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Abstract: In this work, we measure polarization-resolved photoluminescence spectra from exci-
tonic complexes in tens of single InAs/GaAs quantum dots (QDs) at the telecom O-band with
strain-coupled bilayer structure. QDs often show fine-structure splitting (FSS) ~100 µeV in uniform
anisotropy and valence-band mixing of heavy holes (HH) and light holes (LH); the biaxial strain also
induces LH excitons with small FSS (especially XX, <5 µeV, 70% of QDs); delocalized LH reduces the
Coulomb interaction between holes Vhh and enhances population on LH excitons XX, XX11, X11

+ and
XX21

+.

Keywords: strain-coupled bilayer QDs; fine-structure splitting; valence-band mixing; light hole

1. Introduction

Epitaxial semiconductor quantum dots (QDs) can be uniformly fabricated in-plane
with well-controlled growth parameters and optical performance, showing advantages
in laser diodes and photodetectors [1–3]. In the quantum field, among various types of
optically excited quantum emitters, single QDs in areal density <1 × 109 cm−2 cooled at
temperature (T) <60 K show multiple exciton states with discrete spectral lines; its micro-
cavity integration for enhancement and coupling in single-mode fiber (with little chromatic
or polarization mode dispersion) and photonic integrated circuit (PIC) [4–8] pave the way
for information processing; telecom-band single photons enable 100-km fiber transmission
and coupling in silicon-based PIC on mature silicon-on-insulator substrate. For QDs grown
on GaAs substrate compatible with lattice-matched GaAs/Al(Ga)As distributed Bragg
reflector (DBR) cavity to enhance vertical extraction, droplet and Stranski–Krastanov (S-K)
epitaxy have proved single QDs in a wide wavelength (λ) range, 0.7~1.6 µm [9–12]. A deli-
cate design of QD structures (e.g., QD size by deposition amount control [13], substrate ori-
entation [14]/misorientation [15], strain-reducing layer (SRL) as cap or buffer [10,11,15,16],
modulated doping [17–19] and tunneling [19]) is crucial for QD optical performance. Strain-
coupled bilayer InAs QDs with the lower layer to create strain nucleation sites and the
upper layer to form strain-relaxed larger QDs aligned, capped by InGaAs SRL, have proved
single QDs at λ ~1.3 µm [10]. Similar to its band tuning for high mobility [20], the strain
engineering localized in the bilayer provides a tuning of exciton properties. Although
photoluminescence (PL) study of QD ensembles has been fulfilled [21], a micro-PL (µPL)
study of single QDs in such structure offers a direct probe to understand the strain effect on
the QD electronic structure as referred to its morphology characterization and makes QD
structure optimization more active. In this work, by extensive µPL study of many such kind
of QDs in one sample in various exciton energies and configurations, it is found that the
biaxial tensile strain in GaAs spacer below the upper QD induces a uniform QD anisotropy
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with fine-structure splitting (FSS) ~100 µeV and light hole (LH) level with valence-band
mixing (VBM) to heavy hole (HH) by tunneling (energy-dependent, higher-energy branch
in a broader linewidth) as the degree of linear polarization (DLP) reflects [22]. LH excitons
show that FSS is much reduced and becomes dominant when LHs delocalize, in particular
biexciton XXlh, with FSS as small as 0~5 µeV (70% of QDs), which is a little saturated
under high pump when many LH excitons from the s-s or p-s transition in C3v features are
built by delocalized LHs, unlike a weak LH exciton in QD with a buried strain layer [23].
The delocalized LHs also reduce the FSS of HH excitons. Charge defects build an electric
field to vary the FSS oscillation phase and reduce exciton formation, with a clear spectral
shoulder originating from the phonon. While still posing challenges (e.g., careful control
of strain and interface defect to enhance QD brightness, optimizing the microcavity to
enhance extraction, adding a dielectric mask to avoid surface adsorption or scratch, etching
mesa to reduce the bulk strain), the prospect of this hybrid quantum structure as a QD
molecule [21,24] is encouraged.

