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Abstract: With the development of mineral testing technology and ore deposit geochemistry, titanite
has become a hot topic in the study of accessory minerals. Two large-grained titanite crystals from
Mogok, Myanmar, were used for a detailed study. In this study, the standard gemmological properties
and spectral characteristics of titanite crystals were obtained by Fourier transform in-frared, micro
ultraviolet-visible-near-infrared and Raman spectroscopy, respectively, which pro-vide a full set of
data. Mineral major and trace elements were analysed using Electron-Probe Mi-croAnalysis (EPMA)
and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The purpose of this
study is to report spectral characteristics and major and trace elements of Mogok, Myanmar, in order
to find new potential titanite standard samples. The two titanite crystals have similar major element
compositions, and both grains have relatively low Al content (0.011–0.014 apfu) and Al/Fe ratios
(0.157–0.222), but high Fe content (0.063–0.079 apfu). The two titanite crystals have similar chondrite-
normalised rare earth element (REE) patterns with significantly Light Rare Earth Element (LREE)
(La–Gd) enrichment and deletion of Heavy Rare Earth Element (HREE) (Tb–Lu). The 238U/206Pb
ages of the two titanite samples are 43.5 ± 5.8 Ma and 34.0 ± 4.2 Ma, respectively. Generally,
magmatic titanite has a low Al/Fe ratio, metamorphic and hydrothermal titanite crystals have
extremely low Th/U ratios close to zero, with flat chondrite-normalised REE patterns or depletions
in light REEs relative to heavy REEs. Different genetic types of titanite can be distinguished by the
characteristics of major and trace elements. Combined chemical features such as REE differentiation,
Al/Fe and Th/U ratios with formation temperature, the analysed titanite samples are considered
magmatic-hydrothermal titanites. Their 238U/206Pb ages may indicate a potential stage of magmatic
hydrothermal conversion.

Keywords: titanite; U–Pb dating; LA-ICP-MS; major and trace elements

1. Introduction

Titanite (CaTiSiO5) is a common accessory mineral in various geological environ-
ments, including calc-alkalic plutonic rocks [1] (particularly I-type granites), metamorphic
rocks [2] and hydrothermal products such as skarns [3]. The crystal structure of titan-
ite is connected by SiO4 tetrahedron and TiO6 octahedron, and Ca2+ cations exist in the
lattice with 7 coordination number [4]. The Ca2+ site can accommodate all large cations,
including Y, rare earth elements (REEs), U, Th, Mn and Pb. These elements can indicate
magmatic or hydrothermal evolution, which makes titanite a useful indicator of magma
and/or fluid characteristics [5–9]. In addition, titanite is a good U–Th–Pb radiometric
chronometer [10–15].

Recently, laser ablation multi-collector inductively coupled plasma mass spectrometry
(LA-MC-ICP-MS) instrumentation has been widely used to determine the in situ major
trace element and isotopic compositions of titanites [1,14,16–28]. However, the lack of
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matrix matching standard materials is a significant barrier to the widespread adoption of
this technology [29].

In this study, in situ major trace element compositions of two titanite single crystals in
Mogok, Myanmar, have been studied through electron probe microanalysis (EPMA) and
LA-MC-ICP-MS. Spectral features are obtained and compared with the calibration spectra
in the RRUFF database [30]. Our aims were to establish potential young titanite standard
samples and reveal the genesis of titanite.

2. Geological Setting

The Mogok area in Myanmar is a world-famous gem-producing area (Figure 1a) [31–33],
which, extending in the north–south direction, is primarily composed of metamorphic
rocks, mixed rocks and late Mesozoic granitic intrusive rocks (Figure 1b) [34–36]. The
Mogok metamorphic zone was formed by the northward subduction of the Indian plate in
71 Ma and the collision between the Eurasian and Indian plate at approximately 50 Ma [37].
Previous studies show that deep crustal melting occurred with ages ranging from 20–15 Ma
in this region, and this process was accompanied by granite intrusion. Precious age
determinations indicate that metamorphism along the MMB occurred during 68–21 Ma
with peak between the Middle Eocene and the early Oligocene [38–41]. The Mogok titanite
samples can meet the requirement of younger standard samples.
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Figure 1. Geological maps of Mogok metamorphic belt and adjacent regions (modified from Win et al.,
2018) (a) [42]. The main geological structures for the Mogok area (modified from Searle et al.,
2020) (b) [39].

