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Abstract: The effect of corrosion time on the mechanical behavior of 5083/6005A welded joints in a
3.5% NaCl + 0.01 mol/L NaHSO3 solution was evaluated via scanning electron microscopy (SEM),
polarization curve analysis, and X-ray photoelectron spectroscopy (XPS). The prediction model of
fatigue life after corrosion was established based on the experimental results and the theory of
fracture mechanics, and the formula for the effect of corrosion time on lifespan was determined. The
results show that with increasing corrosion time, the corrosion of the sample becomes increasingly
severe, and the elongation and fatigue life of the 5083/6005A welded joints decrease significantly.
The corrosion resistance of the 5083/6005A welded joints decreases with increasing corrosion time
because the corrosive medium promotes the destruction of the oxide film and thereby reduces the
corrosion resistance. The corrosion products of the 5083/6005A welded joints are Al(OH)3 and AlCl3.

Keywords: 5083/6005A welding joint; mechanical properties; corrosion mechanism; corrosion model;
fatigue life prediction model

1. Introduction

Due to their low density, good formability, and excellent corrosion resistance, 5083
and 6005A aluminum alloys have been widely used for preparing critical components in
high-speed trains, such as body structures, electrical cabinets, and lifting lugs [1], which
are usually joined by melt inert-gas welding (MIG) [2,3]. In practice, these components of
high-speed trains are exposed to diverse service environments, such as humidity and salt
spray. The 5083/6005A aluminum alloy welded joints are prone to corrosion, causing a
sharp decline in fatigue life and premature fracture of aluminum alloy welded joints [4].
Thus, it is highly desirable and necessary to assess the effect of corrosion on the mechanical
behavior of the 5083/6005A welded joints.

It is generally recognized that aluminum alloys are vulnerable to chloride (Cl−) corro-
sion, especially in the marine atmosphere polluted by industry. The deposition of industrial
pollutants such as SO2 in the environment further accelerates the anodic dissolution process
of metals. Therefore, many scholars have explored the effect of aluminum alloy corrosion
on mechanical behavior in NaCl solutions [5–7], NaHSO3, and NaCl mixed solutions [8].
These studies found that Cl− and SO4

2− have significant effects on the mechanical proper-
ties of the aluminum alloy after corrosion [9–11]. Mishra’s study found that the corrosion of
aluminum alloy in 3.5% NaCl solution reduces the alloy’s mechanical tensile properties and
fatigue life, and the impact on fatigue properties is particularly significant [10]. Aluminum
alloy exposed to a solution containing Cl− rapidly generates corrosion pits on its surface,
and cracks are induced to propagate under the action of stress [11]. Ma et al. [12] found that,
after a 7075 aluminum alloy welded joint was corroded by 3.5% NaCl solution, there were
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multiple crack sources in the fracture after fatigue fracture, which mainly appeared in the
corrosion pits, causing a significant reduction in the fatigue life of the aluminum alloy. In
addition, when NaHSO3 is added to NaCl solution, HSO3

− in the solution is ionized to H+

and SO3
2−, and SO3

2− is readily oxidized to SO4
2−, which promotes further ionization of

HSO3
−, leading to a decrease in solution pH [8]. In an acidic environment, the lower the pH

value, the faster the corrosion rate of aluminum alloys, and the more significant the effect
on the mechanical properties of aluminum alloys [13]. Ge et al. [14] estimated the effects
of adding different concentrations of NaHSO3 to 3.5% NaCl solution on the mechanical
properties of 2024 and 7075 aluminum alloys. They found that the tensile strength and
elongation decreased with increasing HSO3

− concentration, and the corrosion rates of the
two aluminum alloys increased. However, the fatigue behavior of dissimilar aluminum
alloy welded joints after corrosion in mixed solutions has rarely been reported, especially
the fatigue behavior of 5xxx and 6xxx aluminum alloy welded joints after corrosion in NaCl
and NaHSO3 mixed solution. Thus, the fatigue mechanism of 5xxx and 6xxx aluminum
alloy welded joints after corrosion remains unclear.

