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Abstract: Crystal nucleation determining the formation and assembly pathway of first organic materi-
als is the central science of various scientific disciplines such as chemical, geochemical, biological, and
synthetic materials. However, our current understanding of the molecular mechanisms of nucleation
remains limited. Over the past decades, the advancements of new experimental and computational
techniques have renewed numerous interests in detailed molecular mechanisms of crystal nucleation,
especially structure evolution and solution chemistry. These efforts bifurcate into two categories:
(modified) classical nucleation theory (CNT) and non-classical nucleation mechanisms. In this review,
we briefly introduce the two nucleation mechanisms and summarize current molecular understand-
ings of crystal nucleation that are specifically applied in polymorphic crystallization systems of small
organic molecules. Many important aspects of crystal nucleation including molecular association,
solvation, aromatic interactions, and hierarchy in intermolecular interactions were examined and
discussed for a series of organic molecular systems. The new understandings relating to molecular
self-assembly in nucleating systems have suggested more complex multiple nucleation pathways
that are associated with the formation and evolution of molecular aggregates in solution.

Keywords: crystal nucleation; solution chemistry; polymorphism; nucleation kinetics; molecular
self-association; molecular interactions; crystallization

1. Introduction

Crystallization is the central topic in various disciplines such as chemical, geochemical,
biological, and synthetic materials [1]. Nature utilizes crystallization in an elegant way
to achieve a remarkable diversity of shapes, patterns, compositions, and functions of
the arising crystalline materials from snowflakes, rocks to the bone, and teeth of ocean
organisms [2–4]. From a chemical and synthetic material perspective, chemical and/or
physical purity is one of the key attributes wherein crystallization is a well-known approach
of separation and purification and has been widely used in pharmaceutical, food, dyes, and
fine chemical industries [5–8]. As one of the oldest technologies, crystallization had been
utilized to prepare salts from salt lakes or seawater, dating back to as early as the Ancient
Yellow Emperor period (about 2700 B.C.) in China and thousands of years ago all over the
world. However, despite a long history, the theory of the development of crystallization is
rather slow, and significant progress was made until the late-1800s when Gibbs established
the thermodynamic underpinnings of phase transition [9,10].

Crystal nucleation, the first and key step of crystallization from solution, is a typical
phase transition process from liquid-phase precursors [11–15] creating an enormous di-
versity of crystalline materials. It dictates the process of molecular assembly and plays a
decisive role in many properties of materials including particle shape, size distribution, pu-
rity, chirality, etc. [16–18]. Mechanistic understandings and the precise control of nucleation
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have received lots of attention in crystal engineering, process engineering, and material
chemistry [16]. This is evidenced by a number of key reviews over the past decades [13,19].
For example, Kashchiev et al. and Davey et al. reviewed the classical nucleation theory
(CNT) that applies to systems of small organic molecules with an emphasis on the molec-
ular interpretation of nucleation kinetics. Myerson et al. and Vekilov [20] reviewed the
evidence of the two-step nucleation mechanism where Vekilov detailed a two-step sequence
scenario in which structure order is preceded by the separation of a dense, disordered
liquid phase in protein systems. Gebauer and Cölfen differentiated the nature of clusters at
different nucleation stages and reviewed the evidence of pre-nucleation clusters in inor-
ganic systems [21,22]. Anwar et al. [23] and Michaelides et al. [24] reviewed computational
approaches used to elucidate the molecular nature of nucleation and pointed to challenges
in the simulation accuracy of interatomic potentials and enhanced sampling methods.
Sleutel et al. reviewed the nucleation of protein crystals and summarized different protein
nucleation models and their limitations [25].

Thanks to the advancements in analytical techniques, measurement methods, and
computational simulations over the past decades [13,26–28], many mechanisms of crystal
nucleation have been proposed which are generally classified into two categories: classical
nucleation theory (CNT) versus non-classical nucleation mechanisms [13]. CNT holds that
density fluctuations are concomitant with the development of crystalline order. In other
words, a crystal nucleus has an identical structure to its bulk crystal. However, experimental
observations and computational simulations suggest that crystalline order is preceded by
fluctuations in density. On the other hand, stable associates or clusters were observed in
some inorganic systems. These results invoked non-classical nucleation mechanisms such
as two-step nucleation, pre-nucleation clusters, and multistep nucleation [27,29–31].

Moreover, the application of state-of-art modern analytic techniques such as solution
spectroscopy, neutron scattering, and high-resolution electron microscopy, has spurred sig-
nificant advancement in the understanding of solution chemistry and (non)-classical nucle-
ation pathway [32–34]. The structure, intermolecular interactions, and assembly mode of so-
lution associates are revealed by collectively using ATR-FTIR, 1H/13C-NMR, and advanced
DOSY or NOESY NMR spectroscopy in a number of small organic molecules [35–37]. The
dynamic evolution of solution aggregates of glycine toward crystal nucleation is probed by
synchrotron-based small-angle X-ray spectroscopy [38]. The application of high-resolution
cryo-TE [31,39–42] and in situ AFM [43,44] also provides detailed insights into the evolu-
tion of (non)-classical nucleation pathways. Computational simulations have achieved a
remarkable computational capability and developed better sampling methods that are able
to capture the rare event of nucleation at the atomic level [15].

Given these advances, the purpose of our review is to summarize the recent key
advancements in the molecular interpretation of the mechanistic understanding of crystal
nucleation which leads to the postulation and concept of multiple nucleation pathways for
organic molecular systems, and to look into the remained open questions for future work.
The review is organized as follows: first, we briefly introduce the recent development in
classical nucleation theory at the molecular level and non-classical nucleation mechanisms;
then we summarize the recent research progress on the molecular interpretations of crystal
nucleation in organic polymorphic systems with a focus on an illustration of the relationship
between solution associates or aggregates and the resultant crystal structure and hierarchy
of intermolecular interactions; last, we look to future work and raise some unsolved
questions about crystal nucleation, which hopefully will inspire researchers devoted to this
intriguing topic of crystal nucleation.