3. Materials and Methods

Two Mogok titanite crystals (MG-5 and MG-6) were examined using standard gem-
mological techniques. The specific gravity (SG) of the samples was obtained using a
hydrostatic weighing method. Spectroscopy tests for the samples were conducted at the
Gemmological Research Laboratory of China University of Geosciences (Beijing) to obtain
their spectral properties.

Infrared reflection spectra were obtained using the Tensor 27 Fourier transform in-
frared spectrometer, with a test spectral range of 2000–400 cm−1. An ultraviolet–visible
(UV–Vis) spectroscopy test was conducted using a UV-3600 UV–Vis spectrophotometer
(Shimadzu Corporation, Kyoto, Japan) to measure the absorption value with the following
setting: slit width: 2.0 nm; time constant: 0.1 s; wavelength range (nm): 200.00–900.00;
scanning speed: high speed; sampling interval: 0.5 A Horiba HR Evolution-type micro-
confocal laser Raman spectrometer (Horiba, Ltd., Kyoto, Japan), which was used to conduct
a Raman spectroscopy test with the following setting: laser source: 532 nm; slit width:
100 µm; grating: 600 gr/mm; scan time: 4 s; integration times: 3; ICS correction range:
100–2000 cm−1.

The titanite grains were mounted in epoxy, polished and examined using BSE images
to select suitable targets for in situ analysis. The TESCAN field emission scanning electron
microscope (MIRA 3LMH) was used to capture BSE images with the following setting:
acceleration voltage: 7 kV; absorption current: 1.2 Na; scan time: 80 s.

Electron-Probe MicroAnalysis (EPMA) was conducted in the Laboratory of EPMA,
China University of Geosciences (Beijing) with the following setting: acceleration voltage:
15 kV; electic current: 10 Na; beam spot diameter: 1 µm.

An Agilent 7900 Q-ICP-MS instrument coupled to a 193-nm ArF excimer laser ab-
lation system was used to determine trace element compositions and U–Pb ages in the
Laboratory of Mineral Laser Microzone Analysis, China University of Geosciences (Beijing).
The Ontario standard was used for calibration, and the MKED1 standard was used as a
standard reference.

4. Results
4.1. Visual Appearance and Gemmological Properties

The titanite samples are dark brown and translucent with medium cleavage and greasy
lustre (Figure 2a,b). The MG-6 sample has crystal plane steps. Triangular etching on the
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crystal surface can also be observed. Some weak areas of MG-5 sample are dissolved into
small pits by corrosion, forming regular shaped pits on the crystal surface (Figure 3).
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Figure 3. Triangular etching of MG-5.

The SG values of MG-5 and MG-6 are 3.51 and 3.56, respectively. Since the refractive
index of titanite varied between 1.89 and 2.02, the index of refraction exceeded the refrac-
tometer’s value and could not be measured. The titanite samples do not change colour
under a Chelsea colour filter. The titanite samples have a rare earth spectrum, as seen
through spectroscopes, with multiple fine absorption lines and 580 nm double lines.

4.2. Spectral Characteristics
4.2.1. Fourier Transform Infrared Spectrum

The MG-5 and MG-6 samples have 432.04, 565.12, 725.21 and 939.30 cm−1 characteristic
absorption peaks in the fingerprint region (Figure 4). The position of 420–440 cm−1 is the
vibration band of TiO6 octahedron. The position of 550–570 cm−1 is the in-plane bending
vibration band of SiO4

4− and Si–O bond; the position of 730 cm−1 is the stretching vibration
band of Si–Si bond; and 800–1000 cm−1 is the position of the asymmetric stretching vibration
band of the Si–O bond and triple simplification of SiO4

4−.

4.2.2. UV–Vis Spectrum

The colour origin of the titanite samples was analysed by UV–Vis spectra. MG-5
and MG-6 are brown titanite samples. The UV–Vis spectrum of MG-6 has an obvious
absorption peak centred at 565 nm in the range of 550–600 nm, weak absorption peaks at
700–800 nm and a wide and slow absorption band at 220–300 nm (Figure 5). The yellow–
green absorption band with 565 nm as the centre in the range of 550–600 nm is caused by
the electron transition between Ti4+ and Fe4+.
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4.2.3. Raman Spectrum

The following characteristic peaks of the titanite samples are found within the range
of 200–2000 cm−1: an absorption peak at 242 cm−1 caused by the translational vibration
of [SiO4]4+, an absorption peak at 316 cm−1 caused by the rotational vibration of [SiO4]4+,
an absorption peak at 467 cm−1 caused by the bending vibration of [SiO4]4+, a strong
absorption peak at 605 cm−1 and an absorption peak at 854 cm−1 both caused by the
stretching vibration of [SiO4]4+ (Figure 6).