In the present work, the effect of corrosion time on the mechanical behavior of
5083/6005A welded joints in 3.5% NaCl + 0.01 mol/L NaHSO3 solution was studied.
The corrosion mechanism was revealed, and the corrosion model was established by mea-
suring the corrosion products of the 5083/6005A welded joints. The fatigue life prediction
model of the 5083/6005A welded joints after corrosion was established based on the fatigue
test results after corrosion. This study aims to provide a reference for the safe application
of 5083/6005A welded joints in high-speed trains.

2. Materials and Methods
2.1. Materials

The 5083/6005A welded joint specimens were provided by Zhuzhou Times Metal
Manufacturing Co., Ltd. (Zhuzhou, China) The welding joint material was 6.0 mm 5083-
H111 and 6005A-T6 aluminum alloy plate, and the welding wire was ER5356. Under a
flow of 12 L/min of argon, a Fronius TPS4000 MIG welding machine was used to weld the
plate perpendicular to the rolling direction. The chemical compositions of these materials
determined by SPECTRO BLUE SOP type inductively coupled plasma optical emission
spectroscopy (ICP-OES) (SPECTRO Analytical Instruments, Kleve, Germany)are listed in
Table 1.

Table 1. Chemical compositions of the 5083 and 6005A aluminum alloys and the ER5356 filler metal
(wt. %).

Material Si Fe Cu Mn Mg Zn Cr Ti Al

5083 0.09 0.20 0.01 0.75 4.98 0.02 0.09 0.05 Balance
6005A 0.50 0.19 0.01 0.26 0.71 0.02 0.16 0.06 Balance

ER5356 0.12 0.12 0.08 0.15 4.90 0.12 0.11 0.12 Balance

2.2. Corrosion Tests

Figure 1a shows the welding joint dimensions of the 5083/6005A specimen, and Fig-
ure 1b illustrates a schematic diagram of the corrosion testing, in which the size of the service
device was 200× 100× 250 mm. The corrosion solution was 3.5% NaCl + 0.01 mol/L NaHSO3,
and the corrosion times were 3, 7, 15, and 30 days.
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Figure 1. (a) Typical 5083/6005A welded joint; (b) Schematic representation a of the corrosion test.

2.3. Tensile and Fatigue Tests

The tensile tests and fatigue tests were conducted on an MTS-322 servo-hydraulic test
machine (maximum load-carrying capacity of ±500 kN) (MTS System Corporation, Eden
Prairie, MN, USA) at room temperature. Sinusoidal loading was used with a frequency
(f ) of 75 Hz, a stress ratio (R) of 0.1, and maximum stress (σmax) of 100 MPa in the fatigue
tests. These tests were conducted according to GB/T 228.1-2010, GB/T 3075-2008, and HB
5287-96. Three replicate specimens were tested.

2.4. Electrochemical Measurement

The electrochemical performance of the 5083/6005A welded joints was investigated
using a CHI760e electrochemical workstation (CH Instruments Ins., Shanghai, China)with
a classic three-electrode system. The electrochemical measurements were conducted in
accordance with standard GB/T 24196-2009. The working, counter, and reference electrodes
were the 5083/6005A welded joints, a platinum slice, and a saturated calomel electrode
(SCE), respectively. The electrolyte was the 3.5 wt.% NaCl aqueous solution, and the
tested area for each working electrode was 10 mm × 10 mm. The polarization curves were
recorded by scanning the potential from−1.2 V (versus SCE) to−0.3 V at 0.5 mV s−1. Three
replicate specimens were tested for each electrochemical test, and a typical polarization
curve is reported.

