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Abstract: The stationary solution of Smoluchowski’s coagulation equation with injection is found
analytically with different exponentially decaying source terms. The latter involve a factor in the form
of a power law function that plays a decisive role in forming the steady-state particle distribution
shape. An unsteady analytical solution to the coagulation equation is obtained for the exponentially
decaying initial distribution without injection. An approximate unsteady solution is constructed
by stitching the initial and final (steady-state) distributions. The obtained solutions are in good
agreement with experimental data for the distributions of endocytosed low-density lipoproteins.
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1. Introduction

The notion of coagulation is typically applied to the description of the merging process
between two particles when they come into contact with each other and tend to form a
single particle. Such a fusion occurs when the relative speed of the particles is sufficiently
small with respect to each other. This relative speed can be formed due to various physical
mechanisms operating in the system of interacting particles. These include, for example,
Brownian motion, gravitational sedimentation (settling) and shear flow as well as their
combined effects [1,2].

The process of particle coagulation is particularly important to be taken into ac-
count when the system contains a sufficient number of particles capable to interact, and
the distances between them are not very large. This is usually the case in the latter
stages of a phase transformation in systems of various physical nature (see, among others,
Refs. [1–9]) ranging from aerosols in the atmosphere [1,2] and crystals in supercooled liq-
uids and supersatureted solutions [6,7] to endosomes inside living cells [8–10]. Fundamen-
tal papers on particle coagulation theory were the works of Marian Smoluchowski [11,12]
dealing with coagulation in hydrosols. However, it should be specifically noted that the
basic principles remain the same in other particle coagulation systems. Smoluchowski’s
particle coagulation equation is very useful for describing a large variety of aggregation
processes in physics, chemistry and biology, but a closed-form solution can often be difficult
to obtain. In the relatively few particular cases, an analytical solution can be found (see,
among others, [1,2,13,14]).

In this paper, we consider Smoluchowski’s coagulation equation with injection [3–5,10],
using different exponentially-decaying source terms. The latter involve a factor in the form
of a power law and sub-linear functions. The main aims are to find a stationary solution
of the coagulation equation with injection and analyse the impact of source terms on the
steady-state particle distribution shape. In addition, we construct non-stationary approxi-
mate solutions to Smoluchowski’s coagulation equation in particular cases and compare
the theory with experimental data on cargo distributions in the endosomal network [10].
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Let us especially note that the coagulation theory developed here can be applied
to the final stage of phase transformations in various metastable and non-equilibrium
systems. In addition, this theory can be used to study the transition of these systems from
initial and intermediate states to final states that are characterized by the simultaneous
occurrence of such processes as Ostwald ripening, coagulation, and disintegration of
aggregates. Such processes, for example, include the growth of inorganic and organic
single crystals in supercooled melts and supersaturated solutions [15–18], as well as the
production of a cellular glass–ceramic, which is based on clay and sludge generated by the
coagulation–flocculation process [19].

2. Smoluchowski’s Coagulation Equation with Injection

We start with the Smoluchowski’s coagulation equation with injection [3–5,10]

∂n
∂t

=
1
2

x∫
0

K(x− x′, x′)n(x′, t)n(x− x′, t)dx′

−n(x, t)
∞∫

0

K(x, x′)n(x′, t)dx′ + I(x)− γn(x, t).

(1)

Here n(x, t) is the particle volume (particle size) distribution function such that
n(x, t)dx represents the number of particles whose individual volumes (sizes) are in the
interval (x, x + dx) (x and t stand for the volume (size) and time variables). We consider the
coagulation process when new particle agglomerates appear at the rate I(x). The agglom-
erate removal is described by the linear term γn(x, t). For example, this term describes
the removal of product crystals when considering the bulk crystal growth in supercooled
melts and supersaturated solutions [20,21]. In living cells [10], early endosomes carrying
cargo disappear from the system by undergoing conversion to late endosomes at the rate
γ. The rate at which a particle of volume x coagulates with another particle of volume
x′ is described by the collision-frequency function K(x, x′). This function depends on
coagulation mechanism (e.g., Brownian coagulation, shear coagulation, coagulation of
particles falling under gravity, mixed coagulation mechanisms [1,2]). In this paper, we
use the frequently used approach of constant collision frequency function, K = const. Let
us note that in the steady-state conditions, the theory developed below can be applied to
different coagulation mechanisms by averaging K(x, x′) over all possible combinations of x
and x′ [22]. Introducing the dimensionless variables