4.3. Major and Trace Elements

Major element compositions of the titanite samples are presented in Table 1. The
two titanite crystals have similar major element compositions (CaO 25.93–27.61 wt%, TiO2
36.67–38.25 wt% and SiO2 29.50–30.47 wt%). Both grains show relatively low Al contents
(0.15–0.18 apfu) and low Al/Fe ratios (0.07–0.08), but high Fe content (1.77–2.22 apfu).

Forty analyses were conducted on the two titanite grains by LA-MC-ICP-MS. The
trace element compositions are listed in Tables 2 and 3 Titanite is an essential sink of
the entire rock [43], Nb, Ta, Th and U (Nb: 203.6–846.8 ppm; Ta: 2.181–19.23 ppm; Th:
0.892–3.412 ppm; U: 0.6871–3 ppm), and is commonly enriched with LREEs. The two



Crystals 2022, 12, 1050 6 of 16

titanite crystals have similar chondrite-normalised REE patterns with moderate REE con-
centrations (REE: 1896–2857 ppm). They have significantly LREE enrichment and deletion
of HREE (LREE/HREE: 6.55–10.39) (Figure 7a,b).
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Figure 7. Chondrite-normalised REE patterns of titanite samples MG-5 (a) and MG-6 (b). Chondrite
REE values from McDonough, W.F. and Sun, S.S. (1995) [44]. Lines with different colors represent
data of different spots in measurement by LA-ICP-MS.

Previous studies have demonstrated that REEs replace Ca and Zr in titanite and high
field strength elements such as Nd will displace Ti (Al, Fe) in the titanite lattice. The
positive correlation of Nd–Zr in the samples shows that the two elements exhibit the same
substitution characteristics (Figure 8).

4.4. Titanite U–Pb Ages

The titanite ages with common Pb [45] were calculated using the weighted mean of
the 207Pb-corrected ages and the Tera–Wasserberg (TW) Concordia intercept age anchored
through common Pb. Titanite U–Pb isotope results and ages are listed in Tables 4 and 5.
Overall 20 LA-ICP-MS analyses of each titanite sample were performed in different sections
(Figure 9a,b). On the TW diagram, the common Pb-uncorrected data of MG-5 define a
linear array, yielding a lower-intercept age of 44 ± 17 Ma (n = 20, 2σ, MSWD = 0.63) and
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a y-intercept of initial 207Pb/206Pb of 0.848 (Figure 10a,b). The common Pb-uncorrected
data of MG-6 define a linear array, yielding a lower-intercept age of 34 ± 14 Ma (n = 20, 2σ,
MSWD = 0.75) and a y-intercept of initial 207Pb/206Pb of 0.843 (Figure 10c,d). On the basis
of this common Pb composition, a common Pb correction was performed using the method
of fitting 207Pb/206Pbc. All analyses of MG-5 yielded a weighted average 206Pb/238U age of
43.5 ± 5.8 Ma (n = 20, 2σ, MSWD = 0.57), and those of MG-6 yielded a weighted average
206Pb/238U age of 34.0 ± 4.2 Ma (n = 20, 2σ, MSWD = 0.65).
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5. Discussion
5.1. Comparision with RRUFF Database

The RRUFF database contains eight titanite standard samples from Brazil, the USA,
Pakistan, Canada and Mexico. R050114 with yellowish-brown fragments from Pakistan was
chosen for comparison. Fourier transform infrared spectra of titanite R050114 have 416.5,
559.3 and 848.5 cm−1 characteristic absorption peaks in the fingerprint region (Figure 11),
indicating that these characteristic peaks occur in the range of peaks caused by different
bonds; however, the positions of these characteristic peaks are different. Raman spectra
of titanite R050114 have 252, 316, 423, 605, 873, 880 and 1177cm−1 characteristic peaks
(Figure 12). The characteristic peak at 605 cm−1 is consistent with that of the analysed
samples MG-5 and MG-6.
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Raman spectra of common titanite reference samples are shown in Figure 13 [46]. All
samples exhibited characteristic peaks near 255, 316, 342 and 850 cm−1, similar to analysed
samples MG-5 and MG-6. The Raman spectra of the YQ82, BMB108 and MKED1 samples
are similar, with characteristic peaks at 162, 231, 250, 540, 606 and 911 cm−1. The Raman
spectra of the BLR-1, Ontario and OLT1 titanite samples are similar, with characteristic
peaks at 573 and 650 cm−1. Bands occurred near 575 and 611 cm−1 in the Khan titanite,
rendering this an intermediate sample between the above two groups.
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5.2. Formation Temperature of Titanite