2.5. Characterization Techniques

The surface morphology and corrosion products of the 5083/6005A welded joints were
observed by SEM (Hitachi, Tokyo, Japan) and XPS (ThermoFisher-VG Scientific, Waltham,
MA, USA), in which the Hitachi SU3500 was used for scanning electron microscopy at
an operating voltage of 25 kV, and an ESCALAB 250Xi spectrometer was used for XPS
observations with Al Kα radiation as an excitation source.

3. Results and Discussion
3.1. Effect of Corrosion Time on Mechanical Properties

The mechanical properties and stress–strain curves of the 5083/6005A welded joints
after being corroded by the 3.5% NaCl + 0.01 mol/L NaHSO3 solution for different times
are demonstrated in Figure 2. Figure 2a shows that the yield strength (σs), tensile strength
(σb), and elongation of the uncorroded 5083/6005A welded joints were 125 MPa, 204 MPa,
and 11.29%, respectively. After 3, 7, 15, and 30 days of corrosion, the σs values of the
5083/6005A welded joints were 126 MPa, 125 MPa, 125 MPa, and 121 MPa, respectively;
the σb values were 205 MPa, 203 MPa, 200 MPa, and 196 MPa, respectively; and the
elongation values were 9.31%, 8.96%, 8.27%, and 7.96%, respectively. The results indicate
that corrosion greatly affected the elongation of the 5083/6005A welded joints but had little
influence on σb and σs. As the corrosion time increased, the elongation of the 5083/6005A
welded joints decreased, while σb and σs decreased slightly. Compared with that of the
uncorroded 5083/6005A welded joints, the elongation of the 5083/6005A welded joints after
corrosion for 3, 7, 15, and 30 days decreased by 17.5%, 20.6%, 26.7%, and 29.5%, respectively.
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The results show that the elongation of the 5083/6005A welded joints decreased greatly
once they were corroded, but the elongation reduction rate decreased with increasing
corrosion time.
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Figure 2. Mechanical properties and stress–strain curves of the 5083/6005a welded joints after
corrosion in the 3.5% NaCl + 0.01 mol /L NaHSO3 solution for different times: (a) stress–strain curve;
(b) mechanical properties.

The fatigue properties of the 5083/6005A welded joints corroded for different times
are shown in Table 2 and Figure 3: after 3, 7, 15, and 30 days of corrosion, the fatigue life
decreased by 84.5%, 90.7%, 93.1%, and 95.7%, respectively. Corrosion had a significant
effect on the fatigue life of the 5083/6005A welded joints, and the fatigue life decreased
with increasing corrosion time.

Table 2. Fatigue life of 5083/6005A welded joints.

Specimen Uncorroded 3 Days 7 Days 15 Days 30 Days

Nf/ cycles 107 1,159,257 884,098 805,323 449,833
6,804,918 907,457 672,835 353,091 267,661

Crystals 2022, 12, x FOR PEER REVIEW 4 of 16 
 

 

uncorroded 5083/6005A welded joints, the elongation of the 5083/6005A welded joints af-
ter corrosion for 3, 7, 15, and 30 days decreased by 17.5%, 20.6%, 26.7%, and 29.5%, respec-
tively. The results show that the elongation of the 5083/6005A welded joints decreased 
greatly once they were corroded, but the elongation reduction rate decreased with increas-
ing corrosion time. 

 
Figure 2. Mechanical properties and stress–strain curves of the 5083/6005a welded joints after cor-
rosion in the 3.5% NaCl + 0.01 mol /L NaHSO3 solution for different times: (a) stress–strain curve; 
(b) mechanical properties. 

The fatigue properties of the 5083/6005A welded joints corroded for different times 
are shown in Table 2 and Figure 3: after 3, 7, 15, and 30 days of corrosion, the fatigue life 
decreased by 84.5%, 90.7%, 93.1%, and 95.7%, respectively. Corrosion had a significant 
effect on the fatigue life of the 5083/6005A welded joints, and the fatigue life decreased 
with increasing corrosion time. 