2. Materials and Methods

The bilayer InAs QDs are grown in molecular beam epitaxy on semi-insulating GaAs
(001) substrate with a gradient indium flux: ultralow deposition rate and higher T for
the lower seed layer; higher deposition rate and lower T for the upper layer capped by
a 5 nm In0.15Ga0.85As SRL; a 8 nm GaAs layer between them acts as both cap and space
with strain field to form aligned QDs; a planar GaAs/Al0.9Ga0.1As DBR cavity at λ ~1.3 µm
(Q ~400) is integrated to enhance light extraction in this λ. For detail of the structure and
growth, see [10,25]. To reflect QD size distribution, a test sample with the bottom DBR but
no cavity filtering is grown to characterize the full spectrum of QDs and the atomic force
microscope (AFM) morphology of uncapped QDs. Single-QD µPL spectrum is measured
by a fiber-based confocal microscope spectrograph composed of an NA ~0.7 objective for
collection with laser spot focused on the sample in diameter ~2 µm, a collimator coupling
in single-mode fiber and a 0.5 m-long grating spectrometer equipped with a liquid nitrogen-
cooled InGaAs linear array detector (Princeton Instruments). The sample is cooled at T
~5 K in a vibration-free helium-flow cryostat [26] and continuous-wave (cw) excited by a
λ = 632.8 nm HeNe laser with the maximal power at the spot P0 ~50 µW attenuated by
a gradually varied neutral density filter for power-dependent measurement. A rotating
half-wave plane (HWP) is inserted in front of a linear polarizer inline before fiber collection
to filter out the distinct fine-structure component to observe energy oscillation beyond the
spectrometer resolution, with peak energy of an exciton line in time-integrated PL spectra
deduced from line fitting [17]. In the same QD, biexciton XX usually exhibits FSS oscillation
in the same size but opposite sign to exciton X to emit polarization-correlated photon pairs.
The LH–HH VBM [22] causes DLP, defined by (Ix − Iy)/(Ix + Iy), where x and y mean
two orthogonal axes, [1–10] and [110]. The slight offset in LHX and LHY is reflected from
FSS oscillation too. To understand LH, QD band structure is simulated by Nextnano in
8-band k.p theory with elastic strain minimized. In fact, the bulk strain in a planar sample
is significant to affect QD performance during cryogen cycles. Etching mesa will reduce
bulk strain for a better control of QD condition for quantum emission.

3. Results
3.1. PL Spectra and AFM Images of Bilayer QDs

The bilayer QD growth is found to be more sensitive on indium surface migration
driven by strain sites and growth T. In the test sample with capped and uncapped QDs,
Figure 1 presents their AFM morphology and PL spectra. The statistics on QD AFM height
show correspondence to their PL spectra: larger indium coverage in region 1 leads to
individual QDs at λ ~1.32 µm at a height of ≥13 nm (28/4 µm−2), while lower coverage
in region 2 leads to fewer QDs at a height of ≥13 nm (3/4 µm−2) and a strong profile
at λ ~1.05 µm from dense QDs at a height of 9~10 nm. For single-layer QD growth with
indium coverage increasing, the third critical coverage forms large QDs at λ ~1.1 µm and
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1.2 µm with a quantized height of ~13 nm and 15 nm after the first one to form single QDs
at λ ~0.88 µm at a height of 1~2 nm and the second one to form single QDs at λ ~0.91 µm at
a height of 7~8 nm [13] after 2D–3D transition [27]. Here, the strain relaxation and possible
interlayer level coupling form single QDs at a height of ~13 nm with redshift λ ~1.3 µm. The
excited states [28] also appear as the arrows indicate. Their slight redshift in region 2 reflects
sufficient migration to form larger QDs due to a higher T; in the wafer center (region 3)
with much higher T and lower coverage, the λ of lower-density large QDs even extends to
1.36 µm. In AFM images, compared to region 1, region 2 with enhanced migration shows
large QDs in a larger base and more small QDs at a height of 5~7 nm. For bright single-
photon emission at λ ~1.3 µm, the lower T in region 1 to form defectless high-aspect-ratio
QDs with exciton lines appearing in spectral profile is desired, i.e., purely strain-driven
(instead of T-driven) surface migration. Single QDs can be filtered (spatially isolated) by
DBR cavity (e.g., pillar) [26,29], in addition to good control of indium coverage and strain
site (see the spectrum in black curve, i.e., another point in region 1, with individual QDs
at λ ~1.3 µm in sharp exciton lines). Compared to the narrow growth T window for the
bilayer single QDs at λ ~1.3 µm, the case is different for single QDs at λ <1.1 µm, with the
second critical coverage where a broad growth T exists (both region 1 and region 2 with
various growth T show exciton lines in the spectral profile). QDs in the larger base likely
have more interface defects to build a multielectric field to reduce exciton formation and
show a smooth spectral profile from phonon broadening, with the excited states relatively
higher populated. Since QD emission redshifts are ~100 nm at room T, the bilayer structure
is also valuable for growth of QD ensemble at λ ~1.45 µm [12].
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Figure 1. (left): μPL spectra of bilayer QDs: region 1 shows individual QDs at λ ~1.32 μm with ex-
citon lines, two points, in blue and black curves; region 2 shows individual QDs at λ ~1.32 μm in 
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Figure 1. (left): µPL spectra of bilayer QDs: region 1 shows individual QDs at λ ~1.32 µm with
exciton lines, two points, in blue and black curves; region 2 shows individual QDs at λ ~1.32 µm
in lower aspect ratio and smooth spectral profile, a strong profile at λ ~1.05 µm from small QDs;
region 3 shows extended λ; (right): AFM images; (inset): statistics on QD AFM height.