2. Classical Nucleation Theory (CNT)
2.1. Thermodynamics

CNT was originally derived from the pioneering work of Fahrenheit on the supercool-
ing of water in the early 1700s. It was endowed with thermodynamic underpinnings by
Gibbs in the late 1800s on the studies of droplet formation on a supersaturated vapor. In
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the early 1900s, Volmer and Weber, and others formulated the kinetic aspects of CNT for
vapor condensation; subsequently, they were extended by Turnbull and Fisher in the 1950s
to address the cases of nucleation in condensed phases [45].

Nucleation is the first step of the phase transition that occurs by local density fluc-
tuations of the old phase from a supersaturated state [11]. The path by which the phase
transition takes place is often described by the cluster approach. A cluster of a certain
number n of molecules (or building units) may be formed rarely because of a free-energy
barrier presented in the course of cluster formation (Figure 1a). The barrier results from the
competition in the growing clusters between the gain in bulk free energy (∆Gv = −n∆µ)
due to the addition of a molecule and the increasing surface free energy (∆Gs = aγ) via the
creation of the additional crystal-liquid interface with specific interfacial free energy, γ, and
a surface area, a. The total free energy is thus given by

∆G = ∆Gv + ∆Gs = −n∆µ + aγ (1)

∆µ = µl − µs = kBT ln S (2)

S =
c
c0

(3)

a = A(v0n)2/3 (4)

where kB is the Boltzmann constant, T is the absolute temperature, S is the solution super-
saturation ratio, c is the actual concentration, c0 is the equilibrium (saturated) concentration,
A is a shape factor, and v0 is the molecular volume in the crystalline phase.
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Figure 1. Cluster formation and the associated changes of free energy during crystal nucleation.
(a) Nanoscopical formation of new phase via molecular clustering and (b) free energy diagram of crys-
tal nucleation showing the formation of critical nucleus size and supersaturation influence wherein a
high supersaturation in the solution leads to a lower critical size of the nucleus (i.e., n∗I > n∗II).
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When the size of a cluster is small, the contribution of the surface free energy will be
dominant over the bulk free energy, and the cluster will tend to dissolve. However, the bulk
free energy will become dominant for the clusters with relatively large sizes. Therefore, a
critical size of cluster (n*, also named as nucleus) exists, beyond which the cluster probably
survives from dissolution and becomes a nucleus growing further (Figure 1b) [46]. The
critical size of a nucleus and the critical nucleation barrier (∆Gc) were given by

n∗ =
8c3v2

0γ3

27(kBTlnS)3 (5)

∆Gc =
4c3v2

0γ3

27(kBTlnS)2 (6)

The size of a critical nucleus is dependent upon the strength of free energy barrier,
which is influenced by crystallization conditions such as supersaturation, solvent, and
temperature [13]. Higher levels of solution supersaturations (i.e., greater driven force) leads
to the lower free energy barrier and thus the lower size of the critical nucleus. The critical
clues and the size-dependence on the thermodynamic driving force have been recently
demonstrated experimentally [47].

2.2. The Kinetics of Crystal Nucleation

Resembling the kinetic theory of reaction, the steady-state rate of nucleation (J), which
is defined as the number of nuclei per unit time per unit volume, is expressed in the form
of the Arrhenius rate equation:

J = A exp
(
−∆Gc

kBT

)
(7)

where A is the pre-exponential factor. Equation (6) can be rewritten as

J = Aexp(− B
ln2S

) (8)

B =
4c3γ3v2

0

27(kBT)3 (9)

Here B represents the thermodynamic parameter. Equation (8) is valid for homogenous
nucleation from the solution. In the case of heterogeneous nucleation, the interfacial energy
γ should be replaced by an effective interfacial energy γHEN = ϕγ, where the activity factor
of template substrate, ϕ, is in the range of 0 to 1, dependent upon the wetting ability of a
cluster with the substrate surface. Note that in the case of homogeneous nucleation, the
interfacial free energy represents an average over different crystal planes. More discussions
on heterogeneous nucleation can be found in a book by Kashchiev [11].

The pre-exponential factor A in Equation (6) is associated with the molecular kinetics
of the nucleation process. In the framework of the cluster approach, nucleation is assumed
to be a consecutive series of attachments and detachments to form differently sized clusters
of the nucleating phase in the supersaturated solution (Figure 2a). The model assumes the
presence of clusters of m (=2, 3, . . . ) molecules in the old phase and transformations of
m-sized clusters into n-sized ones via time-dependent frequencies fmn(t) (s−1) [11]. It is also
possible that the equally sized clusters have different shapes, but the clusters of a given
size have only one shape and were generally postulated for model simplification. Note that
such an assumption leads to the size being the sole parameter to describe clusters and the
crystal nuclei thereof. Moreover, a change in the cluster size may occur by attachment and
detachment of monomers, dimers, trimers, or even higher aggregates, but a sequence of
bimolecular addition (that is each addition by monomers) was often considered to be “more
likely”. These assumptions lead to the well-known, simplified Szilard–Farkas model, which
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describes the nucleation process as a successive attachment and detachment of monomers
to and from clusters of various sizes (Figure 2b).
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Figure 2. (a) Schematic illustration of all possible changes in the size of a cluster of m molecules (solid
lines) and the change in the size of critical cluster n* by the attachment and detachment of monomers
only according to the Szilard–Farkas model. (b) Evolution of clusters toward the formation of a
critical nucleus in the framework of CNT, The black line and red line indicate the process of monomer
attachment and desorption respectively. Reprinted/adapted with permission from [13]. Copyright
2017, copyright Davey, R.J.; Schroeder, S.L.M.; Ter Horst, J.H. et al.

