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Abstract: The application of biodegradable alloys in orthopedic implants has gained widespread
attention globally. Magnesium alloys with controllable degradation rate and suitable mechanical
properties have been regarded as potential orthopedic implant material. In this paper, a Mg-1Zn-xSn
(x = 0, 1.0, 1.5, 2.0 wt.%) ternary alloy was designed and its performance was investigated. Compared
with the Mg-1Zn alloy, the Mg-1Zn-xSn alloys showed enhanced mechanical properties and in vitro
degradation performance. Above all, the extruded Mg-1Zn-1.0Sn alloy exhibited an extremely low
corrosion rate of 0.12 mm/y with a low hydrogen release of 0.021 mL/cm2/day, which can be
attributed to the hydrogen release suppression effect caused by Sn and SnO2 formation in the surface
of the alloy. The cytotoxicity of the Mg-1Zn-1.0Sn alloy was evaluated by the cell counting kit-8
(CCK-8) method, the results of which show that its cytotoxicity grade is zero, and the MC3T3-E1 cells
spread well on the alloy surface. The findings in this paper demonstrated that Mg-1Zn-1.0Sn is a
potential candidate for biodegradable material in the orthopedic implant field.

Keywords: magnesium alloys; mechanical properties; degradation; cytocompatibility

1. Introduction

Magnesium (Mg) alloy is a promising degradation material in the orthopedic implant
field. One of its key advantages is the mechanical compatibility with natural bone. For
instance, its low elastic modulus (E = 41–45 GPa) and density (1.74–1.84g/cm3) are a
good approximation to those of natural bone (E = 3–20 GPa and density = 1.8–2.1 g/cm3),
which will effectively avoid the stress shielding effects [1]. Furthermore, Mg ions are
common metabolites in the human body, with a daily consumption of 250–300 mg/day, and
naturally stored in bones [2]. The biocompatibility and the moderate mechanical properties
make Mg alloys outstanding as materials for orthopedic implants. Unfortunately, the
main disadvantage of Mg alloys as the degradation material is their rapid degradation
during service.

In order to overcome this disadvantage, various techniques, including surface modifi-
cation, structure optimization, and composition design, have been developed to control
the biological degradation rate [1–3]. Surface modification is the most direct way to im-
prove the surface coating and degradation rate of Mg alloys; however, coating damage
often causes rapid corrosion followed by unpredictable mechanical collapse and high local
concentration of released metallic ions [4,5]. Regarding the optimization of the structure,
amorphous and porous structure have been attempted to regulate the Mg degradation.
However, their other performance characteristics should be further improved. For exam-
ple, porous structure is beneficial for decreasing the degradable rate, but the mechanical
properties are weakened compared to the bulk materials [6,7]. Up to now, the composition
design of Mg alloys has been attracting the majority of researchers because it can inte-
grate almost all the benefits above. The recently developed Mg-Li-based alloy exhibited
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satisfying mechanical properties and a low degradation rate. The reduced corrosion rate
is attributed to the rapid formation of a stable self-healing protective carbonate-rich film
(Li2CO3) and an underlying compact Li2O/MgO layer on the Mg matrix, which seems like
a natural self-repairing surface modification process [8]. Hence, the selection of alloying
elements is critical. Currently, pure Mg, Mg-Al [9–11], Mg-RE [12–14], and Al- and/or
RE- free alloys [15–17] are the four major groups of biodegradable Mg alloys. Al- and
RE-containing alloys usually present high strength and high corrosion resistance. However,
the released metallic ions affect the cells of the surrounding tissue. Some in vivo studies [3]
showed that AZ91D and LAE442 alloys presented the risk of causing nerve toxicity, and RE
elements were controversial for being easily deposited in the brain. Therefore, biologically
safe elements with low content are desirable for inclusion among biomedical Mg alloys for
clinical use.

