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Abstract: A compact high-power continuous-wave (CW) laser at 714 nm is originally developed via
intracavity stimulated Raman scattering (SRS) and sum frequency generation (SFG). The fundamental
wave at 1342 nm and the first-Stokes Raman wave at 1525 nm are generated by using a Nd:YVO4

and a undoped YVO4 crystals, respectively. Compared to the self-Raman laser, the separation of the
gain media for generating the fundamental and Raman waves can effectively reduce the thermal
lens effect in the Nd:YVO4 crystal and efficiently enhance the SRS in the undoped YVO4 crystal.
Furthermore, the undoped YVO4 crystal is coated to act as a high-reflection mirror for minimizing
the cavity losses. At a pump power of 40 W, the output power at 714 nm can reach 1.8 W. The present
compact design for CW laser source at 714 nm is believed to be practically useful for laser cooling
and trapping of radium.

Keywords: stimulated Raman scattering; continuous-wave laser; Nd:YVO4 crystal

1. Introduction

Solid-state crystalline lasers with intracavity stimulated Raman scattering (SRS) have
been identified as a practical way for widely extending output wavelengths [1–8]. Diode-
pumped Nd-doped crystalline Raman lasers have been efficiently realized in the near
infrared spectral region of 1.1–1.2 µm to develop high-power visible light sources via sum
frequency generation (SFG) or second harmonic generation (SHG) in a nonlinear crystal [9–16].
In addition to the spectrum of 1.1–1.2 µm, Nd-doped solid-state Raman lasers in the eye-
safe spectral region of 1.5 µm can be achieved by the first-Stokes Raman shift generated
from 1.3-µm fundamental emission. Up to now, SRS gain media in Nd-doped solid-state
eye-safe lasers mainly consisted of YVO4 [17], GdVO4 [18], SrWO4 [19], BaWO4 [20], and
KGW [21], and so on. Nd-doped vanadate crystals such as GdVO4, YVO4, and LuVO4
are especially classified as the self-Raman crystals on the grounds that they can generate
the fundamental and Raman Stokes waves simultaneously. Since the gain coefficient of
Nd-doped crystals at 1.3 µm was much smaller than that at 1.1 µm, almost eye-safe Raman
lasers were realized in the Q-switched operation. The continuous-wave (CW) eye-safe
Raman operation was first accomplished recently by using the in-band pumping and
composite Nd: YVO4 crystal [22].

A high-power CW light source at 714 nm is important for exploring the spectroscopic
characteristics of atomic and ionic radium isotopes [23,24]. The 714 nm laser is used
to drive the 1S0-3P1 inter-combination transition in radium with the power level about
1.0 W, depending on experimental setup. Nowadays, the CW laser source at 714 nm is
usually based on a Ti:sapphire ring laser. In this work, we originally accomplish a CW
high-power 714 nm laser via SFG of the 1342 nm fundamental wave and the 1525 nm
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stimulated Raman wave. To reduce the thermal lensing effect, the laser and Raman gain
media are separated by individually exploiting a Nd-doped and a undoped YVO4 crystals,
respectively. Furthermore, a separate cavity is designed to enhance the SRS for lowering
the lasing threshold of the Raman wave at 1525 nm. To minimize the cavity losses, the
highly reflective mirror of the SRS cavity is achieved by depositing a dichroic coating on the
end facet of the undoped YVO4 crystal. The second facet is coated to be highly reflective at
714 nm to avoid the backward generation penetrating into the Raman and laser crystals.
Note that the first idea for depositing a mirror coating on a laser crystal could date back to
the work by Maiman [25]. We explored two types of arrangements for the Nd:YVO4 and
YVO4 crystals with both c-axes to be parallel and perpendicular to each other. By using
the traditional 808 nm pumped diode at a pump power of 40 W, the output power at the
714 nm SFG can be up to 1.8 W.

