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Abstract: This study aims to prepare a stir-cast EV31A magnesium alloy and investigate the effects
of the T4 condition (solid solution strengthening) and T6 condition (solid solution strengthening
cum age hardening) on the phases, microstructure, mechanical properties, and fractography. The
solid solution at 520 ◦C for 8 h allows the Rare-Earth Elements (REE) to dissolve in the Mg matrix,
but the solubility is limited by the presence of Zn. This phenomenon is responsible for the T4 heat-
treated alloy’s strengthening, which raises the UTS to 212 MPa. The formation of new grains within
the grains causes an increase in grain boundaries and dislocations during the T6 heat treatment
process, increasing the strength (UTS) of the EV31A alloy to 230 MPa. In all three test conditions, the
fractography of tensile samples revealed a cleavage-ductile/mixed mode fracture. As expected, the
fine-grained T6 sample exhibited superior strengthening at the expense of ductility.

Keywords: stir casting; magnesium alloy; EV31A; mechanical properties; heat treatment

1. Introduction

Magnesium (Mg) and its alloys have recently received increased attention as an al-
ternative to conventional materials in aerospace and automotive applications due to their
excellent strength-to-weight ratio, damping capacity, and electrical and thermal conduc-
tivity [1,2]. Despite the fact that Mg has a low density and has potential for a variety of
applications, its use is limited due to its poor mechanical properties, high degradation rate,
poor ductility, and formability in atmospheric conditions [3]. Adding alloying elements [4],
thermo-mechanical treatments, and surface modifications [5,6] can improve Mg’s mechani-
cal and degradation properties [7–10]. Mg has a high affinity for oxygen, making it difficult
to process at high temperatures [11,12]. Mg and its alloys can be processed more easily if
they are processed in an inert gas atmosphere. Casting processes produce 90% of Mg-related
products, but their application is limited. To broaden its application, mechanical properties
at room and elevated temperatures must be evaluated [13]. Stir casting is another viable
and adaptable method for preparing Mg alloy [14–16]. Rare-Earth Elements (REE) alloying
in Mg improves the mechanical properties of the alloy system [17–19]. REE-Mg has been
found to have superior mechanical and corrosion resistance compared to other Mg alloys,
according to [20]. The service life of a Mg alloy can be extended through additional heat
treatment by varying the temperature and holding time [21]. It has also been reported that
alloying Nd and Gd increases Mg castability and precipitate strengthening. According to
another study, adding Gd to the Mg-Nd-Zn system increases age-hardening responses [22].
Previously, the mechanical properties of sand-cast, sintered, and heat-treated EV31A alloys
were investigated. In general, the mechanical behavior of the cast alloy is greatly influenced
by the microstructure, casting defects, and heat-treatment conditions [23,24]. There have
been very few studies reported on the properties of Elektron 21 or EV31A for a variety of
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sand-casting applications in the past ten years, and as a result, the topic has not been thor-
oughly investigated. However, the primary focus of the research shift is on the processing
and characterization of a yttrium (Y)-based magnesium alloy. However, a yttrium-based
magnesium alloy, on the other hand, is difficult to work with in the foundry and can be
quite expensive. As a result, the focus was renewed on developing a yttrium-free magne-
sium alloy [25,26]. A magnesium alloy containing Rare-Earth elements (REE), known as
EV31A, is the goal of this research, which uses the stir-casting method to produce the alloy
as well as to study the microstructural and mechanical properties of the alloy in both its
as-cast and heat-treated T4 and T6 conditions.