Zinc (Zn) is a frequently used alloying element in Mg alloys. The addition of Zn could
reduce the corrosion rate and improve the mechanical strength because it can form solid
solution and change the performance of Mg alloys [18]. During the thermal treatment,
it has the ability to transform impurities such as Iron (Fe), Silicon (Si), and Nickel (Ni)
into harmless intermetallics, thereby reducing the corrosion rate [19,20]. Additionally, as a
nutrient essential to the human body, low content of Zn [21] was proved to be biologically
safe. Mg-1Zn alloy with a microstructure of single solid solution presented a good biocom-
patibility and less hydrogen gas release than many other binary Mg alloys in simulated
body fluid [22,23]. However, the mechanical properties and degradation rate should be
further regulated for practical clinical application [24,25]. Tin (Sn) is also an essential trace
element in the human body with a high solid solubility in Mg alloys at eutectic temperature.
Solid solution Sn will improve the electrode potential of Mg matrix to improve the corrosion
resistance. According to previous reports for Mg-1Sn alloy, it exhibited a good in vitro
biocompatibility [21]. Moreover, the addition of Sn to Mg alloys improved their strength
and creep properties at elevated temperatures, due to the solid solution strengthening and
the high melting point of Mg2Sn phase [26]. The corrosion rate of Mg-xSn alloys was signif-
icantly decreased by increasing the volume ratio of solid solution Sn, while the increased
Mg2Sn phase accelerated the corrosion process [27]. However, the effect of low content
Sn on the in vitro degradation behavior of Mg-1Zn alloys is still not fully understood. In
order to obtain an optimal Mg alloy with low content of alloying elements for orthopedic
implants, Sn was selected to design Mg-1Zn-xSn (x = 0, 1.0, 1.5, 2.0 wt.%) ternary alloys in
the current work. The microstructure, mechanical properties, degradation behavior, and
in vitro cytocompatibility were systematically investigated, and the influence mechanism
of Sn on the degradation rate was preliminarily clarified.

2. Materials and Methods
2.1. Materials Preparation

High purified Mg (99.98 wt.%), Zn (99.99 wt.%), and Sn (99.99 wt.%) with a proper
ratio were melted in an induction furnace under Ar gas protection. The prepared Mg-1Zn-
xSn (x = 0, 1.0, 1.5, and 2.0 wt.%) alloy ingots 80 mm in diameter were then extruded into a
bar with a ratio of 25, at a temperature of 300 ◦C. The samples cut from the extruded bars
were successively ground to 1400 grit by SiC paper, ultrasonically cleaned in deionized
water and ethanol, and dried in cold air. For reproducibility, three replicates were prepared
for each test.

2.2. Microstructure Characterization

The samples were polished first, and then etched by a mixed solution with saturated
picric acid, 2 mL acetic acid, and 8 mL ethanol for microstructure observation [25]. The
microstructure of the samples was measured by X-ray diffraction (XRD, Rigaku D/MAX-
2500PC, Tokyo, Japan) with Cu Kα radiation, and scanning electron microscopy (SEM,
VegaIILMU, Brno, Czech Republic), equipped with an energy dispersive X-ray spectrometer
(EDS, Oxford Instrument INKAx-sight; Oxford Instrument, Oxford, UK).
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2.3. Mechanical Properties

According to ASTM E8/E8M-13a, the as-extruded bars with a diameter of 16 mm were
processed into tensile samples 2 mm in gauge thickness, 5 mm in gauge width, and 10 mm
in gauge length. The compression samples were prepared, according to ASTM E9-19, with
a diameter of 5 mm and a height of 10 mm, respectively. The tension and compression tests
were conducted on a SANS CMT5105 testing machine at room temperature with a strain
rate of 10−3 s−1 and 1 mm·min−1, respectively.

2.4. Degradation Properties
2.4.1. In Vitro Degradation by Electrochemical Measurements

Electrochemical measurements to evaluate the in vitro degradation behavior were
carried out at 37 ◦C in phosphate buffer solution (PBS). The samples were embedded in
self-curing denture acrylic, and the exposed area was 0.785 cm2 (10 mm in diameter). These
samples were used as working electrodes in a three-electrode system, in which a platinum
plate was used as counter electrode, and a saturated calomel electrode (SCE) was used
as reference electrode. In order to get a relatively stable state of the system, 30 min of
the open-circuit potential was measured at first before the electrochemical measurements.
The potentiodynamic polarization curve was fitted by CView software (Wuhan CorrTest
Co. Ltd., Wuhan, China). Meanwhile, the Nyquist plot of the electrochemical impedance
spectroscopy (EIS) test was fitted by ZView software (Wuhan CorrTest Co. Ltd., Wuhan,
China) [28].