3.2. Band Structure of Bilayer Single QD

The simulation result is presented in Figure 2. There are the electron, HH and LH
ground states E1, LH1 and HH1; with proper QD size, their energy offsets agree with the
emission λ ~1.3 µm. HH in p-type as simulated is localized in the upper QD, while LH in
s-type is confined in the thin GaAs spacer below it where the biaxial tensile strain lifts the
LH band. The biaxial strain mainly affects the valence band, enlarging HH anisotropy and
FSS and building LH excitons in C3v symmetry with small eh exchange (overlap) and FSS.
An LH–HH mixing state as presented is responsible for DLP ~30% in polarization-resolved
spectra below. The interlayer mixing is via LH tunneling (HH hardly tunnel), sensitive on
its energy (i.e., spin states or polarization) and showing different spectral linewidths.
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Figure 2. Band structure of bilayer QD as schematized (WL: wetting layer). Insets: ground-state
wavefunctions.

3.3. QDs with Strain-Induced Large FSS

Figure 3 presents polarization-resolved PL spectra of six single-QDs in a planar DBR
cavity in orthogonal axes, red [1–10] (horizontal, H) and black [110] (vertical, V). There
are LHs and HHs to form HH excitons and LH excitons as marked, especially XXlh.
FSS > 100 µeV in HH excitons X and XX with opposite signs reflect a large anisotropy
in the bilayer QDs compared to single-layer QDs at λ ~0.9 µm (FSS ~30 µeV typically). The
uniform FSS oscillation phases, lower-energy branch along 90◦ [110] V for X and 0◦ [1–10]
H for XX, reflect a uniform QD elongation (or anisotropy) along [110] V formed by the
biaxial strain. The dominant X shows different spectral linewidths in the two polarizations:
higher-energy branch [1–10] H with more LH interlayer tunneling for mixing in a broader
linewidth. XX with the two branches LHX and LHX filled shows the same linewidth in
both polarizations. In the lower-energy side of X, there is an exciton in thinner linewidth
with FSS ~0, attributed to the negative trion X−. For HH and LH biexcitons XX and XXlh,
there is an XX1 ı̄ (2e1h11h2) exciton in the lower-energy side with nearly equal energy offset.
In QD2, QD4 and QD5, the XX1 ı̄ for HH (C2v, LH h2) shows negligible splitting, while
the XX1 ı̄ for LH (C3v, HH h2) shows a splitting in the same oscillation phase as XXlh, with
FSS ~37 µeV in QD5. In the higher-energy side, XX21

