the critical F1−α, k−1, n−k value with
degrees of freedom (k−1) and (n−k), the terms are significant at the α level of significance
(α = 0.05, k is the number of terms, and n is the number of the experimental dataset). Con-
sequently, from Equations (7)–(10), we can see that developed models quantify the effects
of alloying elements and the aging process on the response variables, and the multivariate
regression models are capable of making accurate predictions. The regression models are
provided to the Integrated Computing Platform for “heat treatment process/composition-
microstructure/property” integrated optimization calculation.

D = 38.466 + 0.599x1 − 3.251x2 + 1.418x3 − 0.448x4 + 0.621x1·x3 + 4.137x1·x4 − 0.866x2·x3 − 1.549x2·x4 + 6.239x3
2 − 0.617x4

2

R2 = 0.747, F ratio = 2.398 > F0.95,10,19 = 2.378
(7)

UST = 193.052 + 3.231x1 + 3.22x2 − 2.209x3 + 11.777x4 + 2.929x1·x3 − 3.064x2·x3 − 1.577x2·x4 + 0.621x3·x4 − 11.143x3
2 − 22.021x4

2

R2 = 0.8, F ratio = 3.383 > F0.95,10,19 = 2.378
(8)

El. = 3.584− 0.069x1 − 0.269x2 + 0.205x3 − 0.579x4 + 0.233x2·x3 + 0.099x2·x4 − 0.204x3·x4 + 0.41x3
2 + 0.919x4

2

R2 = 0.724, F ratio = 2.445 > F0.95,9,20 = 2.393
(9)

HV = 40.869 + 32.815x1 − 31.78x2 − 1.012x3 + 2.401x4 + 32.553x1·x2 − 0.254x1·x3 − 0.748x1·x4 + 0.526x2·x3 − 0.189x2·x4 − 2.76x3
2 − 10.007x4

2

R2 = 0.905, F ratio = 7.392 > F0.95,11,18 = 2.377. (10)

where, x1 = 10X1 − 1, x2 = 10X2 − 1, x3 = 0.04X3 − 13, x4 = 0.0625X4 − 1.

3.3. Integrated Optimization Calculation

Based on the ICME paradigm, an Integrated Computing Platform for the “process-
microstructure-property” simulation is established, which can realize the property predic-
tion and process optimization. The Integrated Computing Platform first calls ProCAST
software to implement “casting process-microstructure/defect” simulation, and then calls
MATLAB software for “microstructure–property” calculation. Figure 11 shows the calcula-
tion interface of the Integrated Computing Platform. The Integrated Computing Platform
automatically iterates 76 times. Table 5 lists partial iterations of integrated optimization
calculation, suggesting that the optimized design variables correspond to the maximum
UTS, HV and minimum D. Table 6 shows the optimal solution corresponding to the 61st
iteration. Then, the optimized results are validated by the developed ANN model. The
comparison of results is also shown in Table 5. Through analyzing the obtained results, it
can be found that ANN predicted results coincide well with the integrated computing re-
sults. Therefore, the ANN model and multivariate regression models have high prediction
accuracy. Furthermore, the optimization of the heat treatment process and composition
based on property prediction is achieved through the Integrated Computing Platform.
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Table 5. Partial iterations of integrated optimization calculation.

No Ca/wt% Sr/wt% Ta/◦C ta/h D/µm UTS/MPa El./% HV

1 0.1 0.1115 330 5.18 38.362 193.999 3.516 36.728
2 0.1001 0.1115 330 5.82 38.364 194.002 3.517 36.764
3 0.1 0.1116 330 20.8 38.357 194.001 3.516 36.693
4 0.1 0.1115 330 20.821 38.360 193.997 3.517 36.723
5 0.1 0.1115 330.03 20.8 38.366 193.990 3.517 36.725
6 0.10004 0.1114 329.97 20.795 38.357 194.009 3.516 36.738
7 0.10012 0.1116 329.921 20.787 38.349 194.028 3.515 36.754