2.4.2. In Vitro Degradation by Immersion Tests

The immersion tests were conducted in PBS at 37 ◦C according to ASTM-G31-72
by hydrogen release collection and mass loss method [29]. The samples with the size of
10 × 10 × 7 mm were immersed in PBS solution according to a ratio of 20 mL/cm2. In
this test, the pH value of the solution was measured by a pH meter (PHS-3C pH Meter).
Hydrogen was collected in an inverted funnel and recorded by a scaled burette. After
7 days, corrosion products formed on samples were cleaned in a mixed solution containing
200 g/L of chromic acid and 10 g/L of AgNO3. The surface morphologies were examined
by SEM. XRD was employed to determine the phase composition of corrosion products.
The average corrosion rate CR (mm/y) can be calculated by the following Equation (1):

CR = (K×W)/(A× T×D) (1)

In which K is a constant 8.76 × 104, W is the mass loss (g), A is the exposed surface
area in solution (cm2), T is the time of immersion test (h), and D is the density of the sample
(g/cm3).

2.5. Cytocompatibility

Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12; Hyclone, Logan, UT, USA)
with 10% fetal bovine serum and MC3T3-E1 cells at passage 3–4 were used for cell culture.

2.5.1. Cytotoxicity Assays and Cell Spreading

DMEM/F12 containing 10% FBS was used as the extraction medium, with a surface
area/extraction medium ratio of 1.25 cm2/mL. In this experiment, the extract solution of
pure Mg (as control) and Mg-1Zn-1.0Sn was serially diluted to 10%, 30%, 50%, and 100%
concentration in a humidified atmosphere with 5% CO2 at 37 ◦C (DMEM/F12 as a negative
control). A cell counting kit-8 (CCK-8; Beyotime) was used to evaluate cell viability. A
200 µL cell suspension was seeded in a 96-well plate with a cell density of 2 × 104 viable
cells/mL per well. After 72 h, 20 µL CCK-8 solution was added to each well, and then
the plate was incubated for 4 h. The spectrophotometrical absorbance of the plates were
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measured at 450 nm using a microplate reader (Thermo Fisher Scientific, Waltham, MA,
USA). The relative growth rate (RGR) was calculated according to Equation (2):

RGR =
ODtest

ODcontrol
× 100% (2)

Cell spreading was evaluated by observing the cell microfilaments of the MC3T3-E1
cells. After co-culturing with the extraction of Mg-1Zn-1.0Sn alloy for 24 h, the cells were
washed three times with PBS, and fixed with 3.7% paraformaldehyde for 15 min at room
temperature. Then, 0.1% Triton X-100 was used to permeabilize the cells for 5 min. After
being washed with PBS again, the cells were stained with rhodamine-phalloidin (50 µg/mL;
Sigma-Aldrich, Shanghai, China) at room temperature for 30 min. Then, after being washed
three times, the cells were stained with 4, 6-diamidino-2- phenylindole (0.1 µg/mL; Sigma-
Aldrich, Shanghai, China) for 15 min. Finally, the cell microfilament cytoskeleton and
nucleus were observed (cells cultured in DMEM/F12 as a control) by CLSM using a LSM800
confocal Laser microscopy (Carl Zeiss, Oberkochen, Baden-Wurttemberg, German).

2.5.2. Cell Attachment

The Mg-1Zn-1.0Sn alloy and pure Mg (as control) were co-cultured with cells in a
24 plate. The cell density of each well was 2 × 104 viable cells per cm2. After co-culturing
for 24 h, the cells on the samples were carefully washed with PBS three times and fixed
with 2.5% glutaraldehyde for 15 min. After that, the cells were dehydrated in a series of
ethanol concentrations from low to high (30%, 50%, 70%, 90%, and 100% for 15 min each
time). Finally, all the samples were dried, sputter-coated with gold, and observed by SEM.

3. Results and Discussion
3.1. Microstructure Analysis

Figure 1 presents the SEM-backscattered electron photos of the extruded Mg-1Zn-xSn
alloys. It can be seen that the alloys exhibited α-Mg solid solution with small dispersed
white particles of different quantities. The unequal-sized grains vary from about 5 µm
to 30 µm in the Mg-1Zn alloy, and the average grain size determined by image analysis
(Image-Pro plus 6.0 software, Media Cybernetics, Maryland, USA) is approximately 25 µm.
A very few tiny white particles with sizes from 0.6–1 µm are characterized by EDS (as seen
in Table 1), which demonstrates particle I in Figure 1a is composed of Mg, O, Si and Fe,
implying that Zn was totally dissolved into the Mg matrix as solid solution.