The nucleation kinetics is controlled by the frequencies f n* and gn* of monomer attach-
ment and detachment from an n*-sized cluster, respectively. In a stationary state of the
nucleation process with a constant concentration Xn of n-size clusters, the nucleation rate
was defined as the difference between the transformation frequency fn*Xn* of the nuclei
(n*) into the smallest super-nuclei (n* + 1) and detachment frequency gn*+1Xn*+1 of the
super-nuclei n* + 1 into the nuclei n*:

J = fn∗Xn∗ − gn∗+1Xn∗+1 = ξ fn∗Xn∗ (10)

ξ = 1− gn∗+1Xn∗+1

fn∗Xn∗
(11)

With f * ≡ fn*, X* ≡ Xn*, Equation (9) is rearranged into a familiar form

J = z f ∗C∗ (12)

z = ξ
X∗

C∗
=

ln2S√
12πB

(13)

where z is the Zeldovich factor accounting for the use of C* instead of the actual nucleus
concentration X* and for those clusters larger than nuclei but eventually decay rather than
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grow into macroscopic crystals. C* = C0exp(−∆Gc/kBT) is the equilibrium concentration
of crystal nuclei. C0 is the concentration of nucleation sites in the system and is assumed
equal to 1/v0 for homogenous nucleation (v0 is the volume of a single solute molecule).

The nucleation rate was thus determined by not only the nucleation barrier ∆Gc and
the concentration C0 of nucleation sites but also the attachment frequency f * of monomers
to the nucleus. According to Equations (7), (11), and (12), the pre-exponential factor zf *C0
is related to molecular attachment events of monomers to the critical nucleus. The kinetic
attachment over the course of nucleation could be controlled either by the volume diffusion
process of monomers in solution towards the nucleus or by the interfacial transfer of
monomers across the interface of the crystal nucleus and the surrounding solution.

When volume diffusion was the rate-determining step in monomer attachment to the
nucleus, f * = j*S* wherein S* is the surface area of a nucleus and j* is the diffusion flux of
monomers to the nucleus surface. By the assumption of a spherical shape, the radius of
a nucleus:

r∗ = (3v0n∗/4π)1/3 (14)

The flux j* = DC/r* and f * is given by

f ∗ = (48π2v0)
1/3

DCn∗1/3 = (48π2v0)
1/3

Dn∗1/3C∗S (15)

where D is the diffusion coefficient of monomers and C is the concentration of monomers
in the bulk solution.

If the event of molecular attachment is controlled by interface transfer, the monomers
are in immediate contact with the nucleus but need to make a random jump over a distance
d0 ≈ (60/π)1/3 before joining into the nucleus. Assuming that such a jump is proportional to
D and the sticking coefficient λ of monomers, j* = DC/d0 and S* = 4πr*2, and f * is given by

f ∗ = λ(6π2v0)
1/3

DCn∗2/3 = λ(6π2v0)
1/3

Dn∗2/3C∗S (16)

The aforementioned molecular interpretations of nucleation kinetics appear plausi-
ble and were used to qualitatively explain crystal nucleation phenomena in condensed
phases. In some cases, CNT does provide a reasonable prediction on nucleation rate, e.g.,
the homogeneous nucleation of water droplets in vapors [48], but it fails in many other
cases wherein the predicted nucleation rate often displays a few orders of magnitude
derivation from measurements [49]. Even for simple mono-component nucleation in vapor
condensation like methanol, the measured nucleation rate is 10−10 slower than the pre-
dicted one [50]. Several major assumptions of CNT are responsible for these discrepancies:
(1) The molecular arrangement of a crystal nucleus is identical to the bulk crystalline phase,
and no surface free energy or interface tension difference between the two (the so-called
capillarity approximation). This assumption, however, appears incompatible with the
Gibbs–Thomson effect in which the curved step displays higher surface tension than that
of the straight one. In addition, the surface tension of a crystal nucleus can be also less
than that at a flat interface [51,52], which is valid at least in isobaric supercooling [53,54].
(2) The evolution of crystalline order and clusters’ density occurs simultaneously in crystal
nucleation, and growth and dissipation of clusters proceed respectively via the attachment
and detachment of monomers (i.e., Szilard–Farkas model). However, it is possible that
some organic systems displaying significant molecular association or aggregation form
clusters via dimer or oligomers, not only monomers [13,38,55]. Further, the large stable
ionic aggregates or clusters were also reported in solution prior to nucleation in inorganic
systems [56,57]. (3) The steady-state nucleation process is assumed, and the stationary
distribution of clusters is established instantaneously upon reaching the supersaturation
state. In addition, the overestimated rate of crystal nucleation was often attributed to
heterogeneous nucleation through foreign particles, which, nevertheless, are not well de-
fined in both structure and concentration. Besides, recent studies have also shown that
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the discrepancy at high metastability is due to the nucleation times measured in not-fully
relaxed liquids [58–60].

3. Non-Classical Nucleation Mechanisms

Over the past two decades, more and more experimental and simulation
evidence [13,25,40,61,62] have demonstrated that the intermediate precursors such as dense
liquid clusters/phase, amorphous phase, and soluble oligomers or aggregates [63,64] play
an important role in determining the kinetics and pathway of crystal nucleation. These un-
conventional observations lead to the development of non-classical nucleation mechanisms.
The two-step nucleation mechanism and pre-nucleation cluster (PNC) pathway may be the
two representatives of these proposed mechanisms. They are different from CNT in regard
to the evolution of the reaction coordinate (the reaction process from molecules, clusters to
crystal) of crystal nucleation. Both mechanisms agree with the formation of intermediate
precursors prior to crystal nucleation, but the precursors are suggested to be metastable
dense liquid clusters or stable dense liquid phase in the two-step mechanism [65] and are
considered to be stable solute clusters in the PNC pathway [66]. It is noted that the solute
clusters claimed in the PNC pathway are distinct in structure and thermodynamics from
the metastable clusters suggested in CNT [67].