2. Materials and Methods
2.1. Material Preparation

The alloy for the study was made using the stir-casting method. An induction furnace
with an argon (Ar) atmosphere was used for the melting process. Alloy ingots of magne-
sium (Mg), neodymium (Nd), gadolinium (Gd), zinc (Zn), and zirconia (Zr) were heated
to 650 ◦C in a furnace together. The details of the elemental composition are illustrated
in Table 1. On a stirrer, the molten alloy was rotated at a speed of 600 revolutions per
minute (RPM) for five minutes at a temperature of 800 ◦C. As previously demonstrated,
pouring molten alloy at 720 ◦C produces the cast block of EV31A with dimensions of
245 mm × 215 mm × 30 mm [27]. First is solid solutionizing at 520 ◦C for 8 h, followed
by hot water quenching at around 60 to 80 ◦C, then age-hardening at 200 ◦C for 16 h,
followed by air cooling. Table 2 shows the heat-treatment conditions followed to prepare
test specimens. Angelini et al. discovered that a solutionizing temperature of 520 ◦C is
optimal for avoiding incipient melting and localized melting along grain boundaries. The
Mg alloy system exhibits a positive strengthening effect at a temperature of 200 ◦C for up
to 16 h before becoming stable for 48 h [28]. The stated solutionizing temperature, aging
temperature, and time were used for this study.

Table 1. Elemental composition of EV31A Mg alloy.

Elements Mg Nd Gd Zn Zr

Wt. (%) 95.3 ± 1.3 3 ± 0.5 1 ± 0.5 0.2–0.5 0.2–0.5

Table 2. Details of heat-treatment processes.

Heat Treatment Process

T4 Condition T6 Condition

Temperature
(◦C)

Time
(Hours)

Temperature
(◦C)

Time
(Hours)

Solid Solutionizing 520 8 520 8

Water Quenching 60 to 80 1 min 60 to 80 1 min

Age-hardening - - 200 16

2.2. Phase and Microstructural Analysis

A 10 mm × 10 mm × 2 mm sample was ground using a series of SiC abrasive papers
with grit sizes of 400, 600, 800, 1000, 1200, 1500, and 2000, followed by polishing in alumina–
ethanol slurry. A picric–acidic solution (10 mL distilled water, 0.6 g picric acid, 5 mL acidic
acid, and 10 mL ethanol) was used to etch the sample.

The phase constituent of the EV31A alloy was identified using an X-ray diffractometer
(XRD) (Bruker, D8- Advance P-XRD) with CuKα (1.5406) radiation at a scanning interval
of 20◦ to 90◦. The linear intercept method was used to manually measure the size of the
grains (ASTM E112-10). The microstructure of the different specimens was observed with
an inverted optical microscope (Carl Zeiss and Axio Lab Al) and using a Field Emission-
Scanning Electron Microscope (FE-SEM) (Thermo Fisher Scientific FEI Quanta 250 FEG)
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equipped with Energy Dispersive Spectroscopy (EDS) (Oxford). The sample was prepared
through ion milling and examined using a transmission electron microscope (TEM).

2.3. Mechanical Properties and Fractography

Wire-cut Electrical Discharge Machining was utilized in the preparation of the test
specimens for evaluating the material’s mechanical properties (EDM). A 20 mm × 10 mm
× 5 mm sample size was cut and mounted in a hot mounting machine for microhardness
analysis. The Vickers micro-hardness (HV) was measured using the micro-hardness testing
machine (Matsuzawa mmt-x) with a 50 gf load and a 15 s dwell time. The tensile test
was performed in a hydraulic universal testing machine (Instron 8801) with an ASTM E8
standard sample and a crosshead speed of 1 mm/s. The Charpy impact test was performed
on an ASTM E23 sample (FIT 300D) in an impact-testing machine. The tensile and impact
samples used to conduct tensile and Charpy impact tests are shown in Figure 1. Three test
specimens were analyzed under the same test conditions to validate the results.
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Figure 1. ASTM standard specimens for (a) Tensile test—ASTM E08; (b) Impact test—ASTM E23.

3. Results and Discussion
3.1. Density

Based on the Archimedes principle, the relative density of the EV31A Mg alloy is
determined to be 97.4%. This decrease in relative density is primarily due to the formation
of pores during the stir-casting process, which reduces the density by 2.6%. The porosity
of the EV31A alloy can be attributed to REE agglomerations and gas entrapment [29]. In
addition, the porosity gives rise to the initiation and propagation of cracks in the cast
product [30]. The porosity of 4% is acceptable in cast products, as per standards [29,31].