In the fatigue process, stress concentration occurs at the corrosion pits due to alter-
nating stress, resulting in crack nucleation at the corrosion pits [15]. As is shown in Figure 
4a, there were many corrosion pits on the surface of the 5083/6005A welded joint after 30 
days of corrosion, among which some of them formed clusters with Al(Fe,Mn)Si inclu-
sions contained (Figure 4b,c). Thus, the fatigue life of the 5083/6005A welded joints de-
creased sharply after corrosion. 

Table 2. Fatigue life of 5083/6005A welded joints. 

Specimen Uncorroded 3 Days 7 Days 15 Days 30 Days 

Nf/ cycles 
107  1,159,257  884,098 805,323 449,833 

6,804,918 907,457 672,835 353,091 267,661 

 
Figure 3. The effect of corrosion time on the fatigue life, obtained by fitting the results in Table 2. 

0 5 10 15 20 25 30

106

107  Experimental results
 Fitting results

N
f (

cy
cl

e)

Exposure time (Days)

Figure 3. The effect of corrosion time on the fatigue life, obtained by fitting the results in Table 2.

In the fatigue process, stress concentration occurs at the corrosion pits due to alternat-
ing stress, resulting in crack nucleation at the corrosion pits [15]. As is shown in Figure 4a,
there were many corrosion pits on the surface of the 5083/6005A welded joint after 30 days
of corrosion, among which some of them formed clusters with Al(Fe,Mn)Si inclusions
contained (Figure 4b,c). Thus, the fatigue life of the 5083/6005A welded joints decreased
sharply after corrosion.
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Figure 4. (a) SEM of a 5083/6005A welded joint corroded for 30 days; (b) EDS1 results;
(c) EDS2 results.

Figure 5 shows SEM images of fatigue fractures and fracture locations of the 5083/6005A
welded joints after corrosion for different times: the fatigue fracture position of the
5083/6005A welded joints after corrosion was mostly on the 6005A side, because the
corrosion resistance of aluminum alloy 5xxx is better than that of 6xxx aluminum alloy [8].
Therefore, after the same corrosion time, there were more corrosion pits on one side of
6005A. Previous research indicated that when pits become larger and deeper or form clus-
ters, a higher stress concentration is caused in the fatigue process, resulting in accelerated
fatigue initiation and crack propagation and reduced fatigue life [15]. Moreover, the crack
propagation region was found to decrease with increasing corrosion time, which may be
driven by the decrease in the ductility of the samples (Figure 2). Besides this, the number
of corrosion pits at the crack source also gradually increased.
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Figures 6 and 7 show two typical SEM fractographies of the 5083/6005A welded
joints. The crack source is marked with a yellow dotted line, the crack growth area is
marked with a white dotted line, and the directions of crack growth are indicated by white
arrows. Figure 6a illustrates that the 5083/6005A welded joint fracture cracks occurred at
the corrosion pit after three days of corrosion, and then extended radially. In Figure 6a,
fatigue striations can be observed in the crack propagation region over a distance of about
0.77 µm. The upper side of the fracture was the final fracture region in which many dimples
were distributed, as illustrated in Figure 6d.
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(a) overall fracture diagram; (b) schematic diagram of fracture location; (c) dimples; (d) crack source.

Figure 7a shows that the fracture surface of the 5083/6005A welded joints corroded
for 30 days was irregular and there were three crack sources, with cracks extending radially
at each crack source; because the three crack sources were in different planes, when they
extended to the same position, they merged into a main crack and continued to extend,
leading to the formation of a stepped plane. In Figure 7a, fatigue striations can be seen in
the three crack source propagation regions, at spacing of 0.78 µm, 0.91 µm, and 0.83 µm,
respectively. The upper end of the fracture was the final fracture region, which was
composed of many small dimples, as illustrated in Figure 7b. Figure 7d–f shows rock-
candy-type fracture features easily observed at the fracture surface close to crack initiation
sites. This indicates that intergranular fracture dominated the early stage of the crack
propagation process.