2. Cavity Design and Experimental Setup

The crystallographic structure of Nd:YVO4 crystal is categorized into the D4h tetrago-
nal space group of the zircon type. The strongest Raman line corresponding to the internal
vibrations of VO4

3− group is near 890 cm−1. The Raman line of 890 cm−1 can shift the funda-
mental wave of 1342 nm to the first-Stokes wave of 1525 nm. Here, we developed a compact
cavity to generate the fundamental field at 1342 nm and the first-Stokes Raman field at
1525 nm. Within the cavity, an LBO crystal was used to perform the SFG for attaining the
coherent emission at 714 nm. Figure 1 shows the experimental setup for a diode-pumped
Nd:YVO4/YVO4 Raman laser with a coupled cavity for simultaneous intracavity SRS and
SFG to achieve a high-power 714 nm laser at the CW operation. The resonator for the funda-
mental wave was a concave-plano configuration. The concave input mirror with the radius
of curvature of 100 mm was coated to be antireflective at 808 nm (reflectance < 0.2%) on the
entrance facet and high-reflective at 1342 nm (reflectance > 99.9%) and a high-transmissive
at 808 nm (transmittance > 95%) on the second facet. The laser gain medium was a 0.2 at.%
Nd3+ doped a-cut Nd:YVO4 crystal with dimensions of 3 × 3 × 15 mm3. Both end facets of
the laser crystal were coated to be anti-reflective at 808 nm and 1342 nm. The laser crystal
was wrapped in indium foil and mounted in a conduction-cooled copper block, and its
temperature was maintained at 20 ◦C.
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The gain medium for SRS was an undoped a-cut YVO4 crystal with dimensions of
3 × 3 × 20 mm3. The first side (S1) of the undoped YVO4 crystal was coated to be dichroic
with high transmission at 1342 nm (transmittance > 99.0%) and high reflection at 1525 nm
(reflectance > 99.5%). The second side (S2) of the undoped YVO4 crystal had another
dichroic coating to avoid the backward generation penetrating into the Raman and laser
crystals. The transmittances of S2 at 1342 and 1525 nm were as high as 98%. The Raman
crystals was also wrapped with an indium foil and then mounted in a conduction-cooled
copper holder at a temperature of 20 ◦C. We explored two types of arrangements for the
Nd:YVO4 and YVO4 crystals that are shown in Figure 1a,b for both c-axes to be parallel and
perpendicular to each other, respectively. According to Porto notations, the spontaneous
Raman scattering spectra of YVO4 crystal relevant to the arrangements shown in Figure 1a,b
are with x(zz)x and x(yy)x configurations that were measured by using NXR FT-Raman
spectrum analyzer, shown in Figure 2. As can be seen, the spectra comprise of several
sharp Raman lines corresponding to the internal vibrations of VO4

3− group and external
vibrations of VO4

3− tetrahedra and Y3+ ions in YVO4 unit cell. The spectra reveal that
both Raman configurations in the YVO4 crystal have different active vibration modes.
The external vibration at 157 cm−1 (B1g(1)), attributed to the O–Y–O bending mode, can
be observed in both Raman configurations. On the other hand, the internal vibrations,
which can be ascribed to the O–V–O bending and VO4 stretching modes, located at higher
frequencies—259 (B2g), 376 (A1g(1)), 487 (B1g(3)), 816 (B1g(4)), 838 (Eg(5)) and 890 cm−1

(A1g(2))—can be completely observed in the x(yy)x configuration [26]. However, the modes
at 487 and 816 cm−1 are not excited in the x(zz)x configuration. Nevertheless, both Raman
spectra are dominated by the vibration mode at 890 cm−1.
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Figure 2. Spontaneous Raman scattering spectra with (a) x(zz)x and (b) x(yy)x configurations in
a-cut YVO4 crystal.
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The intracavity SFG of 1342 and 1525 nm was performed by using a lithium triborate
(LBO) crystal with a length of 8 mm and the cut angle at θ = 90◦ and φ = 3.3◦. The
LBO crystal was also wrapped in indium foil and placed in a TEC-cooled copper block
which ensured that the LBO crystal was maintained at the temperature for the best phase
matching. Both sides of the LBO crystal were coated to be highly transmissive at 714, 1342
and 1525 nm (transmittance > 97%). The output coupler was a flat mirror. The first facet of
the output coupler for the resonance was coated to be highly reflective within 1340–1530 nm
(reflectance > 99.9%) and highly transmissive at 714 nm (transmittance > 95%). The other
facet had an antireflection coating at 714 nm (reflectance < 0.2%). The laser crystal was
pumped by a 40-W fiber coupled laser diode array with a central wavelength of 808 nm.
The numerical aperture and core diameter for the coupled fiber of the pump source were
0.22 and 200 µm, respectively. The pump light from the fiber was re-imaged using a pair of
achromatic lenses and focused into the Nd:YVO4 crystal with a spot diameter of 500 µm.