The Al2O3 content of titanite was used to estimate the formation pressure of titan-
ite [47], and a pressure-dependent Zr in titanite geothermometer [48] was used to estimate
the formation temperature of titanite. High temperatures enable more Zr to enter the
structure of titanite. The Al2O3 content of titanite increases with pressure (P) according to
the following: P (in MPa) = 101.66 × Al2O3 in titanite (in wt%) + 59.013 (R2 = 0.83). The
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pressures of MG-5 were estimated to be 88.39–92.15 Mpa (average = 90.14 Mpa, n = 10),
and those of MG-6 were estimated to be 86.56–94.80 Mpa (average = 92.04 Mpa, n = 10).
According to the studies by Hayden et al. (2008), αTiO2 = αSiO2 = 1. The Zr in titanite
temperatures of MG-5 were estimated to be 466.5–467.1 ◦C (average = 466.79 ◦C, n = 20),
and those of MG-6 were estimated to be 466.6–467.2 ◦C (average = 466.98 ◦C, n = 20).

Along with the weighted average 206Pb/238U ages of these two samples, the calculated
temperature range is consistent with the geological background of their ages (Figure 14).
However, there is a significant difference in the calculation results of temperature, which
may be caused by the inaccuracy of cogenetic minerals in the calculation formula.
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5.3. Genesis of Analysed Titanite

The classification of the genetic types of titanite requires comprehensive consideration
of the major and trace elements. In general, magmatic titanite has a low Al/Fe ratio,
whereas metamorphic titanite, including hydrothermal titanite, has a high Al/Fe ratio.
Both grains have been plotted in the igneous field of Kowallis et al. (1997) (Figure 15).
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Figure 15. Fe vs. Al cations per formula unit.

Metamorphic and hydrothermal titanite crystals commonly have extremely low Th/U
ratios close to zero, along with flat chondrite-normalised REE patterns or depletions in
light REEs relative to heavy REEs. In contrast, two analysed titanite grains show heavy
light REE (La–Gd) to weak heavy REEs (Tb–Lu) differentiation [49].



Crystals 2022, 12, 1050 11 of 16

The Th/U ratio is also an indicator of the origin of titanite. In general, hydrothermal
titanite has a lower ratio of Th/U (mostly < 1) than magmatic titanite. In this study, the two
samples yielded a similar ratio of Th/U (MG-5: 1.30–1.92; average: 1.61; MG-6: 1.08–1.57;
average: 1.37). Thus, titanite that crystallises under high-temperature hydrothermal condi-
tions would also have the characteristics of magmatic titanite Th/U > 1. To discriminate
the origin of titanite using a single ratio of Th/U indicator is inaccurate.

However, considering that the calculated formation temperatures were lower and
consistent with that of the hydrothermally modified titanite, EMPA data have shown low
concentrations of La in the analysed titanite samples (Table 5), which is commonly related to
late hydrothermal activity [50], and our samples can be recognized as products of magmatic
hydrothermal conversion [27,51,52].

Analysed titanite samples are interpreted as magmatic-hydrothermal.

5.4. Tectonic Evolutionary History

Themelis (2007) divides the geological evolution of Mogok into six important stages:
deposit, continental drift, plate convergence, continental plate collision, post-collisional
extension, lifting and erosion (Figure 14). The continental plate collision occurred between
50 Ma and 30 Ma, and the Northeastern Indian plate subducted obliquely into the Eastern
Asian plate. Continental collisions and the drift and collision of other microland masses
continue today. The weighted average 206Pb/238U ages of the two titanite crystals are
determined as 43.5 ± 5.8 Ma and 34.0 ± 4.2 Ma, respectively, limiting the formation age of
titanite in the period of continental plate collision.

6. Conclusions

We have investigated the chemical composition, structure and genesis of titanite
crystals from Mogok, Myanmar, through Fourier infrared, UV–Vis and Raman spectroscopy,
EPMA and LA-MC-ICP-MS. These results are used to assess the potential of titanite as
reference material for micro-analytical dating. In this paper, the analysis and summary of
mineralogical and spectral characteristics based on the samples provide characteristics of
a new production area of titanite not found in the RURFF database. According to U–Pb
dating analysis, age data have a high concordant degree with weighted average 206Pb/238U
ages 43.5 ± 5.8 Ma and 34.0 ± 4.2 Ma, respectively, which indicates the potential stage of
magmatic hydrothermal conversion. Thus, these two grains can be used as potential stand
samples for U–Pb dating analysis. Major and trace element analyses of titanites can be used
to discuss the genetic type and explore their geological background.
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Appendix A

Table 1. Chemical compositions with the structural formulas of analysed titanite from Mogok analysed by EMPA (wt.%).