τ = Kt, κ =
γ

K
, (2)

we rewrite Equation (1) as

∂n
∂τ

=
1
2

x∫
0

n(x′, τ)n(x− x′, τ)dx′ − n(x, τ)λ(τ) +
I(x)

K
− κn(x, τ), (3)

where λ(τ) is the total number of particles of all sizes

λ(τ) =

∞∫
0

n(x′, τ)dx′. (4)
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Let us note that

J =
∞∫

0

xI(x)dx (5)

determines the total particle influx into newly originating agglomerates.
To obtain the stationary solution to the coagulation equation with injection and de-

scribe the experimental data of observed cargo distributions inside living cells [10,23], the
authors of papers [10,24] used an exponentially decaying source function I∗ exp(−x/x0),
where I∗ is a constant. In this paper, we consider the case when an exponentially decaying
source function involves the factor in the form of power law function xν−1:

I(x) = I∗xν−1 exp
(
− x

x0

)
, (6)

where x0 is a typical amount of particle volume in newly appearing agglomerates, and ν is
constant. We consider such an exponentially decaying source function (6) because of its
importance for intracellular nanoparticle transport [24]. Note that the case with the source
described by a gamma function was analysed numerically [10]. It was shown that the exact
form of the injection function does not affect the shape of the distribution for large x.

The integro-differential Equation (3) with the initial condition n(x, 0) = n0(x) de-
scribes the evolution of the particle volume distribution function n(x, τ). An important fact
is that at present there is no known method for finding an exact analytical solution to this
equation due to its complexity. Only methods for constructing approximate solutions are
known (see, among others, [2,25]). In what follows, we find an exact analytical solution to
Equation (3) in the steady-state case.

3. Exact Analytical Solutions for Steady-State Coagulation with Injection

The purpose of this section is to find the stationary solution of Smoluchowski’s coagu-
lation Equation (3). The stationary state occurs as a result of the balance between the source
term I(x)/K, the removal term κn and two integral terms describing coagulation. As long
as the integral (5) describing the total particle influx is finite, we expect the system reaches
the steady-state. The general conditions under which the stationary solution for (3) exists
will be considered in further publications. In this study, we use Formula (6) for which the
integral (5) is obviously finite due to the exponentially decaying term. Note that one can
also use the power-law decaying function for the source term such that J in (5) is finite.

Omitting the dependence on the time variable τ, let us write the steady-state Smolu-
chowski’s coagulation equation in the form of

1
2

x∫
0

ns(x′)ns(x− x′)dx′ − ns(x)λs +
I(x)

K
− κns(x) = 0, (7)

where subscript s denotes the steady-state case.
Equation (7) can be solved using the integral Laplace transform method with respect

to variable x. In the Laplace transform space, Equation (7) reads as

ñ2
s (p)
2
− (λs + κ)ñs(p) +

Ĩ(p)
K

= 0, (8)

where p is the Laplace transform variable, Ĩ(p) is the Laplace image of function I(x), and

ñs(p) =
∞∫

0

ns(x) exp(−px)dx, λs =

∞∫
0

ns(x)dx.
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Note that the total number of particles λs = ñs(0) in steady-state conditions follows
from (8) at p = 0 and represents the solution of a quadratic equation

λs = −κ +

√
κ2 +

2 Ĩ(0)
K

, (9)

where Ĩ(0) equals to I(p) at p = 0.
Taking this into account, we come to the convergent solution of quadratic Equation (8)

ñs(p) = a−

√
a2 − 2 Ĩ(p)

K
, a = λs + κ. (10)

This solution determines the steady-state particle volume distribution function in the
Laplace space. This solution shows that ñs(p) depends on p through the Laplace image
of the source function Ĩ(p). In other words, the source function I(x) completely defines a
behaviour of the volume distribution function ns(x).