3.2. Effect of Corrosion Time on Corrosion Resistance

Figure 8 shows the polarization curves of the 5083/6005A welded joints in the 3.5%
NaCl solution after different corrosion times. The results of the corrosion current density
(Jcorr) calculated by Tafel extrapolation are presented in Table 3. The corrosion potential can
reflect the corrosion tendency from a thermodynamic perspective, and the corrosion current
density can be used to assess the corrosion rate from the reaction kinetics. Figure 8a and
Table 3 indicate that with increasing corrosion time, the corrosion potential (Ecorr) of the
5083 aluminum alloy matrix of the 5083/6005A welded joints decreased continuously, while
Jcorr increased gradually at the beginning of corrosion and reached its peak value between
15 and 30 days of corrosion, then it decreased continuously. The fast dissolution of the
matrix at the early stage of corrosion is probably due to the galvanic cell reaction between
the 5083 aluminum alloy matrix and the second phase. Meanwhile, after a certain corrosion
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time (15 to 30 days), most of the second phase on the surface of the 5083/6005A welded
joints had dissolved, resulting in a trend of Jcorr reduction as evinced by the polarization
curve. Compared with that of the uncorroded 5083 aluminum alloy matrix, the Ecorr of
the 5083 aluminum alloy matrix was decreased by 15.3% after 30 days of corrosion. These
results show that with increasing corrosion time, the tendency to corrosion of the 5083
aluminum alloy matrix increased, but the rate of corrosion decreased.
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Table 3. Test results of polarization curves in different environments for the 5083/6005A
welded joints.

Experimental Conditions 5083 6005A

Ecorr (vs. SCE)/ (V) Jcorr/ (µA·cm−2) Ecorr (vs. SCE)/ (V) Jcorr/ (µA·cm−2)

Uncorroded −0.594 2.0 −0.617 1.95
After being corroded for 3 days −0.626 4.11 −0.647 2.89
After being corroded for 7 days −0.650 4 −0.663 2.50
After being corroded for 15 days −0.668 5.01 −0.693 2.18
After being corroded for 30 days −0.685 0.812 −0.731 1.38

As can be seen from Figure 8b and Table 3, the Ecorr value of the 5083/6005A welded
joint 6005A aluminum alloy matrix decreased with increasing corrosion time, while the
Jcorr value did not change significantly. The Ecorr and Jcorr values of 6005A aluminum alloy
were lower than those of the 5083 aluminum alloy matrix.

3.3. Analysis of Corrosion Products

The XPS analysis results of the 5083 matrix and 6005A matrix of the 5083/6005A
welded joints after 7 days of corrosion are demonstrated in Figure 9. The XPS survey
spectrum shown in Figure 9a proves the existence of Mg, Na, O, N, C, Cl, and Al on the
5083/6005A welded joints, among which the C and N elements are mainly due to dissolved
carbon dioxide and nitrogen dioxide from the air in the solution, while the Mg, Fe, Al, and
Cl elements are due to the corrosion products formed by the second phase and the matrix
of the aluminum alloy after corrosion. The presence of elemental S was not detected in
the XPS spectrum due to the low content of NaHSO3 in the solution, which resulted in
almost no corrosion products containing S on the surface of the 5083/6005A welded joints
after corrosion.
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The spectrum of Al2p in Figure 10b,c is composed of three peaks with respective
binding energies of 75.7 eV, 74.5 eV, and 73.9 eV [16,17] (the corresponding substances
are AlCl3, Al2O3, and Al(OH)3). Since Al2O3, the main component of the oxide film, is
not a corrosion product formed in the corrosion process, the corrosion products of the
5083/6005A welded joints are Al(OH)3 and AlCl3 [18].
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3.4. Corrosion Mechanism and Model

Sakairi et al. [19] found that in the stage of oxide film formation, the oxide film consists
of a gel-like structured hydrated oxide, which contains a large amount of bound water.
After dehydration, an oxide film with better structure and stronger protection is formed.
The oxide film of an aluminum alloy contains various chemical bonds, including HO-Al-
OH, O-Al-O, and so on. However, the morphology and thickness of the oxide film in these
places are greatly changed due to the presence of intermetallic compounds, forming a
defective oxide film [20].