MG-
5-1

MG-
5-2 MG-5-3 MG-

5-4
MG-
5-5

MG-
5-6

MG-
5-7 MG-5-8 MG-

5-9
MG-
5-10

MG-
6-1

MG-
6-2

MG-
6-3

MG-
6-4

MG-
6-5

MG-
6-6

MG-
6-7

MG-
6-8

MG-
6-9

MG-
6-10

SiO2 29.904 30.071 29.686 29.504 30.033 30.125 29.555 29.954 29.962 30.069 30.219 30.094 30.177 29.889 29.779 30.47 29.619 29.733 29.979 30.032
TiO2 37.147 36.929 38.246 38.016 37.133 38.153 37.695 38.016 37.371 37.324 37.037 36.668 37.176 37.662 37.977 37.417 37.951 37.224 37.099 37.497

Al2O3 0.308 0.303 0.326 0.312 0.301 0.308 0.31 0.304 0.289 0.301 0.277 0.343 0.331 0.348 0.342 0.352 0.271 0.338 0.334 0.313
FeO 2.488 2.322 2.533 2.587 2.299 2.567 2.456 2.353 2.485 2.308 2.554 2.811 2.825 2.722 2.364 2.283 2.405 2.855 2.669 2.547
MnO 0.044 0.014 0.039 0 0 0 0 0 0.004 0.092 0.012 0 0.016 0.014 0.025 0.045 0.143 0 0 0.131
MgO 0.029 0.008 0.042 0.009 0 0.01 0.012 0.008 0.019 0.029 0.036 0.017 0.025 0.021 0.009 0.024 0.013 0.037 0.028 0.005

CaO 26.839 27.075 26.363 26.559 26.748 26.477 27.119 26.459 26.519 26.578 26.994 27.612 26.707 27.065 26.553 26.376 26.583 26.259 25.928 26.975
Na2O 0.431 0.44 0.552 0.518 0.441 0.43 0.388 0.422 0.425 0.44 0.381 0.343 0.413 0.369 0.599 0.511 0.393 0.456 0.591 0.345
K2O 0.013 0 0.007 0.009 0.008 0 0.014 0.005 0.002 0.018 0.001 0.007 0.012 0.02 0 0.014 0.006 0.008 0.02 0.002

F 0.179 0.131 0.151 0.13 0.377 0.097 0.193 0.172 0.22 0.213 0.248 0.315 0.001 0.001 0.14 0.21 0.013 0.396 0.049 0.055
Cr2O3 0.008 0 0 0 0.036 0 0 0 0.016 0.081 0 0.028 0.007 0 0 0.055 0 0.025 0 0
NiO 0.035 0.009 0 0.067 0.078 0.057 0.051 0.002 0 0 0.016 0 0 0 0.019 0.066 0 0.028 0.079 0.073
V2O5 0.385 0.485 0.522 0.422 0.358 0.333 0.383 0.477 0.4 0.363 0.521 0.447 0.488 0.377 0.371 0.52 0.332 0.522 0.415 0.458
La2O3 0 0.033 0 0.064 0 0 0 0 0.104 0 0 0.007 0 0 0 0.141 0.007 0.097 0 0
Ce2O3 0.816 0.9 1.193 1.414 0.918 0.705 0.918 0.997 0.891 1.092 0.768 0.948 0.833 0.985 1.195 1.097 0.958 0.736 1.089 1.062
Total 98.627 98.719 99.66 99.612 98.73 99.26 99.095 99.169 98.709 98.906 99.066 99.642 99.01 99.472 99.373 99.58 98.696 98.714 98.28 99.495

Cations (apfu)