3.1. Two-Step Nucleation Mechanism

The two-step nucleation mechanism holds that the fluctuations in density is prior to
the development of the crystalline order of a critical nucleus, leading to the formation of
intermediate dense liquid clusters or liquid phase, which is essentially different from CNTs
that advocate the simultaneous evolution of density and crystalline orders [13] (Figure 3a).
The scenario was firstly supported in computational simulations, for example by ten Wolde
and Frenkel [68], using the Monte Carlo simulation technique in a Lennard–Jones colloidal
system. Large density fluctuations were observed around the critical temperature where
a highly disordered liquid droplet was formed prior to the development of a crystalline
nucleus inside the droplet. Later on, Talanquer [69] applied the density functional theory
(DFT) to the study of the homogenous nucleation of colloid and globular proteins in
solution. They found that disordered droplet polymers appeared first and then nucleated
into crystals, indicating that the first step towards the formation of a critical long-range
ordered nucleus is the formation of a disordered liquid-like structure near the critical
temperature point.

Experimental evidence to support the two-step mechanism was initially observed
directly in colloidal systems [70] but was predominately reported for protein crystalliza-
tion [71–73]. Numerous studies on protein nucleation by dynamic light and/or small-angle
scattering techniques showed the first formation of fractal or droplet-like aggregates that
progressively evolve into compact crystal structures [74–76]. For example, the metastable
mesophase (MIP) of proteins was identified and its role on the evolution of crystal nucle-
ation was revealed through the combined use of time-resolved in situ small-angle X-ray
scattering (SAXS) and an optical microscope [77]. Others understood the phenomena of the
nucleation of proteins through the direct measurements of nucleation kinetics with delicate
experimental design [78]. One of the most prominent studies presented by Vekilov and
co-workers [79] is the study of nucleation kinetics of lysozyme crystals. The nucleation rate
of a lysozyme protein was measured by directly counting the number of crystals per unit
volume within a certain time period, and the reproducible statistical characteristics of the
random nucleation process were captured by more than 400 trials under the identical con-
ditions. The measured kinetic dependence of protein nucleation, however, shows several
unusual features that do not comply with the predictions of CNT. The results demonstrate
that the nucleation of lysozyme crystals proceeds in two steps: the formation of a dense
liquid droplet, followed by the nucleation of a periodic crystal within the droplet [79].
It was also concluded that the structure fluctuations to become crystalline nuclei do not
require large density fluctuations or long-lifetime droplets meaning that the dense liquid is
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either metastable clusters or a stable phase existing below the liquid–liquid separation line
(Figure 3b). More recently, it was shown that the structure development of dense liquid
precursors into an ordered nucleus determines the rate of crystal nucleation [20]. How-
ever, the nucleation of proteins does not have to be a two-step process. Van Driesch et al.
observed the direct self-assembly of glucose isomerase protein molecules into polyhedral
nanocrystals with surprising smooth surfaces and sharp vertices, indicating a one-step
nucleation mechanism [80]. The more detailed theoretical developments of the two-step
nucleation mechanism can be found here [81,82].
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step mechanism with CNT. Reprinted/adapted with permission from [72]. Copyright 2017, copyright
Vekilov, P.G. et al. Copyright©2004, American Chemical Society. (b) Comparison of free energy
along the pathway of crystal nucleation followed the two-step nucleation mechanism (left) and
CNT (right).

The two-step nucleation mechanism may also apply to small organic molecules. An
early molecular dynamic simulation on acetic acid solutes in the CCl4 solvent system
shows the formation of a liquid-like solute micelle, which was suggested to be the first
step of crystal nucleation [83]. Experimentally, the nucleation of glycine was long-standing
considered to follow the two-step mechanism on the basis of an intriguing experimental
phenomenon, named non-photochemical laser-induced nucleation (NPLIN) first observed
by Myerson and co-workers [84]. It was found depending on the polarization state of the
laser. The α form of glycine is crystallized from an aqueous solution with circular light,
whereas the γ form is obtained when linear light is introduced. The results were explained
by the orientation alignment capability of pre-existed glycine clusters in solution by linearly
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or circularly polarized light. Further support of glycine followed the two-step nucleation
mechanism was uncovered by the small-angle X-ray scattering technique [85].

The two-step mechanism is plausible and helps explain the overestimation of nu-
cleation kinetics predicted by CNT [9,49,50]. Its application is limited to the observation
of disordered, dense liquid or clusters in solution, but the definition of “dense liquid”
precursor is vague which leads to the lack of insights into the molecular event of crystal
nucleation. For example, it fails to explain solvent-dependent polymorphism. The extent of
structure order within the dense liquid is unknown or absent, but the recent solution chem-
istry measurements show clear evidence of a structural link between solution associates
and the resultant crystal synthons [13]. Additionally, the liquid–liquid phase separation
or oiling-out often displays a size greater than the micron scale, which should not be
considered as the intermediate phase of crystal nucleation but provide two composition
environments of nucleation [13].

3.2. Pre-Nucleation Cluster Pathways

Studies on (bio)mineralization of, e.g., calcium carbonates [21] and calcium phos-
phates [86] and calcium sulfate [30] have shown the presence of pre-nucleation clusters
(PNCs) in an aqueous solution. Based on the definition by Gebauer and co-workers, PNCs
are soluble solute species (no solid-liquid interface) and thermodynamically stable, which
exist in both under- and super-saturated solutions [87]. They thus differ from unstable
or metastable clusters formed over the course of crystal nucleation assumed by CNT and
dense liquids by the two-step mechanism.

Thermodynamically stable aggregates were found in homogeneous solutions and
participated in phase separation in many inorganic systems. Gebauer, D. et al. [21] found
the formation of stable ion clusters of calcium carbonate even in unsaturated solutions.
They observed the nucleation of amorphous CaCO3 intermediates from a supersaturated
solution, which is followed by a phase transition to the crystalline nucleus (Figure 4). More
examples of inorganic solutions (e.g., CaSO4, CaPO4) [30,86] and detailed illustrations of
PNC pathways can be seen in more recent reports [88,89] and two excellent reviews by
Gebauer and Cölfen [14,21].
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Although PNC pathways were initially observed in inorganic systems, recent studies
present evidence in some organic molecules, mainly amino acids, in aqueous solution. By
virtue of electrospray ionization (ESI) and mass spectrometry (MS), Kellermeier et al. [90]
found the presence of high-order oligomers of amino acids in a diluted solution. These
oligomers were further suggested to be PNCs for the nucleation of amino acid crystals.
However, others argued that the observation of oligomers in ESI-MS cannot represent the
real situation of oligomerization in an aqueous solution due to different analytical envi-
ronments. Later on, similar observations of amino acid oligomers were further confirmed
by another analytical technique, analytical ultracentrifuge. Molecular-level calculations
and simulations [91,92] provide theoretical support for the formation of these oligomers.
Interestingly, an AUC analysis of arginine solution [37] showed that the tracked clusters
increased as the solution concentration increased toward the saturation limit, and when it
reached a certain level, nanoscale populations appeared, then the clusters could no longer
be detected in the supersaturated state, which was interpreted as evidence that the amino
acid PNC actively participated in the phase separation process.