Hoar suggested that chloride ion adsorption on the alloy surface can migrate to the
oxide film in a certain way, and then arrive through the oxide film and metal interface. This
leads to blunt damage and promotes the dissolution of the active interface of the metal
matrix, thus causing local corrosion, and aggressive ion adsorption results in a decrease in
the oxide film’s surface tension [21,22].

The corrosion mechanism of 6xxx and 5xxx aluminum alloys is related to the iron-rich
phase and Mg–Si intermetallic compounds [23]. According to the energy spectrum analysis
in Figure 4, the second phase is mainly composed of Al, Mn, Fe, and Si elements. Therefore,
the second phase may be Al(Fe,Mn)Si. During the corrosion process, the iron-rich phase
acts as the cathode phase, and the aluminum matrix acts as the soluble anode [23].

Therefore, in 3.5% NaCl + 0.01 mol/L NaHSO3 solution, corrosive ions readily migrate
to the oxide film, leading to the gradual dissolution of the 5083/6005A aluminum alloy
welds. The aluminum matrix reacts as the anode (1) and the second-phase particles react as
the cathode (2), gradually reacting (3) and finally forming Al(OH)3.

Al − 3e− → Al3+ (1)

O2 + 2H2O + 4e− → 4OH− (2)

Al3+ + 3OH− → Al(OH)3 (3)

The solution contains HSO3
−, which is electrolyzed into SO3

2− and H+ in water (4).
As SO3

2− is easily oxidized to SO4
2− in air, a reaction occurs (5).

HSO3
− → H+ + SO2−

3 (4)

2SO2−
3 + O2 → 2SO4

2− (5)

In the solution containing Cl− and SO4
2−, these ions compete with OH− to adsorb

on the surface of the oxide film. OH− in the oxide film is gradually replaced, and with
increasing corrosion time, the oxide film gradually becomes sparse and breaks [24].
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The XPS analysis results imply that the corrosion products of the 5083/6005A welded
joints in the 3.5% NaCl + 0.01 mol/L NaHSO3 solution are Al(OH)3 and AlCl3. Therefore,
the reaction (6) occurs when the concentration of Al(OH)3 is high in the corrosion pit.

Al(OH)3 + 3Cl− → AlCl3 + 3OH− (6)

Based on the above analysis, the corrosion model of the 5083/6005A welded joints
in the 3.5% NaCl + 0.01 mol/L NaHSO3 solution was established as shown in Figure 10.
At the initial stage of corrosion, Cl− and SO4

2− are adsorbed on the oxide film, and the
defective oxide film formed near the Al(Fe,Mn)Si phase is rapidly destroyed under the
action of Cl− and SO4

2−, resulting in the corrosion of the aluminum alloy matrix of the
5083/6005A welded joints near the Al(Fe,Mn)Si phase. OH− in the oxide film not near the
Al(Fe,Mn)Si phase is gradually replaced by Cl− and SO4

2−, as shown in Figure 10a,b. With
the progress of corrosion, the aluminum alloy matrix near the 5083/6005A welding joint
with its Al(Fe,Mn)Si phase is corroded more severely, accompanied by the generation of
many corrosion products. However, the surface of the corrosion pit is only covered with a
small amount of corrosion products, because NaCl is the main component in the 3.5% NaCl
+ 0.01 mol/L NaHSO3 solution, and the main corrosion product is AlCl3. AlCl3 is easily
soluble in water, and Al2(SO4)3 will cover the surface of the aluminum alloy. No elemental
S could be detected in the XPS spectra, suggesting that the content of Al2(SO4)3 is very
small. Therefore, few corrosion products are present in the pit, as shown in Figure 10c.
At the later stage of corrosion, the aluminum alloy matrix around the Al(Fe,Mn)Si phase
is completely corroded, and then the Al(Fe,Mn)Si phase spalls, causing the formation of
corrosion pits, as shown in Figure 10d.