Si 1.003 1.008 0.988 0.986 1.003 1.002 0.988 0.998 1.003 1.005 1.007 1.001 1.010 0.998 0.993 1.011 0.995 0.995 1.011 1.002
Al 0.012 0.012 0.013 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.011 0.013 0.013 0.014 0.013 0.014 0.011 0.013 0.013 0.012
Ti 0.937 0.931 0.957 0.955 0.933 0.955 0.948 0.953 0.941 0.938 0.929 0.917 0.936 0.946 0.953 0.934 0.959 0.937 0.941 0.941
Fe 0.070 0.065 0.070 0.072 0.064 0.071 0.069 0.066 0.070 0.065 0.071 0.078 0.079 0.076 0.066 0.063 0.068 0.080 0.075 0.071
Mn 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.000 0.000 0.004
Mg 0.001 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.002 0.001 0.000
Ca 0.964 0.972 0.940 0.951 0.957 0.944 0.972 0.945 0.951 0.952 0.964 0.984 0.958 0.968 0.949 0.938 0.957 0.941 0.936 0.964
Na 0.028 0.029 0.036 0.034 0.029 0.028 0.025 0.027 0.028 0.029 0.025 0.022 0.027 0.024 0.039 0.033 0.026 0.030 0.039 0.022
K 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000
F 0.019 0.014 0.016 0.014 0.040 0.010 0.020 0.018 0.023 0.023 0.026 0.033 0.000 0.000 0.015 0.022 0.001 0.042 0.005 0.006

Cr 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000
Ni 0.001 0.000 0.000 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.001 0.002 0.002
V 0.010 0.013 0.014 0.011 0.010 0.009 0.010 0.013 0.011 0.010 0.014 0.012 0.013 0.010 0.010 0.014 0.009 0.014 0.011 0.012
La 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000
Ce 0.010 0.011 0.015 0.017 0.011 0.009 0.011 0.012 0.011 0.013 0.009 0.012 0.010 0.012 0.015 0.013 0.012 0.009 0.013 0.013
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Table 2. Rare earth element content (ppm) of MG-5.

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

MG-5-1 66.78 517.4 129.8 748.5 232.6 54.66 132.7 14.26 58.06 7.215 14.68 1.648 8.94 0.784
MG-5-2 67.10 522.8 131.1 758.9 237.6 55.37 135.7 14.46 59.12 7.359 14.94 1.699 9.23 0.8233
MG-5-3 79.89 607.7 153.2 889.1 284.8 67.84 166.3 18.67 78.31 9.806 20.55 2.386 13.09 1.138
MG-5-4 92.81 703.2 171.2 961 287 65.01 155.9 15.83 61.89 7.636 15.64 1.899 11.99 1.252
MG-5-5 68.72 531.4 133.7 773.9 240.7 56.22 135.8 14.50 59.56 7.355 14.83 1.693 9.33 0.8161
MG-5-6 66.88 515.4 129.9 753.2 235.6 54.84 134.1 14.24 58.14 7.236 14.74 1.668 9.10 0.811
MG-5-7 65.41 508.4 127.9 737.4 229.5 53.79 130.3 13.91 57.4 7.081 14.29 1.615 8.74 0.760
MG-5-8 67.35 519.0 130.2 758.4 235.4 55.19 135.2 14.35 58.74 7.289 14.82 1.67 9.13 0.803
MG-5-9 67.61 519.7 130.3 757.1 236.3 55.28 134.6 14.36 59.14 7.294 14.79 1.663 9.11 0.794
MG-5-10 70.98 544.2 136.0 791.1 245.1 57.46 140.3 14.82 60.63 7.495 15.27 1.732 9.55 0.840
MG-5-11 93.26 674.7 162.5 909.4 267.1 61.19 145.5 15.14 61.63 7.506 15.04 1.707 9.35 0.811
MG-5-12 80.34 609.1 153.9 896.5 285.6 68.46 167.7 18.58 79.41 9.865 20.67 2.389 13.22 1.149
MG-5-13 63.76 487.2 122.8 715.7 223.8 52.57 127.8 13.66 57.27 7.033 14.04 1.585 8.35 0.716
MG-5-14 59.66 502.9 133.4 790.6 250.9 58.18 140.9 14.66 60.32 7.334 14.90 1.707 9.725 0.858
MG-5-15 90.41 691.7 174.7 1009.9 315.2 74.28 180.9 19.63 82.84 10.171 21.08 2.400 13.2 1.147
MG-5-16 66.65 514.6 129.7 754.0 234.7 54.88 134.0 14.17 58.94 7.210 14.70 1.656 9.02 0.7811
MG-5-17 69.77 532.1 133.5 770.0 237.2 55.29 135.0 14.13 58.25 7.104 14.56 1.658 9.19 0.824
MG-5-18 67.59 524.5 131.8 768.8 238.9 55.65 135.6 14.30 59.27 7.290 14.80 1.687 9.28 0.819
MG-5-19 99.32 715.4 171.3 957.5 282.4 65.35 155.4 16.18 66.19 7.979 16.02 1.782 9.56 0.817
MG-5-20 67.54 523.6 132.1 771.0 240.0 55.87 137.2 14.40 59.43 7.316 14.87 1.689 9.266 0.816

Table 3. Rare earth element content (ppm) of MG-6.