Applying the Laplace transform to the source function (6), we rewrite Equation (10) as

ñs(p) = a

[
1−

√
(p + b)ν − q(ν)/a2

(p + b)ν/2

]

=
q(ν)

a(p + b)ν/2
[
(p + b)ν/2 +

√
(p + b)ν − q(ν)/a2

] ,
(11)

where b = x−1
0 , q(ν) = 2I∗Γ(ν)/K, and [26]

xν−1 exp(−bx)→ Γ(ν)
(p + b)ν

, Re ν > 0, Re p > −Re b. (12)

3.1. Integer Values of the Parameter ν

The simplest case for an exponentially decaying source function, which was used in
Ref. [24] to describe experimental data of Wang et al. [23] on gold nanoparticle distribution
inside endosomes, follows from (6) at ν = 1 and leads to

ñs(p) =
q(1)

a
[

p + b +
√
(p + b)(p + a′)

] , a′ = b− 2J
a2Kx2

0
. (13)

Now applying the inverse Laplace transform to expression (13) (see 22.95 in [26]), we
obtain ns(x) at ν = 1

ns(x) =
J

aKx2
0

exp

[
−
(

1
x0
− J

a2Kx2
0

)
x

][
I0

(
Jx

a2Kx2
0

)
+ I1

(
Jx

a2Kx2
0

)]
, (14)

where I0 and I1 stand for the modified Bessel functions.
The simplest case that takes into account the decay of the source function at x → 0

corresponds to ν = 2. In this case, expression (11) gives

ñs(p) =
q(2)

a(p + b)
[

p + b +
√
(p + b)2 − q(2)/a2

]
=

q(2)

a(p + b)
[

p + a1+b1
2 +

√
(p + a1)(p + b1)

] ,
(15)
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where

a1 = b +
√

q(2)
a

, b1 = b−
√

q(2)
a

.

Now inverting (15) as the convolution of two functions

(p + b)−1 and
[

p +
a1 + b1

2
+
√
(p + a1)(p + b1)

]−1

using the tabulated transforms (21.4 and 22.96 in [26]), we arrive at ns(x) at ν = 2

ns(x) =

√
2I∗
K

exp
(
− x

x0

) x∫
0

ξ−1 I1

(√
q(2)
a

ξ

)
dξ, (16)

where q(2) = 2I∗/K.
A sharper decay of the source function at x → 0 occurs at ν = 3. In this case,

expression (11) leads to

ñs(p) =
a
p3

1

[
p3

1 −
√

p6
1 − µ6

]
= a−

a
√

p2
1 − µ2

p3
1

√
p2

1 + µ2 − p1µ
√

p2
1 + µ2 + p1µ

= a

(
F̃(p1) f̃3(p1)

p3
1

− F̃(p1)

p2
1

+
f̃3(p1)

p1

)
,

(17)

where

p1 =
√

p + b, µ =

(
q(3)
a2

)1/6

, f̃3(p1) = p1 −
√

p2
1 − µ2,

F̃(p1) = f̃1(p1) f̃2(p1) + f̃1(p1)
(

p1 −
µ

2

)
+ f̃2(p1)

(
p1 +

µ

2

)
− µ2

4
,

f̃1(p1) =

√
(p1 + µ/2)2 + 3µ2/4− (p1 + µ/2),

f̃2(p1) =

√
(p1 − µ/2)2 + 3µ2/4− (p1 − µ/2).

Now applying the inverse Laplace transform to expression (17) using the tabulated
transforms (21.162, 22.165, 22.166 in [26] as well as 2, 3 and 29 in [27]) and their convolutions,
we finally obtain ns(x) at ν = 3

ns(x) =
∞∫

0

ξS(ξ)
2
√

πx3/2 exp
(
− ξ2

4x
− x

x0

)
dξ, (18)

where

S(x) = a

 x∫
0

R0(ξ)R1(x− ξ)dξ − R0(x) + R1(x)

, R1(x) = µ

x∫
0

I1(µξ)

ξ
dξ,

R2(x) =
x∫

0

P(ξ)(x− ξ)dξ, R3(x) =
√

3µ

2

x∫
0

J1

(√
3µ

2
ξ

){
exp

[
−µξ

2

]
+ exp

[
µξ

2

]}
dξ

ξ
,

R4(x) =
√

3µ2

4

x∫
0

(x− ξ)J1

(√
3µ

2
ξ

){
exp

[
µξ

2

]
− exp

[
−µξ

2

]}
dξ

ξ
, R5(x) =

µ2x
4

,

R0(x) = R2(x) + R3(x) + R4(x)− R5(x),
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P(x) =
3µ2