3.5. Prediction Model of Fatigue Life after Corrosion

A surface corrosion pit on a 5083/6005A welded joint is equivalent to an initial crack
on a semi-elliptical surface, so the fatigue life was predicted based on the methods of
fracture mechanics. A Cartesian coordinate system was established at the center of the
corrosion pit as the origin O, with the width (w) direction as the x-axis and the thickness
direction (t) as the y-axis. A schematic representation of the equivalent semi-elliptic crack is
shown in Figure 11. The intersection points of the corrosion pit and the positive axes of the
two axes are A (0, ai) and B (bi, 0), respectively, as shown in Figure 12a–f. In the model with
multiple corrosion pits, it is necessary to superimpose the long and short axes of multiple
equivalent semi-ellipses into the long and short axes of an equivalent semi-ellipse crack,
the long and short axes of which are ap and bp, respectively.
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Many scholars have previously established fatigue life prediction models by combining
the crack growth rate formula with the initial crack length and the critical crack length
when fracture occurs [25,26]. The rate of crack growth da/dN is commonly used to indicate
the crack growth performance of metal materials. Herein, the fatigue life prediction of the
5083/6005A was made based on Paris law [27] as given by:

da
dN

= C(∆K)n (7)

where a denotes the crack depth, N is the fatigue life, C and n are the material parameters,
and ∆K is the applied stress intensity factor range.

The crack can only extend when it is opened, so the crack opening function fop is
introduced as follows [28]:

fop =
σop

σmax
=

Kop
Kmax

=

{
A0 + A1R + A2R2 + A3R3 R ≥ 0
A0 + A1R R < 0

A0 = (0.825− 0.34α + 0.05α2)[cos(πσmax
2σ0

)]
1
α

A1 = (0.415− 0.071α) σmax
σ0

A2 = 1− A0 − A1 − A3
A3 = 2A0 + A1 − 1

(8)

where KOP is the K value when mating surfaces of the crack make contact; α is the plane
stress constraint factor, such that α = 1 denotes plane stress conditions; and σ0 is the flow
stress, such that σ0 = 1.15(σs + σb)/2.

When K < KOP, crack growth is suppressed, since the crack is closed. In this case,
the fatigue crack propagation behavior is found to depend on the effective stress intensity
factor range (∆Keff) rather than the nominally applied value [29,30].

∆Ke f f = Kmax − KOP (9)

The stress intensity factor Kmax of a Type-I equivalent crack can be expressed as follows:

Kmax =
σmax
√

πa
E(k)

•FI(
ap

bp
,

ap

t
,

bp

w
, θ) (10)
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where σmax is the maximum stress, and E(k) is the complete elliptic integral of the second
kind. FI represents the correction function for the crack, and the expression of FI [31] is:

FI = [M1 + M2(
ap

t
)

2
+ M3(

ap

t
)

4
]g1 fθ fw (11)

When ap/bp ≤ 1, the specific expressions of each coefficient in the formula are given as
follows: 

M1 = 1.13− 0.09( ap
bp
)

M2 = −0.54 + 0.89
0.2+(

ap
bp

)

M3 = 0.5− 1.0
0.65+(

ap
bp

)
+ 14(1− ap

bp
)

24

g1 = 1 + [0.1 + 0.35( ap
t )

2
](1− sin θ)2

fθ = [(
ap
bp
)

2
cos2 θ + sin2 θ]

1
4

f w = [sec(πbp
2w

√
ap
t )]

