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Abstract: A semi-analytical-numerical solution is theorized to describe the laser additive manufac-
turing via laser-bulk ceramic interaction modeling. The Fourier heat equation was used to infer
the thermal distribution within the ceramic sample. Appropriate boundary conditions, including
convection and radiation, were applied to the bulk sample. It was irradiated with a Gaussian spatial
continuous mode fiber laser (λ = 1.075 µm) while a Lambert-Beer law was assumed to describe the
laser beam absorption. A close correlation between computational predictions versus experimental
results was validated in the case of laser additive manufacturing of silicon nitride bulk ceramics.
The thermal field value rises but stays confined within the irradiated zone due to heat propagation
with an infinite speed, a characteristic of the Fourier heat equation. An inverse correlation was
observed between the laser beam scanning speed and thermal distribution intensity. Whenever the
laser scanning speed increases, photons interact with and transfer less energy to the sample, resulting
in a lower thermal distribution intensity. This model could prove useful for the description and
monitoring of low-intensity laser beam-ceramic processing.

Keywords: laser additive manufacturing; silicon nitride bulk ceramic; integral transform technique;
Fourier heat equation; modeling

1. Introduction

Additive manufacturing (AM) has lately received a wide acceptance by numerous
industries as it demonstrated unique advantages over conventional manufacturing tech-
niques [1,2]. In the case of metallic materials, via starting from a precursor such as a wire
or powder, three-dimensional objects with intricate/unique geometrical characteristics can
be 3D printed layer by layer [3–5].This manufacturing procedure opens the opportunities
to fabricate a large diversity of objects for a vast variety of world-market applications [1,2].
The shape is first designed into a CAD (Computer Aided Design) software, and the 3D
model is transferred into a CAM (Computer Aided Manufacturing) program. Here, the
user selects the machine’s parameters such as starting/ending points of operation, machine
trajectory and speed, processing distance from the surface, processing angle and start/stop
instructions of the energy beam. The CAM software generates a processing code based on
these instructions that is imported into machine’s computer. The machine will then follow
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the code and conduct the operation in a single step, thus reducing the fabrication time com-
pared to traditional manufacturing technologies and costs. Moreover, various components
could be printed in a single stage, thus eliminating the need for more fabrication steps [6].
Nevertheless, AM operates relatively slow as compared to conventional manufacturing
techniques. There exist still multiple defects in the parts fabricated by AM technology,
including cracks or low surface quality, resulting in poor mechanical properties [7]. Hence,
significant efforts should be carried out to further improve the quality and performance of
3D printed parts.

Different AM techniques have been therefore implemented to print various materials
used for technological applications. Recently, selective laser melting (SLM) and sintering
(SLS) have been extended to the aerospace and medical fields for the 3D printing of
aluminum alloys [7], stainless steel [8], titanium alloys [9,10], cobalt-chrome alloys [11], and
nickel alloy [12]. Alumina (Al2O3) and zirconia (ZrO2) ceramics have demonstrated large
prospective uses, because of their remarkable mechanical, thermal, and wear resistance
properties [13]. Indeed, mechanical properties of ultimate components are highly associated
with the thermal distribution during printing. Rapid heating and slow cooling around
the laser spot generate a high thermal gradient, thus, leading to phase transformations,
difficult to be properly monitored experimentally.

During SLM/SLS printing, ceramics require special care in comparison with metals
because of the higher laser absorption coefficient in the Near-IR range [14]. This is doubled
by the poorer heat dissipation in ceramics due to lower heat diffusivity/conductivity
coefficient values. The higher absorbed heat is therefore confined inside smaller ceramic
regions which are overheated and exposed to irreversible damage. These effects are much
stronger in mid -IR as e.g. at 10.6 µm CO2 wavelengths [14]. In particular, Si3N4 ceramic
possesses a thermal conductivity of 15 W m–1 K–1 only [13,15], significantly inferior to
metals, e.g. 317 W m–1 K–1 for Au [16]. This substantial difference stays at the origin of a
large temperature excursion in the sample, from top to bottom (which can be as large as
from 1935 to 234 ◦C), in the case of Si3N4 [16].

Therefore, modeling methods were used for AM parameters’ optimization [17]. Two
types of modeling approaches are present in the literature, described as either macro- or
meso-scale. Hodge et al. [18] selected, via a macro-scale modeling, a complex alternative
heat source to predict thermal fields and melt pool dimensions for the SLM printing of 316L
stainless steel. The melt pool configuration extended above the unconsolidated powder
layer via considering the powder layer’s insulating behavior.

King et al. [19] estimated the temperature distribution and residual stresses inside a
6 cm tall prism of 316L stainless steel. They found a congruent trend between simulations
and experiment.

Li and Gu [20] reported on the modeling of a titanium alloy powder bed taking into
account the parameters variation with temperature, under the action of a special Gaussian
distribution laser beam. It was found that the excessive heat was eliminated through the
cold sample, resulting in a rapid quenching of the deposited material.