PNCs provided some evidence that soluble solute oligomers or clusters are present
in solution and highlighted the importance of solution chemistry in advancing our under-
standing of crystal nucleation. In an inorganic system, these aggregates or clusters have
been frequently observed experimentally, and their link to amorphous intermediates of
nucleation is possible. However, the observations of amorphous intermediates in organic
molecular systems like amino acids are relatively rare. Moreover, the thermodynamic
stable nature of pre-nucleation clusters in small organic molecular systems is confused. The
solute associates in solution should be thermodynamically less stable than monomers due
to the interplay of both enthalpy and entropy changes. Indeed, we found solute dimers or
even high-order tetramers of benzoic acid can be well explained by the classical molecular
self-association model [35].

4. Polymorphism and Molecular Mechanism of Crystal Nucleation

Polymorphism is a ubiquitous phenomenon in many organic crystalline materials.
The first definition of polymorphism is given by McCrone [93] as “the possibility of at least
two different arrangements of the molecules of a compound in the solid state”. Polymorphs
display differences in supramolecular synthons, molecular conformation, intermolecular
interactions, molecular arrangements, and different properties. The formation of poly-
morphs is dictated by the molecular assembly of crystal nucleation but is often explained
as a result of the combined effect of crystallization kinetics and thermodynamics [94]. A
prominent example was demonstrated recently in protein nucleation by virtue of state-of-
art time-resolved cryo-TEM, in which the direct link at the molecular level was established
between early-stage nucleation and polymorph selection, and was indicative of a one-step
nucleation pathway [31]. The resultant formation of distinct crystal structures in a poly-
morphic crystallization system could be used as a probe to shed light on the structure
perspectives of crystal nucleation [95]. Further, the obtained structure information of crystal
nucleation can also be used to test the applicability of classical and non-classical nucleation
mechanisms [31].

4.1. Structural Link Correlation between Solution Associates and the Resultant Crystal Synthons

A crystal nucleus is considered as a nanoscale version of macroscopic crystalline
materials from a solid-state chemistry perspective and may be also viewed as an amplified
assembly of solution chemistry, providing insights into the formation mechanism through
a close correlation between the structure synthon and solution building unit. Solution
chemistry is an important bridge from molecules to a crystal. Crystallization conditions
such as solvent, temperature, supersaturation levels, and physicochemical properties of
the solution acting on solute assembly kinetics and solution chemistry have an important
influence on crystal nucleation and thus crystallization outcomes [96–99]. However, the
exploration of solution chemistry needs advanced analytical instruments to probe mi-
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nor populated speciation. The structure of these species is dynamic and often needs to
probe using high-precision quantum mechanics (QM) calculations and/or computational
simulations. These challenges impeded our understanding of solution chemistry.

With the development and application of advanced solution spectroscopy and compu-
tational simulations such as Attenuated Total Reflectance-Fourier Transform Infrared Spec-
trometer (ATR-FTIR), two-dimensional NOE Nuclear Magnetic Resonance spectroscopy
(NOESY), high-accurate QM calculations, and enhanced-sampling molecular dynamic
(MD) simulations, solution chemistry is readily available to be explored for probing solute
conformation and molecular aggregation (or even clusters) behaviors, as well as their
relation with assembly process of crystal nucleation [100,101].

Davey [102] firstly examined the structural connection between solution chemistry
and crystal synthons and found that pre-nucleation associates in solution display a certain
resemblance to the structural synthon of the resultant crystal phase in a number of organic
carboxylic acid systems. The significant similarity in structure correspondence was further
revealed by solution IR spectroscopy and computer simulation studies. Such a structural
link explains solvent-dependent polymorphism in some cases and also suggests, at least at
the dimer level, that the nature of the associate and its intermolecular binding may be an
important factor in crystal nucleation. As shown in Figure 5, the self-association in two
different solvents leads to the presence of two types of dimers in the solution, eventually re-
sulting in the nucleation of two different polymorphic crystal structures. Hunter et al. [103]
examined the assembly of carbamazepine at the dimer level in solution using solution
NMR techniques and simulation methods, and dimers of solute molecules assembled by
hydrogen-bonding interactions were formed in CDCl3 whereas the stacked dimers by
aromatic-aromatic interactions were shown in CD3OH solution. Further examination of the
structural correlation of these dimers in solution with structure synthons of carbamazepine
polymorph III also unveils a remarkable resemblance. By virtue of solvent-dependent
self-association of solutes, the formation conditions of new crystalline polymorph may
be discovered such as crystallization of isonicotinamide (INA) in chloroform and tetrolic
acid [104] in dioxane [105].
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On the other hand, examination of solution chemistry and structural synthons of the
cocrystal forming system also reveals a similar structure correspondence. A typical case
is the binary system of benzophenone (BZP) and diphenylamine (DPA), which can form
1:1 cocrystal, and NMR spectroscopy and chemical shift modeling demonstrated a solvent-
dependent effect of solution association, in which hydrogen-bonded dimers produce in
toluene and aromatic-aromatic dimers form in methanol. Both associates display excellent
structure correspondence with the final cocrystals [106]. Moreover, the extended octameric
associates consisting of closed-loop hydrogen-bonded tetramers stacked by π-π interactions
in solution were found retained in the resultant crystal structures for a series of aniline-
phenol cocrystal systems [107].