3. Experimental Results and Discussion

Figure 3 shows the experimental result for the total output power versus the pump
power at 808 nm with the cavity shown in Figure 1a for both c-axes to be parallel to each
other. The 714 nm SFG and the fundamental and Raman output powers were individually
recorded. The threshold pump powers for the fundamental and Raman waves were found
to be approximately 1.5 W and 4.0 W, respectively. The output power at 714 nm was 1.25 W
at a pump power of 40 W. Figure 4 shows the experimental result for the total output power
versus the pump power at 808 nm with the cavity shown in Figure 1b for both c-axes to be
perpendicular to each other. The threshold pump powers for the fundamental and Raman
waves can be seen to be quite similar for both configurations with c-axes to be parallel and
perpendicular to each other. Nevertheless, the conversion efficiency with the perpendicular
configuration is obviously higher than that with the parallel one. The output power at
714 nm could reach 1.8 W at a pump power of 40 W.
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The superior performance with the perpendicular configuration was speculated to
arise from the thermal lensing effect in the YVO4 crystal. The Raman cavity shown in
Figure 1 can be seen to a flat-flat resonator which generally needs the thermal lens to bring
it into geometric stability. For parallel and perpendicular configurations, the effective focal
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lengths of the thermal lenses in the Raman crystal are denoted as f ‖th and f⊥th , respectively.

For an end-pumped cavity, f ‖th and f⊥th can be expressed as [27–29]

1

f ‖th
=

Ph
2πKcω2

p

[
dnc

dT
+ (nc − 1)αT

]
(1)

1
f⊥th

=
Ph

2πKcω2
p

[
dnb
dT

+ (nb − 1)αT

]
(2)

where Ph is the power of thermal load, Kc is the thermal conductivity, αT is the thermal
expansion coefficient, ωp is the pump radius, and nc and nb are the refractive indices
of the YVO4 crystal with polarization along c and b axes, respectively. The terms of
dnc/dT and dnb/dT are the thermal-optic coefficients of nc and nb, respectively. From
Equations (1) and (2), the difference between f ‖th and f⊥th mainly comes from the difference
between dnc/dT and dnb/dT. For a undoped a-cut YVO4 crystal, dnc/dT = 2.9× 10−6/K
and dna/dT = 8.5× 10−6/K. Considering the contribution from αT = 4.43× 10−6/K, the
value of f⊥th can be found to be nearly two times smaller than that of f ‖th. The effective
area of the cavity mode induced by the thermal lens is approximately proportional to
the square root of thermal focal length. Consequently, the mode area of the Raman wave
in the perpendicular configuration was approximately

√
2 times smaller than that in the

parallel configuration. The smaller the mode area, the higher the SRS efficiency. It is worth
mentioning that the performance for both parallel and perpendicular configurations was
explored for the first time.
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We employed an optical spectrum analyzer with a resolution of 0.1 nm (Advantest
Q8381A) to measure the lasing spectrum. Figure 5a shows the experimental result for the
optical spectrum of the SFG wave at a pump power of 40 W with the parallel configuration.
On the other hand, the optical spectrum of the fundamental and Raman waves at a pump
power of 40 W is shown in Figure 5b. The beam quality M2 factor for the output laser at
714 nm was found to be better than 3.5 at a pump power of 40 W. Note that the overall
optical spectra and the beam quality were nearly the same for both parallel and perpendic-
ular configurations. A good beam quality for the SFG wave could be obtained partly due
to the end-pumping scheme and mainly due to Raman-induced beam cleanup. Based on
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the present result, a higher output power at 714 nm could be achieved by enhancing the
reflectivity for the fundamental and Raman fields on the cavity mirror and output coupler.
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4. Conclusions

We have developed a high-power CW laser at 714 nm via intracavity SRS and SFG.
Individual Nd:YVO4 and undoped YVO4 crystals were exploited to generate the fundamen-
tal wave at 1342 nm and the first-Stokes Raman wave at 1525 nm, respectively. Compared
to the self-Raman resonator, the separate configuration of the present cavity could reduce
the thermal lens effect in the Nd:YVO4 crystal. Furthermore, we designed a compactly
coupled cavity to accomplish the SRS process in the undoped YVO4 crystal. To minimize
the cavity losses of the SRS cavity, the Raman crystal was coated to act as a high-reflection
mirror. At a pump power of 40 W, the output power at 714 nm obtained from the SFG of
the fundamental and Raman waves could reach 1.8 W with the cavity both c-axes to be
perpendicular to each other.
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