Roberts et al. [21] developed a finite element (FE) thermal model by considering the
laser beam absorption coefficient. Element’s death and birth techniques were employed for
the simulation of the Ti6Al4V alloy depositions.

Marion et al. [22] used the FE method to simulate the direct metal deposition process.
It was shown that micro-scale modeling (bead formation) can help to comprehend intricate
thermal distribution and melt pool dimensions.

King et al. [18] carried out simulations of laser–powder interaction in the presence
of a surface tension. It was shown that the surface tension plays an important role in
smoothening the melt pool which results in an improved heat transfer coefficient.

One of the major limits of the FE models is that the solutions are primarily dependent
on the mesh quality and accuracy, which directly controls the computation efficiency and
time. A finer mesh requires a longer computing time as compared to a coarse mesh.
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In the present study, an integral transform technique is applied to the finite domain on
laser-ceramic interaction, based on the Fourier heat equation, which involves an infinite ther-
mal wave propagation speed. To the best of our knowledge, there are no other reported studies
in laser-ceramic interaction using the integral transform technique for the Fourier heat equa-
tion. A simplified model was developed with forced convection: h = 2.4 × 10−3 ETm

1.61 [15],
where E is the material emissivity and Tm is the melting temperature.

We consider the main progress with this contribution as compared to previous work,
a drastic reduction of design/computational time with direct effects on technological costs.

2. Mathematical Model

Figure 1 shows the schematic of laser-ceramic interaction. The laser beam is traveling at
a constant speed (v) across a sample with the dimensions length (a) × width (b) × height (c).
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The classical Fourier formalism is given in Equation (1), as:
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Here, T stands for the temperature variation inside the sample with Cartesian coordi-
nates (x,y,z), γ is thermal diffusivity, t is time, A(x,y,z,t) is the Gaussian heat source while k
is the thermal conductivity of the sample. The boundary and limit conditions are defined
by Equations (2)–(4): [
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Based on the standard theory [23,24], Equations (2)–(4) imply Equations (5)–(7),
calculated as: [
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The term source is defined by Equation (8), as:

A(x, y, z, t) =
P

πr2
o

e
−((vto+x)2+y2)

r2
o

(
e−αz(1 − rs) + rsδ(z)

)
(H(t)− H(t − to)); to =

x
v

(8)

Here, P is the incident laser power, ro is the laser beam waist radius, α is the laser
absorption coefficient, rs is the sample’s surface absorption coefficient, δ is the Dirac-
delta function, H is the Heaviside step function, to is the material exposure time to laser
irradiation, and v is the propagation speed of the laser beam. The correction term can prove
useful in quite intricate interactions between the laser beam and solid sample.

The Eigenfunctions Kx, Ky, and Kz along, x-, y- and z-axes, respectively, are expressed as:

Kx(αi, x) = cos(αix) +
h

kαi
sin(αix) (9)

Ky
(
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)
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(
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)
+

h
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)
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Kz(χo, z) = cos(χoz) +
h

kχo
sin(χo, z) (11)

In Equations (9)–(11), αi, β j and χo stand for the Eigenvalues, which are calcu-
lated numerically by substituting Equations (9)–(11) into Equations (5)–(7), resulting in
Equations (12)–(14):
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The thermal variation inside ceramic samples, under laser irradiation, is calculated as:
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where
γ2
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(

α2
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(16)

and

Ci =
∫ a

2
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2

K2(αi, x)dx; Cj =
∫ b

2

−b
2

K2(β j, y
)
dy; Co =
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0
K2(χo, z)dz (17)

One notes that Equations (15)–(17) are in fact a combination of analytical and numerical
solutions. However, for simulations, only the first three Eigen values (i = 1,2,3, j = 1,2,3 and
k = 1,2,3) have been considered, which yield a semi-analytical-numerical solution.

3. Methodology and Simulations

Silicon nitride (Si3N4) bulk samples were chosen for simulations, but the method can
be easily extended to other ceramics compounds. One should mention here that Si3N4
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was under extensive research in recent decades, in particular under the action of laser
Gaussian beams.

Thus, Shukla and Lawrence [15,16] carried out processing experiments with a con-
tinuous wave fiber laser (λ = 1.075 µm) and FE simulations in the case of Si3N4 samples
with 50 mm length, 10 mm width, and 10 mm height. Other authors reported on laser
additive manufacturing (LAM) of Si3N4 using CO2 laser (λ = 10.6 µm) [25] or yttria laser
radiation (λ= 1.07 µm) [26], respectively. Table 1 collects the Si3N4 characteristics but also
the parameters used in computations.

Table 1. Silicon nitride bulk characteristics and simulation conditions [15].

Parameter Name Value (Units)

Density 3200 (kg/m3)
Room temperature 25 (◦C)
Specific heat 900 (J/kg-K)
Thermal conductivity 15 (W/mK)
Laser absorption coefficient 0.90
Laser beam spot diameter 3.0 (mm)
Emissivity 0.40
Laser wavelength 1.075 (µm)
Type of laser Continuous wave Fiber laser

A Core i7, 8th Generation processor equipped with a 32 GB Ram computation sys-
tem has been used for analytical simulations. A user-defined script file was written in
MATHEMATICA software (9.0, Wolfram, Champaign, IL, USA).