3.2. Phase Analysis

XRD analysis reveals the presence of different phases in EV31A alloy. Six different
phases, Mg12Nd, Mg41Nd5, α-Mg, REE-Zn (Gd-Zn), Zn-Zr phase (Zn2Zr3), and Zn, are
observed in Figure 2. The Zn2Zr3 phase is identified, and Zn is detected in the as-cast
sample from which Zr is dissolved during T4 heat treatment. Mg and Zr have the same
crystal structure (hexagonal close-packed (HCP)) and lattice parameters, which causes grain
nucleation and high dissolution of Zr in Mg when compared to Zn [32,33]. Furthermore,
because Zn is the grain-refiner in the EV31A alloy system, the solubility of the Zr phase
is proportional to the percentage of Zn [34,35]. The Mg41Nd5 phase is wholly dissolved
due to a solid solution. The Mg12Nd is difficult to dissolve in a solid solution because of its
tetragonal structure [22]. The eutectic phases in EV31A are significantly dissolved during
the T4 heat-treatment process. The Zn content in the Mg-REE alloy system increases the
effectiveness of precipitate hardening by restricting the solubility of Nd in Mg [35,36]. The
peak intensity of Mg12Nd, α-Mg, and Gd-Zn phases in the T4 heat-treated sample is lesser
than in the as-cast sample, which reveals the effectiveness of the heat-treatment process.
The report says that the Nd has solid solubility of 1.87 wt.% in Mg at 520 ◦C; this is also
the reason for the Mg-Nd eutectic phase in the T4 heat-treated sample [22]. The Zn2Zr3, Zr
phases, Gd-Zn, and Mg12Nd peaks seen in the T6 heat-treated sample are very similar to
the phases seen in the T4 heat-treated sample. Furthermore, at 548 ◦C, Gd solubility in Mg
alloy is 23.49 wt.%, which falls exponentially as the temperature rises. Furthermore, Gd
is 23.49 wt.% soluble in Mg alloy. At 548 ◦C, it decreases exponentially with temperature.
Its solubility at 200 ◦C is 3.82 wt.%. Therefore, a Gd-based Mg alloy is an ideal system
for age-hardening [37,38]. The prolonged heating at 200 ◦C leads to decomposition and
replacement of the γ phase [22].
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Figure 2. XRD patterns of EV31A in as-cast (black); T4 (red); T6 (blue) conditions.

3.3. Microstructure Analysis

The grain size of the samples is measured manually by the linear-intercept method
using optical microscopy images, as shown in Figure 3a–c. The average grain size of as-cast,
T4, and T6 heat-treated samples are 43.67 ± 3.31 µm, 67.51 ± 1.82 µm, and 37.16 ± 2.02 µm,
respectively. The heat treatment of as-cast EV31A Mg alloy increases the grain size; further
aging of the sample controls grain growth and decreases grain size. During the quenching
process, the formation of new intermetallic phases inside the grain is noted in Figure 3b,
which leads to the formation of new grain boundaries during the aging process, resulting
in grain size reduction. Figure 3d–f shows an FE-SEM image in the Back-Scattered Elec-
tron mode (BSE) that reveals the microstructure of the as-cast and heat-treated samples.
Figure 3d depicts the presence of α-Mg trapped in the as-cast samples’ eutectic phase.
Because grain boundaries are more chemically reactive than grains, alloying elements (im-
purities) are agglomerated along them. Regardless of phase-in, grain growth is observed
in the T4 sample. The continuous growth of strain-free grains at elevated temperatures
(520 ◦C for 8 h) resulted in grain growth at the expense of smaller grains. The eutectic
phase in the as-cast sample was dissolved after 8 h of heating at 520 ◦C, and needle-shaped
discontinuous eutectic phases were observed, as shown in Figure 3e. Heating samples
caused precipitation within the coarser grains to form after the solution’s heat treatment to
an intermediate temperature of 200 ◦C for 16 h. As shown in Figure 3f, the age-hardening
process significantly reduced the grain size through precipitation and segregation of the
eutectic phase along the grain boundary.
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Figure 3. (a–c) Optical micrographs; (d–f) FE-SEM micrographs of EV31A; (g–i) Precipitates in
studied alloy—TEM analysis. (a,d,g) As-cast; (b,e,h) after T4 heat-treatment; (c,f,i) after T6 heat-
treatment. “A” point in Figure 3 (g–i) represents the precipitates, and the white rectangle in Figure 3
(h) and (i) represents dislocations.