4

x∫
0

J1

(√
3µ

2
ξ

)
J1

(√
3µ

2
(x− ξ)

)
exp

[
µ
(

ξ − x
2

)] dξ

x− ξ
,

where J1 is the Bessel function of the first kind.
The next fairly simple case to analyse is a particle source with ν = 4. In this case, we

have from expression (11)

ñs(p) =
a

(p + b)2

[
(p + b)2 −

√
(p + b)4 − σ4

]
=

aσ2

(p + b)2

− a
√
(p + b)2 − σ2

(p + b)2

[√
(p + b)2 + σ2 − (p + b) + p + b−

√
(p + b)2 − σ2

]
.

(19)

Applying the tabulated inverse Laplace transforms to expression (19) (22.165 and
22.166 from [26] as well as 3, 32, 37 and 48 from [27]), we arrive at the distribution function
ns(x) at ν = 4

ns(x) = aσ2x exp
(
− x

x0

)
− aσ

x∫
0

exp
(
− ξ

x0

)
[J1(σξ) + I1(σξ)]Φ(x− ξ)

dξ

ξ
, (20)

where

Φ(x) = exp
(
− x

x0

)cos(σx) + σ

x∫
0

cos
(

σ
√

x2 − ξ2
)

I1(σξ)dξ

, σ =

(
q(4)
a2

)1/4

.

The method of inverting the stationary image of the distribution function (11) can be
applied to other integer values of ν by analogy with the one discussed above. Below we
consider just one case at ν = 8, which is necessary to describe the experimental data [10] on
endosomal network dynamics. This particular case corresponds to the source function (6)
tending more sharply towards zero at x → 0.

So, expression (11) enables us to obtain the following expression at ν = 8:

ñs(p) =
a
p4

0

[
p4

0 −
√

p8
0 − u8

]
= a− a

p4
0

√
p2

0 − u2
√

p2
0 + u2

√
p2

0 + u2 −
√

2p0u

×
√

p2
0 + u2 +

√
2p0u = a +

a
p4

0

(
h̃1(p0)− p0

)(
h̃2(p0) + p0

)(
h̃3(p0) + p0 −

u√
2

)
×
(

h̃4(p0) + p0 +
u√
2

)
= a

14

∑
i=1

Ãi(p0),

(21)

where

u =

(
q(8)
a2

)1/8

, p0 = p + b, h̃1(p0) = p0 −
√

p2
0 − u2, h̃2(p0) =

√
p2

0 + u2 − p0,

h̃3(p0) =

√(
p0 −

u√
2

)2
+

(
u√
2

)2
−
(

p0 −
u√
2

)
,

h̃4(p0) =

√(
p0 +

u√
2

)2
+

(
u√
2

)2
−
(

p0 +
u√
2

)
.
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Now applying the inverse Laplace transform to the last expression (21) using the tabu-
lated formulas 21.162, 22.165 and 22.166 in [26], 2 and 3 in [27] as well as their convolutions,
we come to ns(x) at ν = 8 (additional formulas are given in Appendix A)

ns(x) = a
14

∑
i=1

Ai(x). (22)

Figure 1 shows a good agreement of the analytical solution (22) with experimental data
of Foret et al. [10] on the distribution of low-density lipoprotein (LDL) in the entire network
of Rab5-positive endosomes. We should note that in Ref. [10] the variable x stands for the
LDL fluorescence intensity, and n represents the density of endosomes per cell such that
n(x)∆x is the number of Rab5-positive endosomes per cell for which the LDL fluorescence
intensity (FI) is in the interval between x and x + ∆x (for more details, see Ref. [10]). It can
be seen from Figure 1 that the LDL concentration is an increasing function of cargo influx J.
The latter is directly proportional to the appearance rate of new endosomes carrying the
cargo of size x.