As for Sn-containing alloys, the grain boundaries are difficult to expose, and some
grains of about 4~10 µm are confirmed in the Mg-1Zn-1.0Sn alloy. As widely reported, the
grain size of Mg alloys would decrease with increasing Sn, due to the refinement effect of
the Sn element [30–32]. For example, the average grain sizes of Mg-4Zn-1.5Al-xSn (x = 0,
0.5, 1.0, 2.0, 3.0) alloys are 9.9 µm, 7.7 µm, 6.2 µm, 4.7 µm, and 5.5 µm, respectively [32].
Therefore, it is concluded that the grain size might decrease by increasing Sn content.
In addition, the small white particles exhibit a tendency to grow bigger and multiply,
compared with Mg-1Zn alloy. It is certain that there is no Sn-containing ternary phase
formed in the Mg-Zn-Sn alloy system [33]. The formation of the intermetallics is related to
the electronegative difference between different elements [34]. Therefore, Mg2Sn phase is
preferred to form in the Mg-Zn-Sn alloy because of the highest electronegative difference
between Mg and Sn elements. However, the white particles II, III, and IV shown in
Figure 1b–d are mainly composed of Mg, O, Sn, Si, and Fe, indicating that Mg2Sn phases
always combine with impurities such as Fe and Si, to purify the Mg matrix. Figure 2 shows
the XRD result of the investigated alloys. It can be observed that the Mg-1Zn alloy is
composed of α-Mg and dispersed impurities, while Sn-containing alloys consist of α-Mg
and dispersed Mg2Sn phase, combining with some impurities. With increases in added
Sn, the intensity of diffraction peaks is enhanced, especially for Mg2Sn. This implies that
the amount of Mg2Sn phase increases with the increasing addition of Sn, and the peaks
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of Mg2Sn phase can only be found in Mg-1Zn-1.5Sn and Mg-1Zn-2.0Sn alloy within the
detection limit of XRD.

Table 1. Chemical compositions of the white particles in Mg–1Zn-based alloys (wt.%).

Alloy Points
Element (wt.%)

Mg O Sn Si Fe Total

Mg-1Zn I 11.97 3.96 2.77 81.30 100
Mg-1Zn-1.0Sn II 71.54 15.56 4.34 2.17 6.39 100
Mg-1Zn-1.5Sn III 56.10 22.94 9.78 1.25 7.14 100
Mg-1Zn-2.0Sn IV 49.49 25.65 21.79 3.07 - 100
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3.2. Mechanical Properties

The tensile stress–strain curves (Figure 3a) and compression stress–strain curves
(Figure 3b) demonstrated that the current alloys have a good mechanical property. It is
shown in Table 2 that the yield strength (YS) and ultimate tensile strength (UTS) of all the
specimens are higher than 100 MPa and 200 MPa, respectively. Clearly, the addition of
1.0Sn results in an increase of the strength and elongation. When the content of Sn increases
to 1.5, the strength begins to decrease slightly. This phenomenon might be associated with
the phase composition and distribution. The phase composition characterized by XRD
shows that Mg2Sn phase is the only second phase determined. The crystal lattice constants
of the specimens calculated by Jade 6.5 are displayed in Table 3, which shows that the
values of a, b, and c of these four alloys all deviated from that of pure Mg (PDF 35-0821)
to some extent. The lattice constant deviation means the lattice distortion. The greater
the parameters’ deviation from Pure Mg, the greater the lattice distortion. Table 3 shows
that the lattice parameters’ deviation increases with the incremental addition of Sn content,
which means that the lattice distortion increases actually contribute to the enhancement
of strength. However, as the Sn content reached 1.5, the average grain size increased
(Figure 1), which resulted in the weakening of the grain strengthening effect and a decrease
in the mechanical properties. In spite of this, the present alloys show similar mechanical
properties with natural bone [35] and the extruded AZ31 alloys [36], as shown in Table 2.
AZ31 alloys have been investigated widely for orthopedic applications because of the good
mechanical and corrosion properties. It is obvious that the Mg-Zn-Sn alloys have a similar
strength and simultaneously have a higher elongation compared to the commercial AZ31
alloy. Additionally, it can be seen from Table 2 that the yield strength (YS) and ultimate
tensile strength (UTS) of 1.0Sn alloy are improved compared with the Mg-1Zn alloy, which
is attributed to the solid solution strengthening and dispersed Mg2Sn precipitates. Since
Mg-1Zn-1.0Sn and Mg-1Zn-1.5Sn alloys present good tensile performance, the compression
tests were also performed, with results listed in Table 2. The results demonstrate the weak
tension–compression yield asymmetry of these two alloys, implying that it can withstand
different load modes such as tension and compression during their practical work.

