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Abstract: Autoclaved aerated concrete (AAC) is one of the most common types of lightweight
cellular concrete, having a density of approximately one-fourth of that of conventional plain cement
concrete. The use of industrial waste materials in concrete as a replacement for cement has garnered
a lot of attention in recent years as a way to reduce the environmental effect of concrete. In this
study, an attempt has been made to study the effect of AAC blocks made of industrial wastes such
as fly Ash (FA) and ground granulated blast furnace slag (GGBS). Fly ash, along with different
dosages of GGBS, was used as a partial replacement for cement in the production of AAC. For all
the different dosages, microstructural analysis was performed using a Scanning electron microscope
(SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDAX), and Fourier transform
infrared spectroscopy (FTIR). Mechanical performances of AAC were determined by conducting
various tests like compressive strength, modulus of rupture, dry density, and water absorption. The
results revealed that the dosage of “15% GGBS + 85% cement” has maximum compressive strength,
modulus of elasticity, and modulus of rupture made of Class F Fly Ash when compared to Class
C Fly Ash based AAC blocks. Besides, the incorporation of GGBS in the manufacturing process
would increase the compressive strength of AAC up to 68%. Hence, it is recommended to use 15%
GGBS + 85% cement as a potential rate of replacement, to improve the mechanical properties of AAC
blocks significantly.

Keywords: autoclaved aerated concrete; fly ash; GGBS; mechanical properties

1. Introduction

Autoclaved aerated concrete (AAC) was first attempted to produce in 1889 by Czechoslo-
vakian researcher Hoffman [1]. In 1914, Aylsworth and Dyer [2] incorporated aluminum
powder and calcium hydroxide as agents to form a cementitious matrix in AAC [3]. Later
in 1919, German researcher, Grosahe used metal powder as hydrogen gas to form AAC [3].
Several attempts were carried out during the 1880s to 1920s to produce lightweight AAC.
Finally, Swedish researcher Johan Axel Eriksson in 1923 found the perfect mix for the manu-
facturing of AAC [4,5]. Several investigations have been performed on the development of
AAC with different byproducts [6–8]. The physical, chemical, mechanical, and functional
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characteristics were investigated as per the testing and design by RILEM recommended
practices [9].

The AAC is the most widely used lightweight construction material that is commonly
employed in the form of blocks [7]. Because of the high porosity, the houses have a low
density and excellent insulation. The low density is achieved by forming air spaces to give a
cellular structure [10]. The finished result is up to five times the volume of the raw materials
used, with an air content of 70–80%, relying on the needed power and density that may
be preserved, fastened, and drilled without issues even more than lumber [11]. The AAC
is a lightweight concrete block with a density ranging from 300–1800 kg/m3. In high-rise
building construction, lightweight concrete block is widely used to reduce the dead weight
of the structure and thereby, less weight will be transferred to the foundation [12]. The
ingredients of AAC are cement, fly ash or sand, lime powder, gypsum, soap oil, water, and
aluminum powder in a range of 0.04–0.05% in volume of the concrete [13]. The aluminum
powder plays an important role in aerating the entire concrete matrix and creates a cellular
structure that occurs in the cementitious phase [14]. In the cementitious phase, calcium
silicate hydrate gels and hydrogen gas help to double the volume of concrete [15–17].
The entire process of the cementitious phase to form a concrete matrix is around 30–45
min. During this, aerated concrete produces tobermorite in the pre-curing stage. In the
transition reactional phase, the tobermorite {Ca5 [Si6 O16 (OH)2]. 2H2O} changes into
xonotlite {C6S6O17 (OH)2} [18–20].

Muthu et al. [21] experimented with the effect of fineness and dosages of aluminum
powder on the properties of AAC. The property of the concrete medium was evaluated
based on the workability variations, aeration rate, fresh density, dry density, compressive
strength, and percentage of water absorption. It was reported that the strength to density
ratio of the aerated concrete is purely dependent on the fineness of the aluminum powder
and its dosage; in addition, the water–cement ratio plays a major role in determining the
strength of the aerated concrete. Onur et al. [22] determined the effect of polypropylene
fibers in AAC, through which an increase in compressive strength, bending strength,
and thermal conductivity of the concrete has been observed as the length of the fiber
in the concrete mix increases. Rafiza et al. [23] used recycled AAC as a replacement for
sand in a new type of AAC to determine its mechanical properties. The experimental
results confirmed an increase in strength of about 16% compared to conventional AAC.
Pawel et al. [24] investigated the performance of fly ash-based AAC with a density in
the range of 350 kg/m3. The performance of both sand-based AAC and fly ash-based
AAC was compared. It was concluded that fly ash-based AAC possesses better thermal
insulation and less product of hydration when compared with that of sand-based AAC.
Kittipong et al. [25] investigated the influence of replacing black rice husk ash and bagasse
ash in AAC under different temperatures. It is reported that unburned carbon and alkaline
ashes can be used as raw material in AAC. Additional strength gain is achieved because of
the formation of tobermorite through katoite; also, in addition, the presence of other alkalis
from the residues enables to stabilize tobermorite in plate form.