Figure 1. Theory (expression (22)) is compared with experimental distribution (Figure 3E in Ref. [10])
after 45 min internalization of low-density lipoprotein (LDL) for four different LDL concentrations:
γ = 0.0015 s−1; K = 0.00016 s−1, x0 = 450 FI; J = 546 FI s−1 (blue solid line) and J = 300 FI s−1 (red
dashed line).

3.2. Half-Integer Values of the Parameter ν

Here we consider only two cases with half-integer values of the parameter ν, corre-
sponding to increasing and decreasing source functions (6) at x → 0.

So, dealing with ν = 1/2, we derive from (11)

ñs(p) = a
√

p1 −
√

p1 −m2
√

p1
, (23)

where p1 =
√

p + b and m =
√

q(1/2)/a. Now using the inverse Laplace transforms
22.158 in Ref. [26] as well as 3, 29 and 134 in Ref. [27], we arrive at ns(x) at ν = 1/2

ns(x) =
1

2
√

πx3/2

∞∫
0

ξ exp
(
− x

x0
− ξ2

4x

)
G(ξ)dξ, (24)

where

G(x) =
a
π

x∫
0

exp
(
m2ξ/2

)
sinh

(
m2ξ/2

)
ξ
√

x− ξ
dξ.
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When deriving expression (24), we also used the following formulas for the Bessel functions

Iα(x) = i−α Jα(ix), I1/2(x) =

√
2

πx
sinh x,

where i is the imaginary unit.
The next function we study here corresponds to ν = 5/2. In this case, we have

from (11)

ñs(p) = a
p5/2

1 −
√

p5
1 − χ5

p5/2
1

= a− a
√

p1 − χ

p5/2
1

[
g̃1(p1) + p1 +

α1χ

2

][
g̃2(p1) + p1 +

β1χ

2

]
,

(25)

where

χ =

(
q(5/2)

a2

)1/5

, α1 =
1−
√

5
2

, β1 =
1 +
√

5
2

,

g̃1(p1) =

√(
p1 +

α1χ

2

)2
+ s2

1 −
(

p1 +
α1χ

2

)
, s1 = χ

√
1− α2

1/4,

g̃2(p1) =

√(
p1 +

β1χ

2

)2
+ s2

2 −
(

p1 +
β1χ

2

)
, s2 = χ

√
1− β2

1/4.

Applying the inverse Laplace transform to expression (25) and taking tabulated for-
mulas (22.30, 22.165 in Ref. [26] and 134, 147 in Ref. [27]) into account, we obtain ns(x) at
ν = 5/2

ns(x) =
1

2
√

πx3/2

∞∫
0

ξ exp
(
− x

x0
− ξ2

4x

)
W(ξ)dξ, (26)

where W(ξ) is given in Appendix B.

3.3. Source Term with Sub-Linear Prefactor and Exponential Decay

Let us consider here a special case of source term with a sub-linear prefactor whose
rate is given by

I(x) = I∗ sin(ωx) exp
(
− x

x0

)
, (27)

where ω is constant. Formula (27) describes the situation when the prefactor grows slowly
in a sub-linear manner. We have to choose the parameter ω to ensure the slow growth of
the prefactor and its positive value for the relevant values of variable x.

Applying the direct Laplace transform to (27) (Formula (47) in Ref. [27]) and substitut-
ing the result into expression (10), we come to

ñs(p) = a
p2 −

√
p2 − L2

p2
, p2 =

√
(p + x−1

0 )2 + ω2, L =

√
2I∗ω
a2K

. (28)

Applying the inverse Laplace transform to (28) with allowance for the tabulated
formulas (22.165 in [26] and 32 in [27]), we arrive at ns(x) for the source term with a
sub-linear prefactor

ns(x) = exp
(
− x

x0

)R(x)−ω

x∫
0

R
(√

x2 − ξ2
)

J1(ωξ)dξ

, (29)
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where J1 is the Bessel function of the first kind and

R(x) = aL
x∫

0

J1(Lξ)

ξ
dξ.

A short summary of exact steady-state solutions to Equation (7) is given in Table 1.
Based on the data listed in this table, we compare the steady-state distribution functions
ns(x) (the third column of Table 1) in Figure 2. As is easily seen, the steepness of the curves
for small x grows as the parameter ν increases.

Table 1. A short summary of exact steady-state solutions.