Table 2. The mechanical properties of Mg-Zn-Sn alloys, bone, and AZ31 extruded alloys.

Alloys
Tensile Properties

Ref
Compression Properties

TYS (MPa) UTS (MPa) ε (%) CYS (MPa) UCS (MPa) E (%)

Cortical bone 35–283 1.07–2.10 [34] 164–240
AZ31 extruded 185 264 10.5 [35]

Mg-1Zn 100 ± 3 229 ± 10 17.4 ± 1.2 Present — — —
Mg-1Zn-1.0Sn 118 ± 5 259 ± 14 20.2 ± 1.8 Present 96 ± 5 376 ± 16 16.7 ± 1.4
Mg-1Zn-1.5Sn 115 ± 4 249 ± 11 27.0 ± 2.1 Present 95 ± 4 367 ± 17 31.4 ± 1.6
Mg-1Zn-2.0Sn 112 ± 6 245 ± 12 23.1 ± 1.9 Present — — —

Table 3. Lattice constants of the specimens calculated from XRD patterns.

Specimens a (Å) b (Å) c (Å) D (nm)

Mg (PDF35-0821) 3.21 3.21 5.21 —
Mg-1Zn 3.17 3.17 4.78 79.6

Mg-1Zn-1.0Sn 3.19 3.19 4.99 61.7
Mg-1Zn-1.5Sn 4.10 4.10 5.32 65.1
Mg-1Zn-2.0Sn 4.20 4.20 5.37 69.5
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3.3. In Vitro Degradation Properties

The potentiodynamic polarization curves of the studied alloys are shown in Figure 4a.
Compared to the Sn-free alloy, the Sn-containing alloys display higher cathodic current
density but lower anodic current density. After Sn addition, the increased number of
second phases leads to the increase of cathodic hydrogen evolution sites, resulting in higher
cathodic current density of the Sn-containing alloys. For the high hydrogen evolution, the
overvoltage of Sn can suppress hydrogen release to some extent [36], and the cathodic
currents of all the alloys are approximately at the same level. Considering the anodic
branch, the alloys present a passivation tendency below the breakdown potential (Eb),
which indicates protective films formation above the surfaces of the samples. The related
electrochemical parameters are shown in Table 4. From these data, it is clear that the effect
of Sn addition on the corrosion current density of the alloys is two-sided. Compared with
the Sn-free alloy, 1.0 wt.% Sn addition makes the corrosion potential (Ecorr) increase from
−1.54 V to −1.50 V, and corrosion current density (Icorr) decrease from 1.5 × 10−4 A·cm−2

to 2.24 × 10−5 A·cm−2. However, as the Sn content increased to 1.5 wt.%, the Ecorr starts
to decrease, while the Icorr starts to increase. Furthermore, the Nyquist plots (Figure 4b)
show three arcs: a capacitive loop at high frequency, a capacitive loop at medium frequency,
and an inductive arc at low frequency. The Bode plots are given in Figure 4c,d, respectively.

Table 4. Parameters of the alloys fitted from potentiodynamic polarization curves.