Although the aforementioned structural link can be observed in a number of small
organic molecule systems and helps explain polymorphic nucleation, indicating the ap-
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plicability of CNT at the dimer level, there are many other systems wherein this structure
correspondence is absent. We recently studied the solution chemistry of a diarylamine
compound, tolfenamic acid (TFA), aiming to examine the roles of molecular conforma-
tion and solution association played on pathways of crystal nucleation [108]. TFA is
a benchmark conformational polymorph system, showing two distinct conformers, i.e.,
“twisted-like” (TL) and “planar-like” (PL), in polymorphs I and II, respectively (Figure 6a,b).
Both polymorphic structures are composed of hydrogen-bonded, carboxyl homodimers as
the supramolecular synthon. Using the 2D NOESY technique, the close spatial approxi-
mations of TFA CH3−H30 and H30−H29 protons were observed in ethanol, toluene, and
DMF from strongly polar to non-polar solvents, indicating the presence of both conformers
in the three selected solution systems that vary in conformational populations. Moreover,
the cross-peaks of CH3−H22/H28 protons are also seen in ethanol (Figure 6e) and DMF,
demonstrating the self-association of TFA via aromatic stacking interactions (Figure 6c).
Indeed, we found the nucleation of DMF solvate crystals of stacked dimer motifs in DMF
solvent. The hydrogen-bonded TFA dimer species found in toluene can correlate with
their counterparts in the crystal structure. These results corroborate the structure link
hypothesis, but the careful examination of TFA associates in ethanolic solution and crystals
exhibits an evidently absent correlation. The solvated, stacked TFA-TFA dimers differ from
hydrogen-bonded, carboxyl homodimer motifs in crystals suggesting the desolvation and
supramolecular reconstruction in the nucleation pathway. The absent structure correspon-
dence was reported in many other systems. For example, the self-associates of different
benzoic acid derivatives in polymorphic crystals with different polar solvents do not show
a linear correspondence with the final crystal structure [102,109–111].
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Glycine is one of the representative systems for investigating nucleation which has
two different hydrogen-bonded dimers in -their structure (Figure 7) [26,112,113]. In the
crystal structure, glycine molecules are packed as cyclic hydrogen-bonded dimers in α
polymorph but as a chain hydrogen-bonded dimer in γ form. It was initially postulated
that the formation of a cyclic, hydrogen-bonded dimer in water leads to the selective
crystallization of the α form [114]. Later on, the amounts of glycine dimers in the water were
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measured ranging from 5% to 30% (mole fraction) using a series of experimental techniques,
including freezing-point depression [115], diffusivity [91], dielectric relaxation [116], and
ultracentrifugation [37]. Further computational studies probed structures of various dimers,
but the stability or energy ranking of dimer species varied with the use of computation
methods [28]. One quantum mechanical study suggested that the cyclic hydrogen-bonded
dimer is more stable than the open one [117], whereas molecular dynamic simulations
showed that open dimers are more dominant [113]. We investigated glycine polymorphic
crystallization using both experiments and simulations, and revealed pH-dependent glycine
self-association which correlates with polymorphic formation [114]. By examining the inter-
proton contact signal between 12C and 13C methylene protons of an open hydrogen-bonded
dimer using 2D NOESY, we are able to unveil the dimer species of glycine, despite its
dynamic nature, that are predominantly in open-chain structure. The apparent structural
link is thus also absent in glycine polymorphic crystallization.
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4.2. Examination of Solution Chemistry with Nucleation Kinetics

A number of experimental techniques for measuring crystal nucleation rates have
become available nowadays, such as the double-pulse technique [118,119], microflu-
idics [120,121], and the high-throughput setup [122,123]. These analytical techniques
produce a large number of nucleation kinetics data. The recent advancement in the statisti-
cal analysis of measured induction times or nucleation rate by using Poisson distribution
explains the rare event of nucleation with the single nucleation model [124]. Other attempts
combined high-throughput experimental methods and the statistical analysis of measured
induction times to explore the correlation of crystallization conditions [125,126], solvation
and dimerization of solute molecules in nucleation assembly [127], molecular attachment
frequency and interfacial energy [36,122], and intermolecular interaction energies [128] with
nucleation kinetics. In addition, machine learning has recently been applied to the study of
nucleation kinetics in some inorganic and colloidal nanoparticle systems to estimate the
nucleation rate or the formation rate of precursors [129–131].

The first thorough examination of the relationship between solution chemistry and
nucleation kinetics was performed by Davey and co-authors [127]. The solution speciation
analyses of p-aminobenzoic acids in 2-propanol, acetonitrile, and ethyl acetate revealed the
predominant solvated monomers in three solvents wherein strong solvation was suggested
in 2-propanol and the least solvation in acetonitrile. The solution speciation of benzoic acid
in toluene was used as a reference state where the hydrogen-bonded dimers of benzoic acid
were found. They further found that the solvation capability and difficulty of dimerization
are inversely correlated with the molecular attachment frequency and nucleation rate,
which suggests desolvation and dimerization formation being the rate-determination step
of crystal nucleation. However, later studies show that the presence of hydrogen-bonded
dimer pre-assembly cannot correlate with fast nucleation kinetics or molecular attachment
frequency [36,122]. On the other hand, the solvation capacity does correlate with the
difficulty of crystal nucleation [132]. Our recent study [122] suggests that the rate of crystal
nucleation is pre-dominant by thermodynamic interface energy rather than kinetic factors,
for example, molecular attachment to the critical nucleus.
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4.3. Role of Solvation and Aromatic Interactions