+ (2e2h11h2) exciton shows a clear
polarization feature, well-depicted by the C3v transition scheme [30], which reflects the
exchange ∆hh between LH h1 and HH h2: ~150 µeV in QD1 and QD4 while ~205 µeV
in QD2, QD5 and QD6 with more LH interlayer coupling. More LH coupling broadens
the exciton linewidth in QD2 and populates a dominant XXlh in QD5 and QD6. In QD6,
plenty of LH excitons in C3v spectral features are located in both sides of XXlh (FSS ~0)
as mirror, e.g., XX21

+ and Xı̄1+, X0 ı̄ and XX1 ı̄, XX2 ı̄+ and X1 ı̄+, reflecting higher symmetry;
HH excitons X and XX are absent; the dominant XXlh and Xlh show DLP ~30% related to
VBM to HH h2. XXlh usually shows FSS ~0 (QD1, QD3, QD4); in a charge field with LH
interlayer coupling, it shows FSS ~12 µeV nearly constant (also for Xlh) (see QD2, QD5 and
QD6), which reflects the eh exchange energy ∆0

eh in the transition diagram [30]. In QD3
and QD4 with little coupling, the strain-induced LH–HH VBM shows the same DLP for
X and XX, which is larger in QD3 with larger strain (DLP ~30%, FSS ~139 µeV). In QD1
and QD2 with LHx coupling and smaller FSS, XX shows larger DLP (30%) than X (DLP ~0).
The negligible DLP in X is likely due to LH–HH VBM to the same LHX with more coupling.
XXlh usually keeps the same DLP as XX (QD1, QD3, QD4). The LH delocalization usually
reduces DLP. In QD2 (QD5) with more (less) LH coupling and smaller (larger) FSS, it shows
smaller (larger) DLP than XX. The large DLP in XXlh in QD5 is consistent with the DLP in
X, reflecting polarization-related LH tunneling for mixing.
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[110] and [1–10], large DLP ~30% marked. (Insets): FSS oscillations. HH excitons X and XX in large
FSS and opposite signs; LH excitons marked, especially XXlh with small FSS, inverted triangle: XX21

+,
circles: XX1 ı̄ for both HH and LH, square: Xı̄1+, QD6: more LH excitons located around XXlh.

3.4. QDs with LH Excitons in Small FSS

Since LHs have small effective mass and shallow barriers (see Figure 2), a little vari-
ation of QD dielectric environment (e.g., interface charges) will reduce their barriers for
interlayer delocalization and show dominant LH excitons such as XX and X1 ı̄+ or XX21

+

with HH excitons absent, see Figure 4. Unlike the QDs in Figure 3, here, related to the envi-
ronment charge field, the FSS of the LH excitons XX and X varies from <5 µeV to 22.6 µeV,
and higher excitons are populated. In pump-power dependence, the near-1 slopes for all
excitons reflect a fluent hole capture in delocalized LHs. The identification of the exciton
complex is based on their similar spectral features in different QDs as referred to transition
diagram [30], their mirrored positioning as referred to QD6 and their pump-power de-
pendence slopes. Apart from the dominant XXlh, biexcitons XX21

+ and XX1 ı̄ usually show
larger slopes than excitons X, X0 ı̄, X1 ı̄+, X+, X− and X0 ı̄−. Under low pump, in QD7 there
are X, X01, X−, X01

− in slope ~0.82 or 0.88, lower than XX1 ı̄ (~0.9); in QD8 there are Xı̄1+ and
X in slopes ~0.93 or 0.74, lower than XX (~1.05) and X− (~0.84); in QD10 there are XX21

+

and XX in slopes ~0.85, higher than X (~0.83) and Xı̄1+ (~0.82). Under high pump, X and
Xı̄1+ are lost in the background. Excitons X, X0 ı̄, X1 ı̄+ and X0 ı̄− keep nearly the same FSS
oscillation phase opposite to biexcitons. In QD7 with many delocalized LHs, XXlh becomes
like X− with an additional delocalized LH attracted by Coulomb interaction, similar for
the other excitons: XX2 ı̄+ becomes XX1 ı̄, XXı̄1 becomes X0 ı̄−, X1 ı̄+ becomes X0 ı̄. Meanwhile,
the X is kept and a positive trion X+ appears at the Xı̄1+ position with a large positive
binding energy EB = Veh − Vhh (i.e., Vhh << Veh) [31,32]. For spatially delocalized LH levels,
their Coulomb interaction (Vhh) is greatly reduced and the hole–hole exchange ∆hh tends to
be negligible. In this case, XX21