Yang et al. [26] autoclave aerated concrete waste effectively refines the pore structure
and improves the micro-hardness of the interfacial transition zone (ITZ) through internal
curing, and enhances the resistance to chloride penetration. Peng et al. [27] produce AAC
by using graphite tailings as siliceous material. The results manifested that, except for the
cement dosage, water-solid materials ratio, and foaming agent content, the calcium-silicon
ratio also plays an important role in the production of Graphite Tailings-AAC. The usage
of industrial wastes/by-products like the utilization of coal bottom ash, copper tailings,
waste perlite, iron tailings, and coal gangue were reported in the past five years [28–32].

Several investigations have shown that ground granulated blast furnace slag (GGBS)
improves the mechanical characteristics of concrete significantly [33–38]. GGBS improved
the compressive strength of AAC blocks by 172% [39]. In the same investigation, replacing
21% of the cement with weight boosted tensile strength by 25% [11]. The inclusion of
GGBS reduced water absorption by 45%. Along with silica fume, GGBS and zeolite were
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investigated in the study by Pachideh et al. [39]. Both increased the characteristics of
AAC blocks in the same way that GGBS did. Among the three pozzolonas [40–42], silica
fume [43–46] was more efficient than the others in increasing strength and decreasing
water absorption.

However, there has been little research on the influence of GGBS and fly ash on aerated
concrete; thus, more research is required [11,47]. Thus, the investigation on finding which
class of fly ash, either class C or class F is suitable for AAC has not been done so far. Hence,
in this experimental work using, both classes of fly ash were used for the production of
AAC along with its strength and microstructural studies. Microstructural studies like SEM
and XRD were conducted in previous studies [7,18]; these investigations will be helpful for
finding the pore formation and structure of AAC. From the literature, it is observed that
the utilization of industrial wastes and by-products improves the performance of AAC on
the basis of economy and durability parameters.

2. Materials
2.1. Cement

In this study, Ordinary Portland Cement of 53 grades was used. Cement confirming to
IS: 12269:2013 [48] and IS: 4031:1988 [49] was followed to perform basic tests on cement.
The quantity of cement used in this investigation was 18% of the volume in aerated concrete.
Figure 1a,b clearly shows the SEM and EDAX image of OPC 53 grade of cement.
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Figure 1. (a) SEM image of OPC 53 grade cement; (b) EDAX image of OPC 53 grade cement.

2.2. Fly Ash

Class C fly ash was obtained from Ennore thermal power plant and Class F was
brought from Neyveli Lignite Corporation for this investigation. The bulk density and
the fineness of these two different fly ashes were found to have closer values, whereas the
specific gravity of Class C fly ash was around 2.6 and for Class F fly ash, it was around
1.94. In the chemical composition, Class C Fly ash contains SiO2 around 35% to 40%, Fe2O3,
Al2O3, CaO, and SO3 each in the range of 10% to 15%, whereas Class F Fly ash contains a
high concentration of SiO3, which is around 55% to 60% and Al2O3 in the range of 25% to
30%. Fly ash acts as a binder and filler material in aerated concrete as well as contributing
to the secondary hydration process. The volume of fly ash was 54% in the entire aerated
concrete [50]. Figure 2a,b clearly shows the SEM and EDAX image of Class C fly ash and
Figure 3a,b clearly shows the SEM and EDAX image of Class F fly ash and Table 1 shows
the Physical and Chemical compositions of Cement, FA, and GGBS.
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Table 1. Physical and Chemical compositions of Cement, FA, and GGBS.