4. Results and Discussion

Initially, the laser beam was positioned in the center of the sample while the x-, y-,
and z-axes define its length, width, and height. Figure 2a presents the 3D thermal field
distribution plot when laser power and laser scanning speed are 143.25 W and 0 mm/min,
respectively. When the laser beam started to irradiate, the sample’s temperature instantly
increased up to 2000 ◦C due to the infinite speed of the heat wave, as visible also from
Figure 2b. This behavior occurred because the Fourier heat equation can take into account
all corrections related to laser-sample interaction. Furthermore, one can identify the perfect
symmetrical shape of the thermal profile that is due to the Gaussian heat source at a laser
scanning speed of 0 mm/min.
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Figure 3 shows the thermal distribution in the melt pool when laser power = 143.25 W
and laser scanning speed = 100 mm/min, respectively. One can observe that the thermal
distribution reaches the maximum at the top of the sample where the laser beam is in direct
contact with the material. As the sample thickness is small (of 10 mm only), the thermal
distribution remains almost constant into the melt pool depth.
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To validate the laser-bulk ceramic interaction model, Table 2 presents a comparison
between current simulation, FE simulation, and experimental results in the case of laser-
Si3N4 sample interaction for a laser power of 143.25 W and a laser scanning speed of
100 mm/min. The FE simulation and experimental results are from the paper by Shukla
and Lawrence [15]. One can notice in Table 2 that our model can predict outcomes with an
accuracy of 1.05% mean absolute deviation.

Table 2. Maximum temperature in the case of current simulation, FE simulation and experimental
results [15] for laser—Si3N4 sample interaction.

Laser Power (W) Laser Scanning
Speed (mm/min)

Maximum
Temperature in
the Case of
Current
Simulation (◦C)

Maximum
Temperature in
the Case of FE
Simulation
[15] (◦C)

Maximum
Temperature in
Experiments
[15] (◦C)

143.25 100 2245 2236 2269

It was found that 143.25 W at 100 mm/min was the best in terms of achieving a surface
with minimal defects [15] and was therefore selected for further processing.

Figure 4 displays the thermal field 3D and 2D plots when the laser scanning speed
increases from 150 (Figure 4a,b) to 200 mm/min (Figure 4c,d), respectively, for the same
laser power of 143.25 W. One notices that with the increment in laser scanning speed,
the thermal distribution intensity decreases drastically. This is because, when the laser
scanning speed increases, a lower number of photons interact with the ceramic sample
and transfer less energy to a given side, which results in the thermal distribution intensity
reduction. One may observe that our model fails for lower temperature at a laser speed of
200 mm/min.
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scanning speed of 150 mm/min (a,b) and 200 mm/min (c,d), respectively.

An agreement between our simulation and experimental results in [15] shows a devi-
ation of 1.05% only, which is quite close to 1.45% accuracy between the simulations and
experiments in that reference. One should note here that P.P. Shukla and J. Lawrence simu-
lations are pure numerical in comparison with ours which are semi-analytical-numerical.
It is, therefore, worth mentioning that the simulation time when using our model was of
10 min only, significantly inferior to Shukla and Lawrence’s simulation of about 2 h [15].

Moreover, our model can be considered a very powerful one but also a very friendly
to use: for writing the software one may need 20 min and on the other hand the run time of
a complete simulation is down than 10 min on a commercial PC (which is much lower than
the usual time for numerical models [15,27–30]).

Finally, one should notice that the applied model is similar in the case of metals and
ceramics but the heat transfer coefficients make the difference. It mathematically follows that
the Eigen functions in the case of ceramics are superior to those of metals. This is due to both
higher absorption of laser energy and lower dissipation of heat as also mentioned in Ref. [14].
This is proved by numerous computer simulations and mathematical considerations.

5. Conclusions

A semi-analytical-numerical model has beenwas developed to describe the interaction
of a Gaussian laser beam with a bulk ceramic sample. The Fourier heat equation was
applied to determine the thermal distribution within the laser irradiated sample. The
convection and radiation boundary conditions were taken into account. The simulation
results are also in good accordance with that reported in.

The main conclusions can be summarized as follows.
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• The thermal field value increases rapidly at the irradiation site due to the heat propa-
gation with an infinite speed (Fourier equation). The thermal conductivity in ceramics
stays lower compared to metals, thereby limiting the heat expansion within the sur-
rounding zones resulting in heat accumulation and a very high temperature rise.

• A correlation was shown between the laser scanning speed and thermal distribution
intensity. Thus, whenever the laser scanning speed increases, less photons interact
and transfer energy to the sample, resulting in a lower thermal distribution intensity.

• In laser additive manufacturing of ceramics, the laser beam energy absorption is split
via surface or during propagation trough bulk, respectively. This depends on surface
morphology, crystalline status, and processing history.

One may use the results of this study to optimize the operating conditions when
designing accurate and efficient laser additive manufacturing processing of bulk ceramics.
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