Alloys βa βc Icorr (A/cm2) Ecorr (V)

Mg-1Zn 70.67 88.07 1.50 × 10−4 −1.54
Mg-1Zn-1.0Sn 93.73 119.03 2.24 × 10−5 −1.50
Mg-1Zn-1.5Sn 97.30 107.64 2.79 × 10−5 −1.51
Mg-1Zn-2.0Sn 70.10 65.27 3.12 × 10−5 −1.52

The Mg-1Zn alloy with the smallest capacitive loop at medium frequency indicated the
formation of the least protective film. In high and medium frequency regions, the largest
capacitive loop radius of the Mg-1Zn-1.0Sn alloy implies the highest impedance value and
the lowest corrosion rate, which is consistent with the results of polarization curves. In the
equivalent circuit (Figure 4e): Rs is the solution resistance; Rf is the film resistance; CPE
is the associated constant phase element in parallel, and it has a capacitance (designated
for example as C1,T) and associated phase angle (designated for example as C1,P); Rt is
the charge transfer resistance; C is the electrical double-layer capacitor in parallel with the
resistive element; and L is the associated inductive element in parallel. These parameters
are fitted by ZView and listed in Table 5. It is clear that Mg-1Zn-1.0Sn with the largest arc
diameter has the largest value of Rt and Rf, implying the best corrosion resistance. Figure 4f
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illustrates the corresponding physical model, of which there is a partly protective film, and
it tends to become more protective with increasing immersion time before the film breaks.

Table 5. Parameters of the circuit model fitted from the Nyquist plot.

Samples Mg-1Zn Mg-1Zn-1.0Sn Mg-1Zn-1.5Sn Mg-1Zn-2.0Sn

Rs (Ωcm2) 15.4 5.339 12.44 17.89
Rt (Ω/cm2) 158.4 584 577.3 308.3
C (F/cm2) 0.0013412 2.3287 × 10−5 4.6788 × 10−7 0.00087195

Rf (Ω/cm2) 494.5 1021 906.3 864.6
CPE1-T (F/cm2) 5.0867 × 10−5 0.00026117 0.00026391 3.5368 × 10−5

CPE1-P (F/cm2) 0.82682 0.6338 0.6253 0.83465
L (H/cm2) 427.4 3084 3419 1669
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Figure 4. Electrochemical tests results: potentiodynamic polarization curves (a); EIS spectrum-
Nyquist plot (b), |z|-logf plot (c), and θ-logf plot (d) of the alloys; equivalent circuit model (e) and
physical model (f). RE = reference electrode, WE = working electrode.
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Figure 5a,b present the hydrogen release and the weight loss rates of the investi-
gated alloys, respectively. All the results show the same trend in the following order:
Mg-1Zn > Mg-1Zn-2.0Sn > Mg-1Zn-1.5Sn > Mg-1Zn-1.0Sn. In general, the corrosion rate
decreased with the incremental addition of Sn, while it increased as Sn exceeded 1.5.
Among the alloys, Mg-1Zn-1.0Sn shows the smallest hydrogen evolution volume of
0.021 mL/cm2/day and the lowest degradation rate of 0.12 mm/y within seven days
of immersion. The pH variation during seven days of immersion in Figure 5c indicates
that the pH increase for Sn-containing Mg-1Zn alloys is much slower than that for the
Mg-1Zn alloy. Since both Mg-1Zn-1.0Sn and Mg-1Zn-1.5Sn alloys exhibit a very low degra-
dation rate, the results of hydrogen evolution volume are compared with some typical
biodegradable Mg alloys reported in the literature, as shown in Figure 5d. Compared with
the Mg-1Zn-(0.2, 0.8) Sr alloys [37] and HP Mg, WZ21, and AZ91 alloys [38], the alloys
presented in this work possess a prominent advantage of lower in vitro degradation rates.
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Figure 5. Immersion test results: hydrogen evolution (a), corrosion rate (b) by weight loss, and pH
variation (c) of solution for Mg−1Zn−xSn ternary alloys; degradation rate comparison (d) with some
typical alloys.

As a reduction in the degradation rate is always associated with the characteristics
of the formed corrosion products, samples after seven days immersion were measured
by XRD (Figure 6). It can be seen that the products are mainly Mg(OH)2. Additionally,
MgSnO3 appears in Sn-containing alloys. To clarify the formation process of the corrosion
products, the Mg-1Zn-1.0Sn alloy was soaked in PBS for 1h, and then examined by Multi-
function X-ray photoelectron spectrometer (XPS) (ESCALAB 250Xi 18000383). It confirmed
the presence of magnesium in the form of hydroxide and oxide (Figure 7). Moreover, the
existence of SnO2 demonstrates that Sn participated in the formation of protective film.
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Since SnO2 is difficult to dissolve in aqueous solution and could suppress the corrosion
proceeding, SnO2 can react with dissolved Mg ions to form MgSnO3, which can improve
the compactness of the surface products, and further played the role of corrosion barrier to
resist the corrosive ions.
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Figure 7. XPS survey spectra (a) and detailed spectra of Sn 3d (b) of corrosion products for Mg-1Zn-
1.0Sn after immersion in PBS at 37 ◦C for 1 h.