Physical Properties Chemical Compositions

Cement Class C
Fly Ash

Class
FFly Ash GGBS

Chemical
Component

Cement Class C
Fly Ash

Class
FFly Ash GGBS

Appearance Grey Blackish
Grey Grey White (Chemical Component, %)

Specific
gravity 3.15 2.6 1.94 2.8 SiO2 19.15 38.75 59.12 39.17

Bulk
density

(kg/m3)
1365 920 996 1200 Fe2O3 3.62 12.04 7.14 0.552

Fineness
(m2/kg) 320 421 370 360 Al2O3 4.94 13.55 26.2 14.69

- - - - - CaO 65.81 16.95 2.74 8.14

- - - - - TiO2 0.78 1.35 1.59 34.15

- - - - - SO3 4.15 13.92 0.314 0.312

- - - - - f-CaO 0.60 3.15 0.89 1.21

- - - - - P2O5 0.03 - 0.03 1.86

- - - - - LOI 0.92 0.29 0.87 0.14
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Figure 2a,b and Figure 3a,b clearly shows the microscopic structure of the fly ash by
scanning electron microscopic analysis (SEM) and chemical components of fly ash were
found using (EDAX) images of both Class C & F fly ash utilized in the investigation.

2.3. Lime Powder

Class-C Lime powder confirming to IS: 2541:1991 [51] was used in this study. Gener-
ally, lime powder improves the binding properties of aerated concrete. Few researchers
reported optimizing lime powder at a range of 5–7% for manufacturing aerated concrete,
ex; excessive use of lime powder in concrete leads to drying shrinkage. Therefore 5.5%
of lime powder in the entire concrete medium was used in this investigation. Figure 4a,b
clearly shows the SEM and EDAX image of lime powder.
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2.4. Gypsum

As per IS: 2542-1978 (Part 1) [52] gypsum plays a major role in controlling the setting
time; therefore, 1.5% quantity of gypsum was utilized in the manufacturing process of
aerated concrete. Figure 5a,b clearly shows the SEM and EDAX image of gypsum.
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2.5. Aluminum Powder

Aluminum powder is an aerating agent that doubles the volume of the entire concrete
matrix; along with soap oil, it plays a major role in aerating wet concrete. The optimum
dosage of soap oil is 0.03% and 0.04% aluminum powder were used in this investigation.
Excessive usage of aluminum powder leads to strength degradation and pre-specific
density in the AAC blocks [53]. Figure 6a,b clearly shows the SEM and EDAX image of
Aluminum powder.
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2.6. Ground Granulated Blast Furnace Slag (GGBS)

GGBS is a by-product of blast furnaces that has high cementitious properties. Hence,
GGBS was partially replaced for cement in the AAC blocks manufacturing. GGBS has high
SiO2 and CaO, around 70–75%, to enhance the strength of concrete. As confirmed to IS:
12089-1987 [54], the GGBS was used in this investigation. The 0.14% of loss of ignition was
observed in the GGBS. Figure 7a,b clearly shows the SEM and EDAX image of GGBS.
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2.7. Water

The amount of water used for the preparation of specimens was determined based on
the state of workability of the cementitious paste as per IS: 456-2000 [55]. The amount of
water used in this AAC was limited to 26%. When the dosage of water is increased, the
reaction between aluminum powder and the wet concrete matrix gets disturbed, and this
leads to difficulty in initiating the aeration process in the concrete matrix. Figure 8 shows
the raw materials used in AAC.
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3. Preparation of Specimens

The AAC Specimen preparation Process is presented in Figure 9. The conventional
AAC specimens were prepared with main ingredients like cement, fly ash, lime, gypsum,
and soap oil were added together with water, and the slurry was mixed thoroughly by
means of a mechanical stirrer. The final aluminum powder was added and the entire matrix
was vigorously stirred for about 60 s and the concrete was poured into the casting molds.
Figure 10a shows AAC specimens. All the specimens were kept in a pre-curing chamber for
about 60 min, as shown in Figure 10b. In the pre-curing chamber, a temperature of about
40–45 ◦C was maintained. After the pre-curing process, the excess concrete in the specimens
was cut down and the molds were removed. The aerated concrete specimens were in a
semi-hardened state at that stage. All the specimens were kept in the autoclaving chamber
for the final curing process, as shown in Figure 10c. Autoclaving chamber does the steam
curing operation in which pressure at a range of 8–12 bars and temperature of the steam up
to 180–200 ◦C is always maintained. The specimens were kept in the autoclaving chamber
for about 8–10 h and then taken out for testing [20]. In this study, trial mixes were made
to produce conventional AAC having a density in the range of 600 kg/m3 to 700 kg/m3

have been prepared. Fly ash conforming to IS: 2542-1978 [56] and IS: 3812-2003 [57] was
used. Two different classes of fly ash, namely Class C and Class F fly ash, were used. Class
C fly ash incorporated AAC specimens was described as CAAC-C and Class F fly ash
incorporated AAC specimens was described as CAAC-F. Both were cast and tested.