ν I(x) ns(x) Ĩ(0) I∗ q(ν)

1/2 I∗x−1/2 exp
(
− x

x0

)
Equation (24) 2J

x0

2J√
πx3/2

0

4J
Kx3/2

0

1 I∗ exp
(
− x

x0

)
Equation (14) J

x0

J
x2

0

2J
Kx2

0

2 I∗x exp
(
− x

x0

)
Equation (16) J

2x0

J
2x3

0

J
Kx3

0

5/2 I∗x3/2 exp
(
− x

x0

)
Equation (26) 2J

5x0

8J
15
√

πx7/2
0

4J
5Kx7/2

0

3 I∗x2 exp
(
− x

x0

)
Equation (18) J

3x0

J
6x4

0

2J
3Kx4

0

4 I∗x3 exp
(
− x

x0

)
Equation (20) J

4x0

J
24x5

0

J
2Kx5

0

8 I∗x7 exp
(
− x

x0

)
Equation (22) J

8x0

J
40,320x9

0

J
4Kx9

0

- I∗ sin(ωx) exp
(
− x

x0

)
Equation (29) (ω2x2

0+1)J
2x0

(ω2x2
0+1)2 J

2ωx3
0

-

Figure 2. The steady-state density distribution functions ns(x) at different I(x) and ν (numbers at
the curves) accordingly to Table 1. System parameters correspond to Figure 1 and J = 546 FI s−1.

4. Unsteady-State Smoluchowski’s Coagulation Equation
4.1. Analytical Solution to the Coagulation Equation without Injection

First, we note that it is possible to obtain an exact solution for the total number of
particles of all sizes λ(τ), which is defined by expression (4). To do this, we integrate
Equation (3) over the variable x from zero to infinity and obtain

dλ

dτ
= −1

2

(
λ2 + 2κλ− 2B

)
, B =

1
K

∞∫
0

I(x)dx. (30)
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Its solutions read as

λ(τ) =
a− κ + C(a + κ) exp(−τ)

1− C exp(−τ)
, C =

λ(0) + κ − a
λ(0) + κ + a

. (31)

Expressions (30) and (31) represent an exact solution for the total number of particles
of all sizes λ(τ) in the case of arbitrary source function I(x).

Let us obtain the unsteady solution to (3) for large values of x. In this case, it fol-
lows from experimental data of Ref. [10] that the source term is negligible. For example,
considering x & 104, we estimate the source term I(x)/K . 10−4 and κn . 10−2. In this
case, (3) becomes

∂n
∂τ

=
1
2

x∫
0

n(x′, τ)n(x− x′, τ)dx′ − n(x, τ)λ(τ)− κn(x, τ). (32)

Let us seek for an exact solution to Equation (32) in the form of

n(x, τ) = n(0, τ) exp[−β(τ)x], (33)

where n(0, τ) and β(τ) are found below. Substituting (33) into (32) and equating the terms
with x0 and x1, we obtain two equations

dn(0, τ)

dτ
= −[λ(τ) + κ]n(0, τ),

dβ

dτ
= −n(0, τ)

2
.

(34)

Their exact solutions are given by

n(0, τ) = n(0, 0) exp

−κτ −
τ∫

0

λ(τ1)dτ1

,

β(τ) = β(0)− 1
2

τ∫
0

n(0, τ1)dτ1.

(35)

Here the constants n(0, 0) and β(0) should be chosen by comparing the initial distri-
bution function

n(x, 0) = n(0, 0) exp[−β(0)x] (36)

with experimental data.
An important point of an exact analytical solution (33) to a non-stationary coagulation

equation is the exponential initial distribution (36). This can occur if the distribution
function relaxes from some initial steady-state exponential distribution. For example, if
some distribution is established due to the source contribution I(x), and then the source is
switched off, then this distribution will decrease as time increases. This case is described
by an exponentially decreasing analytical solution (33).