. . .
57 0.17852 0.2 321.801 29.705 36.022 193.817 3.168 59.771
58 0.19992 0.2 321.373 29.028 37.104 193.238 3.434 59.014
59 0.17448 0.2 321.882 10.322 35.879 200.019 3.161 67.539
60 0.17439 0.2 321.884 10.230 35.876 200.020 3.160 67.488
61 0.17457 0.2 321.884 11.271 35.879 200.025 3.160 67.921
62 0.17439 0.198 321.884 10.291 35.883 200.013 3.161 67.503
63 0.17439 0.2 321.884 10.113 35.877 200.017 3.161 67.483
64 0.17439 0.2 321.905 12.201 35.876 200.019 3.161 67.488
65 0.17439 0.2 318.189 12.261 36.092 199.798 3.128 67.426
66 0.17439 0.2 320.036 12.291 35.950 199.969 3.142 67.472
67 0.17439 0.2 321.103 10.361 35.899 200.013 3.152 67.485
68 0.17439 0.2 321.716 10.736 35.879 200.020 3.158 67.487
69 0.17457 0.2 321.716 12.267 35.883 200.025 3.158 67.811
70 0.17439 0.199 321.716 12.271 35.887 200.014 3.159 67.503
71 0.17439 0.2 321.716 10.311 35.881 200.018 3.158 67.483
72 0.17439 0.2 321.738 10.291 35.879 200.020 3.159 67.488
73 0.17345 0.2 321.716 10.671 35.865 199.993 3.159 66.875
74 0.17392 0.2 321.716 10.311 35.872 200.007 3.159 67.181
75 0.17420 0.2 321.716 11.361 35.877 200.014 3.159 67.358
76 0.17439 0.2 321.716 10.360 35.879 200.020 3.158 67.487
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Table 6. The optimal solution and results of model validation.

Input Variables of the Optimal Solution (Maximum UTS, HV
and Minimum D) Output Variables through Integrated Computing Platform

Ca/wt.% Sr/wt.% Ta/◦C ta/h D/µm UTS/MPa El./% HV

0.17 0.2 322 11

35.88 200.03 3.16 67.92

ANN model predicted results

36.41 194.74 3.13 68.79

4. Conclusions

1. The ANN model was developed using the BP algorithm. The optimal architecture
(4-12-4) processed the maximum R value and the minimum MSE value. The ANN
model was capable of predicting the microstructure and mechanical properties of
heat-treated ZE41-xCa-ySr alloys with high reliability.

2. Multivariate regression analysis was employed to model the microstructure and
mechanical properties of the heat-treated ZE41-xCa-ySr alloys. The adequacy of the
models was tested by the coefficient of determination and Fisher’s criterion. All the
nonlinear regression models were statistically adequate, which provided mathematical
models for Integrated Computing Platform.

3. Based on SiPESC software, the Integrated Computing Platform was established by
combining the scripting language with command line operation of the simulation soft-
ware, realizing “process-microstructure/defect-property” simulation. An Integrated
Computing Platform called MATLAB achieved the optimization calculation of “heat
treatment process/composition—microstructure/property” for the ZE41-xCa-ySr al-
loy gearbox casting. The optimum aging temperature of the ZE41-0.17Ca-0.2Sr alloy
is 322 ◦C, and the corresponding aging time is 11 h.
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Appendix A

Table A1. The experimental results.

Coded Input Variables Actual Input Variables Actual Output Variables

x1 x2 x3 x4
X1: Ca
(wt.%)

X2: Sr
(wt.%)

X3: Ta
(◦C)

X4: ta
(h)

Y1: D
(µm)

Y2:
UTS

(MPa)

Y3:
El.
(%)

Y4: HV

Center point (0) 0.1 0.1 325 16 - - - -

Range ∆Xi 0.2 0.2 50 32 - - - -
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Table A1. Cont.

Coded Input Variables Actual Input Variables Actual Output Variables

x1 x2 x3 x4
X1: Ca
(wt.%)

X2: Sr
(wt.%)

X3: Ta
(◦C)

X4: ta
(h)

Y1: D
(µm)

Y2:
UTS

(MPa)

Y3:
El.
(%)

Y4: HV

High level (1) 0.2 0.2 350 32 - - - -

Low level (−1) 0 0 300 0 - - - -

No.