Numerous studies have shown the influence of solvent on crystal nucleation, and
the solvation effect has been well-recognized [27,127,133]. However, only recently it was
examined at the molecular level. It was found the hydrogen-bonded dimer associates
are rarely presented in most polar solvents wherein solutes form strong interactions with
solvent molecules, which create solvation layers and impedes the self-association of so-
lutes. Indeed, many studies report the solvent dependence of molecular association. We
found the self-association of α, ω-alkanedicarboxylic acids absent in, hydrogen-bonding
donor (HBD) solvents, but it appears in no-HBD solvent systems [134]. Other studies also
observed the formation of only monomers or solvated aromatic stacking dimers in some
polar solvents [103,135]. The solvation effect of solutes imposed by solvent molecules has
an important influence on solute assembly and affects polymorphic nucleation. It has
been demonstrated from both experiments and mathematical modeling that desolvation
of solutes in the nucleation pathway results in concurrent nucleation of TFA form I and
form II and the appearance of concomitant polymorphism (Figure 8) [136,137]. The sol-
vated monomers may initially form dimers or aggregates through weak intermolecular
interactions, e.g., aromatic stacking and/or van der Waals forces, which occurs in either the
pre-nucleation or nucleation stage. Then, desolvation of the solutes’ aggregates could be
the key step of crystal nucleation, which codes the way of reconstruction and the selectivity
of packing arrangements, i.e., polymorphs. The kinetic nature of this desolvation is likely to
give rise to the formation of different critical nuclei and the formation of two polymorphs
in the same batch. The scenario is similar to the two-step nucleation mechanism regarding
the sequential development of density and structural fluctuations but essentially differs
in the structure of intermediates. Here the intermediates are soluble aggregated clusters
of solvation layers with certain short-range ordering, whereas in the two-step nucleation
mechanism they are disordered dense liquids.
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Although the above scenario of the desolvation pathway is likely, the particular char-
acteristics of molecular structure may need for step-by-step desolvation due to the binding
specificity of interaction sites of solutes with solvent molecules. By using molecular dynam-
ics simulations, Dighe et al. [27] show the sequential and selective desolvation of glutamic
acid (GLU) from a supersaturated aqueous solution. Solvation alone could not fully ex-
plain complex nucleation behaviors, and another important factor, weak intermolecular
interactions, e.g., aromatic interactions, also played an important role in the pathway of
crystal nucleation.

The critical importance of aromatic interactions on nucleation pathways may be firstly
recognized in explaining unusual concomitant crystallization of TFA polymorphs from
ethanolic solution [108]. The strong solvation effect and stacking self-association of TFA
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were seen in both DMF and ethanol. In DMF, these solvated, stacking associates lead to
the direct formation of DFM solvate crystals of TFA with resemble structure motifs of
hydrogen-bonded TFA-DMF and aromatic stacking dimer. However, the similar stacking
dimers of TFA in ethanol result in the formation of distinct hydrogen-bonded carboxyl
homodimers. The observed remarkable difference hints that aromatic interactions of TFA
molecules act on the assembly pathway and kinetics of crystal. Later on, the aromatic
interactions were found to drive the formation of high-order aggregates in benzoic acid [35]
and its derivatives [100].

Not only solution chemistry and thermodynamics, but aromatic interactions are also
responsible for kinetics and pathways of crystal nucleation. We recently examined nucle-
ation kinetics of flufenamic acid (FFA) in a series of solvents and found that the breakage
of solvent-solute hydrogen bonds and dimerization is not the rate-determination step of
crystal nucleation rate. By correlating growth rate with nucleation kinetics, we revealed that
weak aromatic interactions affect the nucleation pathway by probably regulating the growth
of the nucleating clusters [36]. Cruz-Cabeza et al. [128] through compressive nucleation
kinetic measurements and computational simulations demonstrated that the nucleation
rates of four benzoic acid derivatives in a series of solvents correlate reasonably well with
dimerization energies of aromatic stacks. Rosbottom et al. [138] found that nitromethane
(NMe) disrupts π-π interactions by changing the solvent composition to modulate the
polycrystalline form of α-p-aminobenzoic acid (pABA), thereby inhibiting the growth in
the long-axis direction dominated by π-π interactions. Although these preliminary studies
have highlighted the important roles of aromatic interactions in thermodynamics and kinet-
ics of crystal nucleation which affect polymorphic crystallization outcomes, the underlying
action mechanism on nucleation pathways remains to be further understood.

4.4. Hierarchical Intermolecular Interactions in Solution Assembly

The formation of a crystalline nucleus may be viewed as a molecular assembly pro-
cess wherein the building units were constructed according to a certain rule to form a
macroscopic crystal. Traditionally, the rule was interpreted as the interplay between ther-
modynamics and kinetics of crystallization, but the underlay molecular mechanism is
lacking and more importantly, this explanation cannot guide the manipulation of crystal
synthesis at the molecular level. Understanding such a rule has been a long-standing
task for crystal engineers. The great breakthrough was firstly made by Desiraju [139–141]
who recognized the importance of non-covalent bond interactions, i.e., hydrogen bond,
in crystal engineering and proposed the concepts of supra-molecular synthons [142]. The
concept receives great attention and now has become a regular tool to guide or predict the
synthesis of various crystalline materials. However, other non-covalent bond interactions
such as aromatic interactions and van der Waals interactions, beyond hydrogen bond, are
still less understood due to their even weak force in essence. Moreover, the synthesis of
organic crystalline materials often involves multiple weak interactions [143] and how these
interactions aligned to form a crystal are still unclear.