+ and Xı̄1+ in QD9 and QD10 show FSS ~0; XX1 ı̄ in QD7
(QD10) shows the same FSS as X (XX), reflecting ∆0

eh of 16~17 µeV. The ∆0
eh as FSS of X

and XX reflect is 14~22.6 µeV in the four QDs, a little larger than the ∆0
eh of the QDs in

Figure 3, ~12 µeV; they will vary greatly in a strong defect field as QD13~15, reflected in
Figure 5. There is also a tiny X peak near the new XX1 ı̄, similar as QD8 and QD10. In QD10,
different spectral features of XX1 ı̄ and XXı̄1 are clearly shown, as referred to C3v transition
schemes [30]. In QD7 with ∆hh ~0, the FSS ~40.5 µeV in X0 ı̄ reflects ∆1

eh (e-h2) [30]. In QD8
with less LH delocalization, apart from the dominant XXlh (FSS ~4.9 µeV with an additional
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LHZ with FSS ~0), there is a dominant X1ı̄
+ with FSS ~45.3 µeV and a secondary XX1ı̄ with

FSS ~56.3 µeV in opposite oscillations, reflecting a large ∆hh ~70 µeV with slight energy
difference in ∆0

eh ~14.1 µeV (e-h1) and ∆I
eh ~25 µeV (e-h2) in C3v transition diagram [30].

QD7, QD9 and QD10 with delocalized LHs show population on XX21
+ and other higher

excitons located around XXlh (see QD9). In QD10, the hydrostatic charge field is high
enough to vary the FSS oscillation phase and show a dominant XX1ı̄ (i.e., X− coupled with
an additional delocalized LH by Coulomb attraction) under high pump. In QD6~10 with
LH delocalization, XX shows a negative EB (also X− in QD7, QD8, QD10, EB = Veh − Vee)
from smaller Veh, Veh . Vee. In one sample, both QDs (large FSS and VBM or small FSS and
LH exciton) will be found. To illustrate the small FSS in XXlh, Figure 5 presents QD11~15.
Unlike QD11 and QD12, QD13~15 with a hydrostatic charge field as screening show a weak
exciton intensity with the FSS oscillation shift (lower-energy XX branch in [110]) and a clear
spectral shoulder from the phonon. Around the minimum FSS ~0, the charge field varies
the FSS oscillation phase quickly [33], e.g., 2.1 µeV in QD13. In QD15, the dominant XX
with larger FSS shows oscillation shift clearly. For a more delocalized LH wavefunction,
the tuning of FSS needs a higher charge field, and thus there are ~70% of QDs show XXlh
FSS < 5 µeV as the statistics in Figure 5 reflect.
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pink: X, black: XXlh, red diamond in QD9: higher excitons. (Insets: left): FSS oscillations; (top-right):
polarization-resolved spectra; (bottom-right): pump-power dependence, slope marked in plot or
near peak.
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vary FSS oscillation phase and show phonon-related spectral shoulder. QD14 in similar spectrum as
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4. Conclusions

In this work, by microphotoluminescence (µPL) spectroscopy of bilayer single QDs,
the strain effect on QD electronic structure, anisotropy, light hole (LH) formation and
interlayer coupling have been uncovered from the spectral features, fine-structure splitting
(FSS) and the degree of linear polarization. The biaxial strain enlarges QD anisotropy in
[110] for large FSS ~100 µeV. It also induces LH excitons with small FSS (especially XX with
FSS < 5 µeV, 70% of QDs). LH interlayer coupling greatly reduces the FSS of HH excitons
with mixing and leads to dominant population on LH excitons XX, XX11 and XX21

+. If
there are charge defects at the QD interface to build hydrostatic multi-electric fields, the
exciton formation will be reduced and the emission from single QD will show an obvious
spectral profile from the phonon scattering broadening; besides, the electric fields also vary
the FSS oscillation phase. The µPL study combined with AFM morphology facilitates the
optimization and the growth of the hybrid QD structure.
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