Our previous study [27] shows the selected area diffraction (SAED) pattern under
three test circumstances. First, the SAED pattern of the as-cast sample with miller indices of
304 and 602 indicates the GdZn and Mg12Nd phases, respectively. The presence of Mg-Zn
and GdZn phases in the T4 heat-treated sample and the existence of GdZn, Zr, and Mg-Zn
phases in the T6 sample are also confirmed. Finally, Figure 3g–i depicts the test samples’
precipitates and dislocations. From the TEM analysis, it is understood that the dislocations
are incorporated only after the heat-treatment processes, and dislocation density is high
in the case of the T6 heat-treated alloy. As shown in Figure 4a–f, the EDS mapping of
the aged sample confirms the existence of REE along the grain boundaries. In addition,
the EDS study’s spot analysis reveals quantitative details about the composition of the
alloy materials in that specific location, as shown in Figure 4g,h. It also confirms that Nd’s
existence is higher along the grain boundaries than with Gd.
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3.4. Mechanical Properties Analysis

The microhardness of the stir-cast sample was significantly higher than that of the sand-
cast and sintered EV31A alloy [23,24]. The microhardness of the as-cast EV31A Mg alloy is
83 ± 8.38 HV0.05, and it is 9.64% lesser than the T4 sample. The increase in microhardness
is due to homogeneity improvement and secondary phase redistribution [24]. The age-
hardened sample shows an 18.07% and 7.69% increase in microhardness compared with
the as-cast and T4 heat-treated alloy. Tensile properties of the EV31A alloy are estimated
using UTM with a crosshead speed of 1 mm/min. For the as-cast T4 and T6 samples,
yield strength (YS) and ultimate tensile strength (UTS) increase while ductility decreases,
respectively. The as-cast sample shows a yield strength (YS) of 130 ± 5.4 MPa compared
with the YS of T4 and T6 heat-treated samples, which are increased by 10% and 33.08%.
The UTS of the T6 heat-treated sample is 230 ± 8.7 MPa, which is 19.8% and 8.49% higher
than the as-cast and T4 heat-treated samples. As-cast and T4 heat-treated alloy ductility is
28.57% and 16.67% higher than the T6 heat-treated sample, 5 ± 0.52%.

By measuring the energy absorbed by the alloy, the Charpy impact test is used to
determine the impact toughness of the EV31A alloy. Compared to the as-cast alloy, which
has an impact strength of 3.7 ± 0.21 J, the T4 and T6 heat-treated alloys show an 18.92% and
43.24% increase in impact strength, respectively. Table 3 shows the mechanical properties
of the EV31A alloy. The as-cast EV31A Mg alloy, trapped α-Mg, and Eutectic phases
such as Mg12Nd and Mg41Nd5 are segregated along grain boundaries; increasing the
stress concentration in that vicinity is responsible for uneven deformation and premature
failure [23,39]. Only secondary phase and grain boundary strengthening mechanisms
contribute to stir-cast EV31A alloy [40]. Because Nd is less soluble in the alloy system,
solution heat treatment has a more substantial effect [35,36]. The presence of Zn in the alloy
system reduces solubility, which also corresponds to the Hume-Rothery conditions. The
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more significant the difference in radius between Mg and REE solute atoms, as well as
the higher concentration of REE solute, the better the mechanical properties of the EV31A
alloy [41]. The grain boundary and solid solution strengthening mechanisms correspond to
the T4-heated EV31A alloy strengthening [40]. During the aging process, the supersaturated
solid solution’s controlled decomposition to precipitation occurs in the Mg alloy system,
resulting in a relatively larger nominal grain size. The smaller the grain size, the greater
the surface area to volume ratio, and the greater the number of grain boundaries and
dislocations per unit volume [22,42]. According to the Mg-Nd phase diagram [37,43], the
solubility of Nd at the temperature of 200 ◦C is nearly equal to zero, so the effect of solid
solution strengthening is ignored in the case of age hardening. Thus, only grain-boundary
and precipitate-strengthening mechanisms are responsible for the strengthening behavior
of the age-hardened EV31A alloy.