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

MG-6-1 64.07 522.5 134.4 785.6 247.7 56.53 138.2 13.95 55.57 6.881 14.22 1.753 11.38 1.210
MG-6-2 58.69 484.0 125.8 748.5 241.3 55.56 137.0 14.05 57.23 7.093 14.85 1.845 11.79 1.217
MG-6-3 64.10 543.8 144.7 885.8 300.4 71.00 180.8 19.23 79.70 9.980 21.35 2.666 17.2 1.819
MG-6-4 59.31 486.6 126.0 743.1 239.8 55.22 136.0 13.90 56.39 7.065 14.76 1.817 11.69 1.223
MG-6-5 102.70 761.7 182.3 997.2 283.4 61.75 144.4 13.94 53.83 6.420 12.96 1.563 9.71 0.982
MG-6-6 99.27 729.9 174.0 958.5 273.7 59.93 140.7 13.69 53.40 6.378 12.87 1.534 9.43 0.922
MG-6-7 65.05 531.1 135.3 798.2 251.6 57.47 140.8 14.33 57.05 7.066 14.63 1.782 11.38 1.182
MG-6-8 64.43 541.9 143.1 873.7 297.0 69.64 177.0 18.73 77.45 9.675 20.75 2.557 16.61 1.749
MG-6-9 101.66 763.8 185.2 1039.0 307.5 69.15 164.6 16.72 67.20 8.235 16.96 2.022 12.18 1.167
MG-6-10 61.39 498.6 128.6 759.1 241.2 55.76 137.2 14.13 57.80 7.274 15.01 1.811 11.07 1.112
MG-6-11 101.31 761.5 185.2 1034.5 307.7 69.18 164.6 16.84 67.66 8.280 17.04 2.031 12.13 1.184
MG-6-12 59.55 484.7 124.2 731.5 230.2 52.96 127.7 13.11 53.24 6.633 13.68 1.654 10.06 0.988
MG-6-13 60.03 491.6 125.8 738.4 233.8 53.56 129.6 13.14 52.68 6.516 13.44 1.65 10.52 1.080
MG-6-14 65.50 550.3 145.4 890.2 303.7 71.89 183.2 19.55 80.81 10.215 21.87 2.715 17.39 1.836
MG-6-15 100.36 769.8 188.8 1067.0 321.5 72.25 171.4 17.3 68.59 8.308 17.17 2.124 13.81 1.43
MG-6-16 101.48 778.1 191.1 1079.0 326.0 73.59 175.4 17.87 71.09 8.629 17.82 2.208 14.06 1.454
MG-6-17 63.18 526.9 138.6 841.2 280.5 65.76 166.2 17.47 72.07 9.016 18.81 2.345 15.03 1.573
MG-6-18 59.89 486.4 125.1 737.0 232.8 53.51 129.4 13.23 53.71 6.652 13.79 1.660 10.15 0.999
MG-6-19 59.54 492.9 127.2 754.7 239.4 55.06 133.6 13.65 54.92 6.779 14.20 1.765 11.38 1.191
MG-6-20 98.19 722.4 173.6 971.2 280.6 62.69 147.8 14.66 58.18 6.994 14.16 1.662 9.85 0.935
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Table 4. U–Pb dating data of MG-5.