4.2. Approximate Solution to the Unsteady Coagulation Equation with Injection

To compare the theory with experimental data given by Foret et al. [10], we stitch
together the initial distribution function n0(x) (known from experiments) and the steady-
state distribution function ns(x) at ν = 8 (expression (22)), which is being set at long times.
Using the thoughts of Refs. [24,28], we have
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n(x, τ) =
b0(x, τ)n0(x) + bs(x, τ)ns(x)

b0(x, τ) + bs(x, τ)
. (37)

Here the stitching functions b0(x, τ) and bs(x, τ) should satisfy the following conditions

b0(x, τ)→ 0, τ � τ0; bs(x, τ)→ 0, τ → τ0,

where τ0 is a characteristic time corresponding to the initial distribution n0(x). If this is
really the case, the unsteady-state distribution function n(x, τ) tends to the initial distribu-
tion n0(x) at initial times τ ≈ τ0, and it approaches the steady-state solution ns(x) at large
times τ � τ0. Note that the stitching functions should be chosen by comparing the theory
with experiments. So, choosing these functions as

b0(x, τ) =
x3/2

b′0(τ − τ0)
, bs(x, τ) =

b′s(τ − τ0)

x3/2 ,

we compare expression (37) with experimental data in Figure 3. As is easily seen, the
distribution function n(x, τ) grows with time due to the influence of mass influx I(x) and
always lies between n0(x) and ns(x).

Figure 3. The unsteady-state density distribution functions n(x, τ) at different times accordingly to an
analytical solution (37) (lines) and experimental data [10] (symbols). System parameters correspond
to Figure 1 and J = 546 FI s−1, b′0 = b′s = 5 × 105. The initial distribution function n0(x) was chosen
at τ0 = 3 min.

5. Summary and Conclusions

Let us summarize the main results of our paper. First, we have found an exact
stationary solution to Smoluchowski’s coagulation equation with injection in the case of
different exponentially decaying source functions. These functions contain a power law
factor that substantially changes the steady-state distribution function at small particle
volumes x. We have also obtained the exact stationary solution to the coagulation equation
with sub-linear exponentially decaying source term. Our steady-state analytical solutions
are summarized in Table 1. In addition, we have obtained an analytical solution to the
non-stationary integro-differential Smoluchowski’s coagulation equation with injection
for large values of particle volumes x when the source term is negligible. This solution
is given by expression (33). An approximate analytical solution to the unsteady-state
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coagulation equation with injection has been constructed using the stitching functions
technique. This unsteady-state solution is given by expression (37). Let us especially
underline that this distribution depends on stitching functions that enable us to fit its
behaviour between the initial and final (steady-state) distributions. Both the steady- and
unsteady-state distributions are compared with experimental data for the distributions of
endocytosed low-density lipoproteins. An important assumption of our analytical studies is
that the collision frequency function (coagulation kernel) K(x, x′) is taken as a constant. This
has allowed us to formulate a relatively simple integro-differential model and solve it using
the aforementioned mathematical techniques. Note that the collision frequency function
describes different coagulation mechanisms (e.g., Brownian coagulation, shear coagulation,
coagulation of particles falling under gravity, mixed coagulation mechanisms [1,2,29,30]).
To take such different coagulation mechanisms into account, we can use an approximate
method involving the averaging of coagulation kernels over all possible combinations
of particle volumes in the steady-state case (see, among others, [22]). This approximate
technique will allow to take into account different coagulation mechanisms.

As a special note, the coagulation theory under consideration can be applied to de-
scribe the final stage of phase transformations in various metastable and non-equilibrium
systems (simultaneous occurrence of Ostwald ripening, coagulation and disintegration of
aggregates). These processes, for example, include the growth of inorganic and organic sin-
gle crystals in metastable and nonequilibrium two-phase regions as well as the production
of a cellular glass–ceramic [15–19,31–34].
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Appendix A

Here we present the functions entering in expressions (21) and (22) at ν = 8:

h1(x) =
uI1(ux)

x
exp

(
− x

x0

)
, h3(x) =

u√
2x

J1

(
ux√

2

)
exp

(
ux√

2
− x

x0

)
,

h2(x) =
uJ1(ux)

x
exp

(
− x

x0

)
, h4(x) =

u√
2x

J1

(
ux√

2

)
exp

(
− ux√

2
− x

x0

)
,

(A1)
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A1(x) =
1

Γ(4)

x∫
0

ξ3 exp
(
− ξ

x0

)
h1234(x− ξ)dξ, A2(x) =

u√
2Γ(4)

x∫
0

ξ3 exp
(
− ξ

x0

)