As reported, Sn addition can not only increase the compactness of the surface film
but also enhance the corrosion resistance of the Mg matrix [39]. Thus, the controlled
degradation rate can be attributed to this combined effect. To understand the influence
of Sn addition more clearly, the naked appearance of corroded alloys after seven days
immersion was examined. Figure 8a–d present the macro-surface appearance of alloys
without corrosion products. Serious localized corrosion occurred in Mg-1Zn and Mg-1Zn-
2.0Sn alloys. On the contrary, the other two alloys show a relatively even surface with
scarcely any traces of corrosion. The corresponding magnified photos shown in the insets
revealed the details of the corroded sites. Inside the corroded sites, honeycomb cavities
of Mg-1Zn and Mg-1Zn-2.0Sn alloys could provide the channels for the corrosive ions
and help the metal dissolution. Conversely, no obvious visible pits can be found on the
surface of Mg-1Zn-1.0Sn and Mg-1Zn-1.5Sn alloys, which are characterized by uniform
superficial corrosion.
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Figure 8. Corroded surface of alloys with corresponding magnified views in the insets, after seven
days’ soak by SEM: Mg-1Zn (a), Mg-1Zn-1.0Sn (b), Mg-1Zn-1.5Sn (c) and Mg-1Zn-2.0Sn (d).

In the present study, micro-galvanic corrosion influenced by second phases is slight, as
most of the Zn and Sn dissolved in the matrix. The dissolved Sn increased the compactness
of the Mg substrate, which provided no direct pathway for medium transportation, and
made the alloy less prone to pitting pits. In addition, the corrosive ions were prevented
from interpenetrating so that pitting corrosion was hindered. Thus, the corrosion pits
left on the surface of Mg-1Zn-1.0Sn and Mg-1Zn-1.5Sn are superficial. Moreover, the
propagation of corrosion traces is also related to cathode reaction. As one of the limited
elements of high hydrogen evolution overvoltage, Sn could inhibit cathode hydrogen
evolution [39]. Therefore, the cathode hydrogen evolution of Sn-containing Mg-1Zn alloys
was further suppressed compared with the Mg-1Zn alloy. That is to say, the corrosion
pits of Sn-containing alloys propagated at a lower velocity than those of the Mg-1Zn alloy.
Finally, the pitting corrosion developed into a localized corrosion in Mg-1Zn alloys, but
was converted to a uniform corrosion mode by a proper amount of Sn addition. When the
Sn content reached 2.0 wt.%, the coarse and increased second phases (Figure 1d) would act
as sources of cracks and the initial sites of cathode reaction resulting in the susceptibility
to localized corrosion. Up to this state, the detrimental effect overwhelmed the corrosion
inhibition effect, and the biodegradation performance deteriorated inversely.

Generally, the corrosion mechanism of magnesium alloy in aqueous solution can be
described by the following reactions [10]:

anodic reaction : Mg→ Mg2+ + 2e− (3)

cathodic reaction : 2H2O + 2e− → H2 + 2OH− (4)
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The result of the reactions is the formation of Mg(OH)2, which will dissolve slightly as
the solubility product (Ksp) is 1.8 × 10−11 [40]. The existence of chloride ions (Cl−) in PBS
solution will accelerate the dissolution of Mg(OH)2 by forming soluble MgCl2. Thus, Mg2+

would be released and the concentration of OH− increased. The XRD results (Figure 6)
show that Mg(OH)2 and MgSnO3 are found in the Sn-containing alloys. It is demonstrated
that Sn participated in the corrosion product film formation by XPS (Figure 7). According
to the Pourbaix E-pH diagram of Sn-H2O [39], tin hydride (SnH4) might form first. It was
reported that SnH4 can be formed in the 3.5% NaCl solution with the Mg-xSn alloy [41].
SnH4 can react with water to form Sn(OH)4 or SnO2 (Equations (5) and (6)). In alkaline
solution, Sn(OH)4 would adopt the form of Sn(OH)6

2− and easily combine with Mg2+ to
form MgSnO3 through the reaction (7) [42]. The existence of MgSnO3 could significantly
improve the compactness of the corrosion products on the surface of the Sn-bearing alloys
due to the chemical stability of magnesium stannate compounds [43].