Point
Isotopic Ratios 207Pb Corrected Age

238U/206Pb 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U ±σ

Mg-5-01 4.210526 1.431579 0.833 0.014 27.18 0.38 0.2375 0.0034 28.59291 32.64977
Mg-5-02 4.08998 1.390593 0.822 0.014 27.67 0.46 0.2445 0.0034 50.96108 33.38145
Mg-5-03 8.503401 1.360544 0.810 0.014 13.04 0.15 0.1176 0.0016 35.85306 16.00427
Mg-5-04 5.534034 1.383509 0.817 0.012 20.28 0.25 0.1807 0.0025 44.92061 22.32279
Mg-5-05 5.274262 2.162447 0.804 0.015 20.82 0.41 0.1896 0.0041 66.82096 26.94427
Mg-5-06 4.231909 1.735083 0.821 0.016 26.67 0.37 0.2363 0.0041 51.14577 35.41699
Mg-5-07 3.996803 1.518785 0.829 0.015 28.36 0.48 0.2502 0.0038 38.13497 35.96065
Mg-5-08 4.106776 1.314168 0.821 0.013 27.53 0.34 0.2435 0.0032 52.69982 31.64773
Mg-5-09 4.152824 1.495017 0.824 0.013 27.25 0.40 0.2408 0.0036 46.3405 31.3618
Mg-5-10 3.805175 1.52207 0.821 0.013 29.62 0.40 0.2628 0.004 56.86429 34.14393
Mg-5-11 5.422993 1.247289 0.820 0.014 20.76 0.26 0.1844 0.0023 41.41196 25.17982
Mg-5-12 8.591065 1.37457 0.804 0.014 12.85 0.15 0.1164 0.0016 41.07903 15.79509
Mg-5-13 3.558719 1.494662 0.825 0.015 31.84 0.47 0.281 0.0042 51.80851 40.26918
Mg-5-14 3.640335 1.710957 0.835 0.014 31.54 0.51 0.2747 0.0047 28.66183 37.79578
Mg-5-15 8.833922 1.501767 0.798 0.014 12.44 0.16 0.1132 0.0017 45.387 15.32068
Mg-5-16 4.260758 1.533873 0.814 0.013 26.29 0.37 0.2347 0.0036 63.92638 30.37737
Mg-5-17 4.450378 1.691144 0.826 0.014 25.57 0.34 0.2247 0.0038 39.65274 30.76729
Mg-5-18 4.317789 1.554404 0.836 0.015 26.62 0.41 0.2316 0.0036 22.31356 33.43115
Mg-5-19 5.104645 1.327208 0.824 0.014 22.27 0.30 0.1959 0.0026 37.71706 26.80495
Mg-5-20 4.249894 1.529962 0.827 0.015 26.89 0.36 0.2353 0.0036 39.63593 33.78872

Table 5. U–Pb dating data of MG-6.

Point
Isotopic Ratios 207Pb Corrected Age

238U/206Pb 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U ±σ

Mg-6-01 4.892368 1.320939 0.817 0.013 23.10 0.32 0.2044 0.0027 42.88900 25.15391
Mg-6-02 5.698006 1.538462 0.822 0.014 19.86 0.24 0.1755 0.0027 29.76397 22.87941
Mg-6-03 7.446016 1.340283 0.818 0.014 15.14 0.18 0.1343 0.0018 27.11887 17.49094
Mg-6-04 4.940711 1.333992 0.812 0.012 22.71 0.29 0.2024 0.0027 50.61581 23.47389
Mg-6-05 4.901961 1.470588 0.826 0.011 23.17 0.25 0.204 0.003 28.01006 22.50032
Mg-6-06 2.84576 2.475811 0.823 0.008 39.90 1.00 0.3514 0.0087 57.80704 32.76922
Mg-6-07 4.863813 1.215953 0.824 0.013 23.33 0.33 0.2056 0.0025 31.54496 25.39222
Mg-6-08 7.36377 1.251841 0.825 0.014 15.46 0.23 0.1358 0.0017 19.75142 17.73803
Mg-6-09 8.591065 1.030928 0.802 0.009 12.91 0.14 0.1164 0.0012 38.43003 11.50474
Mg-6-10 4.391744 1.449275 0.828 0.013 25.92 0.32 0.2277 0.0033 27.58666 28.17365
Mg-6-11 8.826125 1.147396 0.805 0.011 12.62 0.13 0.1133 0.0013 34.76102 12.3742
Mg-6-12 4.413063 1.500441 0.827 0.014 25.83 0.34 0.2266 0.0034 29.28097 29.58775
Mg-6-13 4.863813 1.799611 0.832 0.014 23.59 0.38 0.2056 0.0037 18.27579 26.91974
Mg-6-14 7.651109 1.453711 0.811 0.014 14.60 0.18 0.1307 0.0019 33.76972 16.97535
Mg-6-15 7.102273 1.5625 0.809 0.012 15.73 0.30 0.1408 0.0022 38.64302 16.33509
Mg-6-16 7.942812 1.191422 0.809 0.009 14.05 0.13 0.1259 0.0015 34.35823 12.57437
Mg-6-17 6.72495 1.34499 0.821 0.012 16.83 0.21 0.1487 0.002 26.42441 17.34914
Mg-6-18 3.526093 2.679831 0.824 0.011 32.14 0.88 0.2836 0.0076 43.48483 31.21685
Mg-6-19 5.13347 1.488706 0.819 0.014 21.89 0.29 0.1948 0.0029 37.74075 25.35068
Mg-6-20 5.405405 1.135135 0.816 0.013 20.76 0.23 0.1850 0.0021 40.31684 22.76337
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