×hA2(x− ξ)dξ, A3(x) =
1

Γ(3)

x∫
0

ξ2 exp
(
− ξ

x0

)
hA3(x− ξ)dξ,

A4(x) = − u2

2Γ(4)

x∫
0

ξ3 exp
(
− ξ

x0

)
h12(x− ξ)dξ,

A5(x) =
1

Γ(3)

x∫
0

ξ2 exp
(
− ξ

x0

)
hA5(x− ξ)dξ, A6(x) =

u√
2Γ(3)

x∫
0

ξ2 exp
(
− ξ

x0

)
×[h13(x− ξ)− h14(x− ξ)− h23(x− ξ) + h24(x− ξ)]dξ,

A7(x) =
1

Γ(2)

x∫
0

ξ exp
(
− ξ

x0

)
[h13(x− ξ) + h14(x− ξ)− h23(x− ξ)

−h24(x− ξ)]dξ, A8(x) = − u2

2Γ(3)

x∫
0

ξ2 exp
(
− ξ

x0

)
[h1(x− ξ)− h2(x− ξ)]dξ,

A9(x) = − 1
Γ(2)

x∫
0

ξ exp
(
− ξ

x0

)
h34(x− ξ)dξ, A10(x) =

−u√
2Γ(2)

x∫
0

ξ exp
(
− ξ

x0

)

×[h3(x− ξ)− h4(x− ξ)]dξ, A11(x) = −
x∫

0

exp
(
− ξ

x0

)
[h3(x− ξ) + h4(x− ξ)]dξ,

A12(x) =
u2x

2
exp

(
− x

x0

)
, A13(x) =

x∫
0

ξ exp
(
− ξ

x0

)
h12(x− ξ)dξ,

A14(x) =
x∫

0

exp
(
− ξ

x0

)
[h1(x− ξ)− h2(x− ξ)]dξ,

(A2)

where

h1234(x) =
x∫

0

h12(ξ)h34(x− ξ)dξ, h12(x) =
x∫

0

h1(ξ)h2(x− ξ)dξ,

h34(x) =
x∫

0

h3(ξ)h4(x− ξ)dξ, hA2(x) =
x∫

0

h12(ξ)[h3(x− ξ)− h4(x− ξ)]dξ,

hA3(x) =
x∫

0

h12(ξ)[h3(x− ξ) + h4(x− ξ)]dξ,

hA5(x) =
x∫

0

h34(ξ)[h1(x− ξ)− h2(x− ξ)]dξ,

h13(x) =
x∫

0

h1(ξ)h3(x− ξ)dξ, h14(x) =
x∫

0

h1(ξ)h4(x− ξ)dξ,

h23(x) =
x∫

0

h2(ξ)h3(x− ξ)dξ, h24(x) =
x∫

0

h2(ξ)h4(x− ξ)dξ.

(A3)
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Appendix B

Here we present the functions entering in expression (26) at ν = 5/2:

W(x) =
3

∑
i=1

Wi(x), W1(x) =
a

2π

x∫
0

exp(χξ)− 1
ξ3/2
√

x− ξ
dξ,

W2(x) =
aα1β1χ2

4
(B2(x)− x) +

aχ(α1 + β1)

2
(B3(x)− 1) + a

x∫
0

(B2(ξ)− ξ)H(x− ξ)dξ,

W3(x) = a
x∫

0

(B3(ξ)− 1)(g1(x− ξ) + g2(x− ξ))dξ,

H(x) = B1(x) +
χ

2
(β1g1(x) + α1g2(x)), B1(x) =

x∫
0

g1(ξ)g2(x− ξ)dξ,

B2(x) =
1

2
√

πΓ(5/2)

x∫
0

exp(χξ)− 1
ξ3/2 (x− ξ)3/2dξ,

B3(x) =
1

2
√

πΓ(3/2)

x∫
0

exp(χξ)− 1
ξ3/2 (x− ξ)1/2dξ,

g1(x) =
s1

x
J1(s1x) exp

(
−α1χ

2
x
)

, g2(x) =
s2

x
J1(s2x) exp

(
− β1χ

2
x
)

.
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