Table 3. Mechanical properties of EV31A Mg alloy.

Sample ID Grain Size
(µm)

Hardness
(HV0.05)

YS
(MPa)

UTS
(MPa)

Ductility
(%) Impact (J)

As-cast 44 ± 3.3 83 ± 8.4 130 ± 5.4 192 ± 10.3 7 ± 0.7 3.7 ± 0.2

T4 68 ± 1.8 91 ± 5.5 143 ± 6.7 212 ± 9.1 6 ± 0.5 4.4 ± 0.5

T6 37 ± 2.0 98 ± 4.1 173 ± 1.4 230 ± 8.7 5 ± 0.5 5.3 ± 0.5

3.5. Fractography

Figure 5a–c depicts and identifies the characteristics of brittle fractures—such as
tear ridges, cleavage planes, and intergranular fractures—and ductile fractures, such
as dimples. The cleavage fracture is associated with low-energy brittle fractures and
produces bright, reflective facets. Even though the dimples are visible in all three conditions,
the material’s ductility decreases slightly as strength and hardness increase. Because of
localized stress concentration, the eutectic compounds in the as-cast EV31A alloy are prone
to failure. Furthermore, cracks in the eutectic phase spread through the soft grain interior
by connecting micro-cracks, giving rise to intergranular cracks [40]. In the case of the
T4 heat-treated sample, the crack initiation and propagation phenomenon is difficult to
assess compared with the as-cast alloy because the dissolution of eutectic phases (Mg12Nd,
Mg41Nd, GdZn) and the formation of non-continuous needle-shaped eutectic phases give
resistance to crack propagation. However, the phenomenon gives rise to the brittle mode of
fracture and intergranular cracks, which is why the T4 heat-treated alloy has more brittle
fracture features than the as-cast alloy. In addition, the T4 heat-treated sample has a larger
cleavage plane, whereas the T6 sample has more tear ridges. Even though the identified
fracture features in the T6 sample differ, the fracture pattern is the same as in the T4 heat-
treated alloy. Pores are indicated by the dimples in the fracture surface, as illustrated in
Figure 5. The coalescence of micropores and the subsequent plastic deformation of the
intersections between the pores result in dimples [44]. The EV31A alloy fractured in a
mixed or cleavage-ductile mode in all three test conditions. A previous study [16] reported
the same fracture mode.
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4. Conclusions

In this study, the EV31A Mg alloy is prepared using the stir-casting process, and the
effect of stir casting and heat treatment (in both the T4 and T6 conditions) is investigated.
The secondary phase and the grain boundary strengthening are both essential mechanisms
that contribute to the strength of the alloy after it has been cast. Both the presence of non-
continuous needle-shaped REE-rich zones on the grain boundaries of the T4 heat-treated
alloy and the presence of supersaturated solutions are responsible for the enhancement of
the material’s mechanical properties. The T6 heat-treated samples shows the promising
mechanical properties of HV0.05 = 98 ± 4.1 HV; YS = 173 ± 1.4 MPa; UTS = 230 ± 8.7 MPa;
Ductility = 5 ± 0.5%; IS = 5.3 ± 0.5 J with a grain size of 37 ± 2.0 µm. The grain boundaries,
Zn2Zr3 precipitates, and dislocations that are responsible for the strengthening of the T6
heat-treated EV31A alloy are increased as a result of the segregation of REE along the grain
boundaries and the formation of new grains within the grains. Regardless of the conditions
(as-cast; T4; T6), the fractography analysis revealed that the EV31A alloy displays a mixed-
mode fracture. Eutectic phases influence the initiation, propagation, and failure of cracks
in the EV31A alloy. The stir-casting method, followed by T6 heat treatment, is a potentially
useful approach to producing EV31A alloy.
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