A higher volume of SiO2 makes the concrete mix possess a more cementitious reaction.
In this research, the volume of the fly ash used was about 65% to 70% of the entire AAC mix.
Fly ash acts as a binder as well as a filler agent for the mass concrete. In sand-based aerated
concrete, the cementitious performance is low when compared to that of fly ash-based
AAC. In general, fly ash contributes to the secondary hydration process in the concrete.

In this study, GGBS is used as a partial replacement for cement in AAC. The replace-
ment dosage was set from 5% to 20% (5% GGBS + 95% cement, 10% GGBS + 90% cement,
15% GGBS + 85% cement and 20% GGBS + 80% Cement) in this research work.

Table 2 shows the code/description of AAC blocks incorporated using cement were
partially replaced using GGBS and fly ash.
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Table 2. Designation of specimens.

No Code/Designation Description

1 CS Conventional/Control AAC.
2 5% GGBS + 95% Cement (G5C95) GGBS incorporated AAC, in which 5% of cement is partially replaced by GGBS.
3 10% GGBS + 90% Cement (G10C90) GGBS incorporated AAC, in which 10% of cement is partially replaced by GGBS.
4 15% GGBS + 85% Cement (G15C85) GGBS incorporated AAC, in which 15% of cement is partially replaced by GGBS.
5 20% GGBS + 80% Cement (G20C80) GGBS incorporated AAC, in which 20% of cement is partially replaced by GGBS.
6 CAAC-C Class C Fly ash incorporated AAC
7 CAAC-F Class F Fly ash incorporated AAC

Studies on AAC with fly ash and GGBS include the following mechanical studies such
as compressive strength test, modulus of rupture, dry density, and water absorption. In the
microstructural studies, investigations were made using SEM, X-ray diffractometer, Energy
dispersive X-ray spectrometer, and Fourier-transform infrared spectrophotometer.
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4. Results and Discussions

The results of experimental studies on the mechanical properties of AAC with fly ash
and GGBS are discussed below.

4.1. Compressive Strength

A standard AAC cube size of 150 × 150 × 150 mm was cast and tested according to
IS: 2185-1989 [58] to evaluate the cube compressive strength of conventional and GGBS
incorporated in concrete with different Class C & F fly ash. The compressive strength test
carried out is shown in Figure 10d. Figure 11a clearly shows the compressive strength
of conventional AAC and Figure 11b clearly shows the Compressive strength of GGBS
incorporated in AAC.

From the test results, we observed Class F fly ash-based AAC compressive strength
was around 9% higher than that of Class C fly ash. The presence of a high range of silica
in Class F fly ash enhances the compressive strength of conventional aerated concrete
when compared to Class C fly ash. For the dosage of GGBS incorporated AAC blocks, the
strength increased around 3.6% for G5C95 specimens, 37% strength increased for G10C90
specimens, 68.6% strength increased for G15C85 specimens, and 4% strength decreased for
G20C80 specimens.
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Figure 11. Compressive strength of (a) Conventional AAC and (b) GGBS incorporated in AAC.

4.2. Modulus of Elasticity

Based on Narayanan and Ramamurthy [53], a modulus of elasticity of AAC have
developed to predict.

MOE= 1550 fck0.7 (1)

Figure 12a clearly shows the modulus of elasticity of conventional AAC and Figure 12b
clearly shows the modulus of elasticity of GGBS incorporated in AAC. The performance
test was conducted on the AAC to evaluate the elasticity of aerated concrete prepared
using Class C &F fly ash. From the test results, Class F fly ash-based AAC has a 5.36%
high modulus of elasticity when compared to Class C fly ash incorporated in AAC. For
the dosage of GGBS incorporated AAC blocks, the modulus of elasticity increased around
2.56% for G5C95 specimens, 24.5% modulus of elasticity increased for G10C90 specimens,
and the highest peak of 44% modulus of elasticity increased for G15C85 specimens, and 3%
modulus of elasticity decreased for G20C80 specimens.
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Figure 12. Modulus of Elasticity of (a) Conventional AAC and (b) GGBS incorporated in AAC.
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4.3. Modulus of Rupture