1 −1 −1 −1 −1 0 0 300 0 48.40 130.20 6.20 54.00 ± 1.22
2 −1 −1 −1 −0.75 0 0 300 4 49.08 169.30 5.34 66.64 ± 2.13
3 −1 −1 −1 −0.375 0 0 300 10 49.15 163.90 4.48 67.57 ± 1.54
4 −1 −1 −1 1 0 0 300 32 39.29 170.70 5.11 65.48 ± 2.01
5 −1 −1 0 −0.6875 0 0 325 5 45.49 170.50 5.70 67.00 ± 1.87
6 −1 −1 0 −0.375 0 0 325 10 34.29 189.00 3.80 67.57 ± 1.94
7 −1 −1 0 1 0 0 325 32 40.01 168.70 3.20 64.40 ± 2.34
8 −1 −1 1 −0.625 0 0 350 6 53.14 153.30 4.86 63.22 ± 2.01
9 −1 −1 1 −0.5 0 0 350 8 47.83 158.00 4.63 64.25 ± 2.84

10 −1 −1 1 1 0 0 350 32 46.93 168.90 4.96 61.72 ± 1.17
11 1 −1 −1 −1 0.2 0 300 0 36.70 131.60 5.60 59.00 ± 2.18
12 1 −1 −1 −0.75 0.2 0 300 4 49.59 162.70 4.77 67.10 ± 1.31
13 1 −1 −1 −0.25 0.2 0 300 12 50.09 158.70 4.67 67.65 ± 1.94
14 1 −1 −1 1 0.2 0 300 32 47.64 186.10 5.30 64.39 ± 2.00
15 1 −1 0 −0.6875 0.2 0 325 5 41.86 185.20 5.64 66.90 ± 2.31
16 1 −1 0 −0.25 0.2 0 325 12 42.98 194.40 3.45 74.25 ± 1.94
17 1 −1 0 1 0.2 0 325 32 51.93 170.40 3.18 63.50 ± 1.76
18 1 −1 1 −0.625 0.2 0 350 6 48.25 171.20 4.78 63.30 ± 2.74
19 1 −1 1 −0.375 0.2 0 350 10 53.16 175.20 5.16 64.50 ± 2.03
20 1 −1 1 1 0.2 0 350 32 51.76 175.56 4.56 61.40 ± 1.79
21 1 1 −1 −1 0.2 0.2 300 0 31.30 144.10 4.90 61.00 ± 2.11
22 1 1 −1 −0.75 0.2 0.2 300 4 38.15 187.70 4.10 67.30 ± 1.84
23 1 1 −1 −0.25 0.2 0.2 300 12 42.98 173.30 3.45 69.50 ± 2.31
24 1 1 −1 1 0.2 0.2 300 32 49.39 179.30 3.08 63.90 ± 1.71
25 1 1 0 −0.6875 0.2 0.2 325 5 41.19 176.20 3.49 66.90 ± 2.54
26 1 1 0 −0.25 0.2 0.2 325 12 46.01 208.00 3.50 77.10 ± 1.90

. . . . . .
117 1 1 0 1 0.2 0.2 325 32 41.74 173.80 5.17 64.80 ± 1.57
118 1 1 1 −0.625 0.2 0.2 350 6 40.15 170.32 4.91 65.10 ± 2.09
119 1 1 1 −0.375 0.2 0.2 350 10 42.40 167.40 4.72 68.90 ± 2.27
120 1 1 1 1 0.2 0.2 350 32 45.14 190.70 3.54 63.20 ± 1.68

Table A2. Nomenclature.

Symbol Implication Units

MSE Mean squared error -
R The correlation coefficient -
D Grain size µm

UTS Ultimate tensile strength MPa
El. Elongation %
HV Microhardness -
ta Aging time s
Ta Aging temperature ◦C
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