1
2

, ap
bp
≤ 1

(12)

When ap/bp > 1, the specific expressions of each coefficient in the formula are as follows:

M1 =

√
bp
ap
(1 + 0.04 bp

ap
)

M2 = 0.2( bp
ap
)

4

M3 = −0.11( bp
ap
)

4

g1 = 1 + [0.1 + 0.35( bp
ap
)(

ap
t )

2
](1− sin θ)2

fθ = [(
bp
ap
)

2
sin2 θ + cos2 θ]

1
4

f w = [sec(πbp
2w

√
ap
t )]

1
2

,
ap

bp
> 1 (13)

where θ denotes the angular location.
The complete elliptic integral of the second kind is expressed as follows:

E(k) = [1 + 1.464( ap
bp
)

1.65
]

1
2 ap

bp
≤ 1

E(k) = [1 + 1.464( bp
ap
)

1.65
]

1
2 ap

bp
> 1

(14)

Under the action of external force, the stress intensity factor K at the tip of a Type-I
crack increases with crack propagation, and when K reaches the critical value KIC, the
sample fractures. When fracturing occurs, the critical crack length is as follows:

ac =
1
π
(

KI C•E(k)
FI•σmax

)
2

(15)

After the transformation of Formula (7), it is integrated from the initial crack depth ap
to the critical crack depth at fracture ac, which is shown below.

N =
∫ ac

ap

da
C(∆Ke f f )

n (16)

The material crack growth performance parameters are n = 7.664 and C = 4 × 10−13

mm/cycle [32]. The fatigue load parameters are R = 0.1 and σmax = 100 MPa. The fracture
toughness KIC of the 6005A side of the 5083/6005A welded joints is 51 Mpa·m1/2 [33]. The
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geometric shape parameters of the sample, σ0 values, geometric parameters of corrosion
pits, experimental results of fatigue life, and predicted results are listed in Table 4 (it should
be pointed out that the values of t and w for the samples after corrosion for 15 days were
exchanged since the crack propagated along the transverse, rather than thickness, direction
of the plate).

Table 4. Parameters of the fatigue life prediction model for the 5083/6005A welded joints.

Sample ap/µm bp/µm t/mm w/mm θ σ0/MPa Experimental Fatigue
Life (Average)/Cycle

Predicted Fatigue
Life/Cycles

3 days 198 91 6 5 0.125π 190.3 1,033,357 1,075,621
7 days 673 541 6 5 0.125π 188.6 778,467 852,645

15 days 721 547 10 3 0.1875π 187.0 579,207 604,837
30 days 1076 934 6 5 0.125π 182.8 338,747 309,234

Based on Formula (17), the effect of corrosion time on the fatigue life of the 5083/6005A
welded joints can be obtained by fitting the experimental results (Figure 13).

N f = 1.7× 106•t−0.418 (17)
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Figure 13. The effect of corrosion time on the fatigue life of the 5083/6005A welded joints.

4. Conclusions

1. With increasing corrosion time, the elongation and fatigue life of the 5083/6005A
welded joints continued to decrease, and the corrosion phenomenon became more severe.

2. After 3, 7, 15, and 30 days of corrosion in the solution, the elongation of the
5083/6005A welded joint specimens was decreased by 17.5%, 20.6%, 26.7%, and 29.5%, re-
spectively, and the fatigue life was decreased by 84.5%, 90.7%, 93.1%, and 95.7%, respectively.

3. After 30 days of corrosion, the tendency to corrosion of the 5083/6005A welded
joint specimens increased, while the rate of corrosion decreased.

4. The corrosion products of the 5083/6005A welded joints in the 3.5% NaCl + 0.01
mol/LNaHSO3 solution were Al(OH)3 and AlCl3.

5. The formula describing the effect of corrosion time on the fatigue life of the
5083/6005A welded joints is Nf = 1.7 × 106•t−0.418.
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