Modulus of rupture is one of the important parameters in the AAC prism. Now a
day’s large size prism is tested to understand the behavior in AAC prism using different fly
ash content [59,60]. In this investigation, Class F & C fly ash was tested with single point
load to understand the failure mechanism of AAC prism. The flexure test was performed to
understand the behavior of the AAC prism. It was found the specimens failed due to brittle.
Figure 13 clearly shows the modulus of rupture experimental setup and schematic view.
Figure 14a clearly shows the modulus of rupture of conventional AAC and Figure 14b
clearly shows the modulus of rupture of GGBS incorporated in AAC.
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Figure 13. Depiction view of the modulus of rupture experimental test setup.

From the test results, it was observed that Class F fly ash has a 5.44% higher modulus of
rupture capacity than that of Class C fly ash-based AAC. The modulus of rupture value was
found to be very low when compared to conventional concrete because of its low strength
and low density of the materials used to manufacture the aerated concrete specimen. For
the dosage of GGBS incorporated AAC blocks, the modulus of rupture increased by around
2.66% for G5C95 specimens, 26.85% modulus of rupture increased for G10C90 specimens,
the highest peak 50.23% modulus of rupture increased for G15C85 specimens, and 3%
modulus of rupture decreased for G20C80 specimens. From the results of compressive
strength, modulus of Elasticity, and modulus of Rupture, it is concluded that when GGBS
increases, the ratio of GGBS to cement will also increase, and the calcium hydroxide from
cement hydration is utilized completely, resulting in excess GGBS that behaves as an inert
filler and reduces the compressive strength and elasticity of the concrete.
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Figure 14. Modulus of rupture of (a) Conventional AAC and (b) GGBS incorporated in AAC.

4.4. Dry Density

To find out the dry density of the AAC, the specimens are kept at 500 ◦C for 30 min in
the hot air oven. The excess moisture content in the voids of AAC is removed by providing
temperature. After treating the AAC specimens in the hot air oven for 30 min at 500 ◦C, the
dry density ranges for conventional AAC was around 665 kg/m3 to 670 kg/m3 and the dry
density for GGBS was incorporated AAC was around 635 to 655 kg/m3. Figure 15a clearly
shows the dry density of conventional AAC and Figure 15b clearly shows the dry density
of GGBS incorporated in AAC.
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Figure 15. Dry density of (a) Conventional AAC and (b) GGBS incorporated in AAC.

4.5. Water Absorption

The percentage of water absorption in AAC is very high when compared to conven-
tional concrete blocks. In general, Class C & F fly ash AAC blocks water absorption for
conventional AAC was in the range of 18 to 20% and water absorption for GGBS incor-
porated AAC was in the range of 19% for all the dosages. Figure 16 clearly shows the
water absorption of conventional AAC and Figure 17 clearly shows the water absorption
of GGBS incorporated in AAC. The AAC specimen is generally less dense so that it floats
in the water, but it observes more water when compared to conventional concrete blocks.
To determine the water absorption capacity of the AAC blocks, they have to be immersed
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fully in the water; hence, the AAC blocks are pressurized into the container with water.
Comparing the dry density and water absorption of the specimens, there is no correlation
between the dry density and water absorption. As the water absorption remains to be the
same for all percentage replacements of GGBS, whereas dry density varies with respect to
replacements percentages of GGBS.
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Figure 17. Water absorption of GGBS incorporated in AAC.

4.6. Scanning Electron Microscope (SEM)

In this investigation, SEM analysis was performed on conventional AAC blocks and
incorporated with GGBS was partially replaced for the cement. There are no significant
changes observed in the structural morphology using SEM analysis on the Class C & F-
based AAC blocks comprised of 15% GGBS and 85% cement. The formation of tobermorite
is high in GGBS incorporated AAC block when compared to conventional AAC block
because of the high concentration of silicon dioxide (SiO2) and calcium oxide (CaO) present
in the GGBS. Figure 18 clearly shows the SEM image of AAC specimens when using a
conventional AAC of Class C fly ash, conventional AAC of Class F fly ash (CAAC-F), and
GGBS with 85% cement in AAC block using 15% fly ash.
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4.7. X-ray Diffractometer