SnH4 + 4H2O→ Sn(OH)4 + 3H2 (5)

SnH4 + 2H2O→ SnO2 + 3H2 (6)

MgSn(OH)6 → MgSnO3 + 3H2O (7)

It has been proposed that biomaterials with a corrosion rate lower than 0.5 mm/y are
promising candidates for biodegradable material to ensure the recovery of bone tissue [44].
The Mg-1Zn-1.0Sn alloy, with a weight loss rate of only 0.12 mm/y, which is far below the
critical value, might be potentially outstanding in orthopedic applications in the future.

3.4. Cytocompatibility

The interactions between cells and biomaterials are tested by cells co-culture. Figure 9
shows the cell viability of preosteoblasts (MC3T3-E1) co-cultured in the negative control
group, pure Mg (as comparison), and the Mg-1Zn-1.0Sn alloy extraction medium for 72 h,
respectively. It is obvious that both samples exhibited higher cell viability than the negative
control group, and the cytotoxicity was of grades 0–1 [45], demonstrating that they could
be safe and worthwhile for further in vivo investigation. In fact, Mg alloys extractions
are always diluted to 10% for cytotoxicity testing [46], and the 10% extraction shows
cytotoxicity of grade 0 herein. Figure 9 reveals the cell microfilaments of MC3T3-E1 cells
co-cultured with 10% pure Mg, Mg-1Zn-1.0Sn alloy extraction, and the blank control group.
The images of cell immunofluorescence were observed by CLSM. The cells co-cultured
with 10% extraction exhibit a confluent morphology, and cells are linked to each other with
more actin filaments, whereas a monolayer and dispersive morphology with fewer actin
filaments is exhibited in the blank control. The quantity of cells in the extractions was larger
than in the blank control. All this demonstrates that the Mg-1Zn-1.0Sn alloy presents a
good cytocompatibility and cell spreading.

A moderate concentration of Mg2+ and a low release of Zn2+ could benefit the growth
and development of cells [47,48]. The direct cell attachment and proliferation can be
assessed by cells adhesion on samples. MC3T3-E1 cells were seeded on pure Mg and
Mg-1Zn-1.0Sn alloy, and were examined by SEM (Figure 10) after 24 h culture. Scarcely
any cells except a small one designated by a red square can been found in Figure 10a. In
Figure 10b, the amplified view of the red square in Figure 10a shows a small, shriveled, and
deformed cell marked by a red arrow. It can be attributed to the local alkalization caused
by the fast degradation of Mg. On the other hand, several distinct, large cells attach well
on the Mg-1Zn-1.0Sn alloy in Figure 10c. One of the cells is squared in red and enlarged
in detail in Figure 10d. It grows flat, and has normal forms on the surface, with distinct
pseudopod designated by red arrows, which indicates that this alloy has good affinity to
cells and is favorable for cells attachment and growth [49–52].
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4. Conclusions

The microstructure, mechanical properties, and in vitro degradation properties of
as-extruded Mg-1Zn-based alloys were investigated systematically in the present study.
The in vitro degradation tests showed that the Mg-1Zn alloy suffered severe localized
corrosion, while alloys with low Sn content presented flat surfaces with little corrosion
traces. Although Sn addition in Mg-1Zn alloys decreased the degradation rate, largely
by converting the pitting corrosion to a uniform corrosion mode, excessive addition of
Sn (above 1.5) conversely deteriorated the degradation performance due to the formation
of coarse Mg2Sn phases. As a new low-alloying magnesium alloy, Mg-1Zn-based alloys
display a controllable degradation rate. More specifically, the Mg-1Zn-1.0Sn alloy, with
the ultimate tensile strength of 259 MPa, yield strength of 118 MPa, and elongation of
20.2%, exhibited a very low degradation rate of 0.12 mm/y, and a good cytocompatibility
to MC3T3-E1 cells, and has a prospective future in orthopedic applications.
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