In this investigation, an XRD test was conducted on AAC conventional and AAC in-
corporated with GGBS as a partial replacement of cement. The optimized mix incorporated
GGBS aerated concrete was 15% of GGBS + 85% Cement. This is an XRD analysis of opti-
mized mix AAC of different specimens such as CAAC-C, CAAC-F, and GGBS-CE-AAC-F.
The XRD results clearly show both the conventional and GGBS incorporated AAC possess
similar diffracted images. Figure 19 clearly shows the XRD image of AAC specimens.
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The results obtained from XRD clearly show that conventional AAC and GGBS incor-
porated AAC possess a similar pattern. However, the formation of tobermorite, quartz,
and anhydrites were found to be higher in GGBS incorporated AAC when compared to
conventional AAC blocks. Due to the presence of SiO2 and CaO in GGBS incorporated
AAC, it shows a higher strength capacity.

4.8. Energy Dispersive X-ray Spectrometer (EDAX)

To identify the chemical composition of AAC with different combinations, an EDAX
analysis was performed. The presence of silicon and calcium tends to have high strength
when compared to conventional AAC blocks. Figure 20 clearly shows the EDAX image of
AAC specimens.
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Figure 20. EDAX images of AAC specimens: (a) CAAC-C, (b) CAAC-F, (c) GGBS-CE-AAC-F.

The distribution of chemicals in AAC conventional and incorporated GGBS was found
to be similar but the strength of GGBS incorporated was higher than in conventional AAC.
The main reason behind the increase in strength is due to the presence of Silicon dioxide
(SiO2) and Calcium oxide (CaO) in GGBS.

4.9. Fourier Transform Infra-Red Spectrophotometer (FTIR)

FTIR spectroscopy is mainly used in this investigation to identify compounds in
the concrete. To determine the functional group on AAC specimens, FTIR analysis was
performed. The FTIR results were obtained for AAC incorporated with different materials
and are plotted in Figure 21.
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Figure 21. FTIR results of AAC specimens.

The change in the functional group was observed when an external raw material was
incorporated into the concrete. The optimized dosage of 15% GGBS + 85% Cement was
utilized for the FTIR analysis. As GGBS contains cementitious property, although there are
no huge changes in the FTIR results. Hence, the 15% GGBS replacement of cement can be
considered to improve the strength and durability properties of AAC blocks.

5. Conclusions

Autoclaved Aerated Concrete (AAC) is a lightweight cellular concrete, which includes
sand-based AAC and fly ash-based AAC. In this research, studies on fly ash-based AAC
have been carried out. The primary objective of this research was to investigate the
performance of AAC using industrial wastes (e.g., GGBD and fly ash). At first, the raw
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materials were collected and their physical and chemical properties were tested. Then,
AAC specimens of each containing Class-C fly ash, Class-F fly ash, and GGBS with the
replacement dosages from 5% to 20% (5% GGBS + 95% Cement, 10% GGBS + 90% Cement,
15% GGBS + 85% cement, and 20% GGBS + 80% Cement) were prepared and its mechanical
and thermal properties were studied along with microstructural investigation using SEM,
XRD, EDAX, and FTIR for all of the varied dosages. The following conclusions were drawn
from the experimental investigations, which focused on the mechanical properties of AAC
conventional and the incorporation of GGBS.

- The average dry density of Class C and F fly ash was found to be similar in behavior
but slightly different in the values of 665 kg/m3 to 675 kg/m3. The reduction around
635 kg/m3 to 655 kg/m3 was found when the incorporation of 15% GGBS + 85%.

- The compressive strength of Class F fly ash-based AAC conventional possesses 7
to 9% higher strength when compared to Class C fly ash. The higher strength was
obtained for Class F fly ash AAC due to the presence of 59% of SiO2. Furthermore,
incorporation of 15% GGBS + 85% Cement increases the compressive strength up
to 68.6%.

- The modulus of elasticity and modulus of rupture of Class F fly ash-based AAC was
5.36% and 5.44% higher when compared to Class C fly ash.

- The water absorption of Class C and F fly ash-based AAC was in the range of
18% to 20%.

- The overall performance of Class F fly ash AAC tends to be significant in all the per-
formed tests and hence it is recommended to use Class F fly ash in the manufacturing
of AAC blocks.

- The incorporation of GGBS in the manufacturing process would increase the com-
pressive strength of concrete. Hence it is recommended to use 15% GGBS + 85%
cement as a potential rate of replacement to improve the mechanical properties of
AAC blocks significantly.
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