The self-association and aggregation of molecules in solution which precede the nu-
cleation stage has been studied extensively and corroborated at the dimer level [96,144].
However, the large solutes’ aggregates were rarely reported in small organic molecu-
lar systems. We recently demonstrated the hierarchical self-assembly of benzoic acid
molecules in toluene by forming sequential hydrogen-bond and π· · ·π aromatic stacking
interactions (Figure 9a) which elucidate the competitive and synergistic nature of multi-
ple intermolecular interactions [35]. At low concentrations, benzoic acid molecules form
hydrogen-bonded dimers, whereas high-order tetramers are formed at high concentra-
tions through the stacking of two dimers. The findings hint at hierarchical characteristics
of multiple intermolecular interactions in crystal nucleation. The nature of hierarchical
interactions was further illustrated by electrostatic potential (ESP) and Fukui functions
of monomer and dimer species of BA molecules. The primary hydrogen bond force is
formed via mainly electrostatic interactions between carboxylic acid groups, producing
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cyclic hydrogen-bonding dimers with an energy of −66.5 kJ/mol for two hydrogen bonds
(Figure 9b,c). In contrast, the weaker, secondary force, π· · ·π interactions, formed through
a soft-soft type of interactions that are characterized by matching of Fukui functions have
−51.3 kJ/mol for two π· · ·π contacts (Figure 9d,e).
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Hierarchical intermolecular interactions were also seen in the nucleation of macro-
molecular systems e.g., proteins. The recently discovered higher-order dimer-based ag-
gregation of actin is observed by the initial formation of homodimers and subsequent
tetramers, acting as the primary form of nucleation [145]. In addition, multiple interactions
involved in hydrogen bonding, aromatic interactions, and dispersion forces were also
investigated to understand the self-assembly of short aromatic peptides, which emphasizes
the importance of hierarchical interactions in the rational design and performance control
of peptide-based materials [146]. Understanding higher-order self-assembly driven by
multiple interactions will help to elucidate the molecular assembly picture of nucleation
pathways. The current exploration of hierarchical interactions remains in the nature of
solution chemistry and thermodynamics, which does provide important insights into the
assembly pathway of crystal nucleation. Further studies on hierarchical interactions may
provide structural insights into nucleation intermediates such as clusters, dense liquids,
and amorphous phases.

4.5. Aggregation-Based Multiple Nucleation Pathways

Collectively, the structural link suggests the potential reservation of hydrogen-bonded
solute associates in molecular clusters and crystal nuclei [108]. Nevertheless, the hierarchi-
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cal nature of non-covalent bond interactions including hydrogen bond, aromatic stacking,
and van der Waals demonstrates that the high-order structure of these associates should
bear certain domains composed of aromatic or van der Waals interactions differing from the
crystal nucleus. In other words, the density of high-order associates/aggregates (metastable
clusters relative to bulk solution) is developed by molecular association/aggregation
likely prior to their structure development in the pre-nucleation stage. The associates
or aggregates as illustrated in the aforementioned systems bear the inevitable solvation
effect [127,147], and desolvation of solvent molecules [148–150] accompanied by super-
amolecular reconstruction leads to the formation of a nucleus. Recent studies have revealed
the detailed kinetics of orientated attachment and the importance of desolvation on particle
aggregation during crystal nucleation [80,151]. The large barrier of this step results in the
rare event of crystal nucleation, which may also produce simultaneous nucleation of two
crystal structures (polymorphs) [152–154], i.e., concomitant crystallization of polymorphs
when the nucleation barrier for two polymorphs were comparable. Furthermore, the ab-
sence of structure correspondence and solvent-dependent molecular association indicate
multiple aggregates of solutes regulated by their surrounding environment that is formed
either in pre-nucleation or in the course of nucleation stages. The molecular aggregates
undergo desolvation and superamolecular reconstruction prior to forming the structure
synthon seen in the resultant crystal structure. Again, since the hierarchical nature of
non-covalent bond interactions in an organic crystallization system, various molecular
aggregates could be formed and thus lead to multiple nucleation pathways, as illustrated
in Figure 10. Therefore, we argue that the nucleation pathways of organic molecules are
multiple and dependent upon solvent, supersaturation, pH, and solute structure. For ex-
ample, benzoic acid molecules in toluene initially assemble into hydrogen-bonded dimers
and then form high-order tetramers via π· · ·π stacking interactions between dimers at
high concentrations where the development of crystalline order accompanies the density
evolution (pathway I). It is possible that the tetrameters further aggregate to form large
clusters via even aromatic weak interactions which become sites of crystal nucleation. Note
that here density fluctuations will deviate from the development of crystalline order. The
relatively strong hydrogen-bonding and π· · ·π stacking interactions are reserved in the
resultant crystal structure, but other weak interaction motifs are not. A similar scenario
may be envisaged in the case of TFA nucleation from toluene. Instead of the formation of
high-order tetramers, the TFA molecules are able to form certain population of hydrogen-
bonded dimers, which structurally resemble the resultant crystal structure, but further
development of large aggregates or clusters leads to faster development of clusters’ density
than crystalline order (pathway II). If solute-solute and solute-solvent interactions are both
strong, the solutes may still form self-associates or dimers that are modified by the strong
solvation effect. In this scenario, the development of the density of clusters will be much
faster than crystalline order (pathway III). The behaviors were seen in several organic
molecular systems such as nucleation behaviors of glycine in aqueous solution and TFA in
ethanol. If solute-solvent interactions are very strong and solutes themselves are weak, the
fully disordered pathway may be seen as suggested in the two-step nucleation mechanism.

Similar multiple nucleation pathways were previously suggested in the colloidal sys-
tem where the interactions among colloidal spheres are even weaker [155]. The suggested
nucleation mechanism may be upset due to the difficult manipulation of weak solute inter-
actions and the design of crystalline materials from molecular building units. However,
these multiple nucleation pathways could provide an opportunity to achieve the target
crystalline materials via appropriate regulation of molecular aggregates (or clusters) in the
pre-nucleation or nucleation stage.

Multiple nucleation pathways were previously suggested by De Yoreo [64] in explain-
ing the nucleation behavior of an inorganic system. Nielsen et al. observed, using in situ
liquid TEM, different intermediate phases of CaCO3 in nucleation that gradually evolve
from disorder to order phase, indicating multiple nucleation pathways. Kimura et al. used
liquid-cell transmission electron microscopy aided by machine learning and observed mul-
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tiple precursors in the early stages of nucleation [130]. Later on, it was also demonstrated
that minor modification of the hydrophobic side chain of peptoid molecules will shift from
single-step nucleation to a two-step pathway [156]. Other studies show the change of nucle-
ation pathways by the presence of ions or additives. Amorphous Calcium Carbonate (ACC)
is a common form in calcium carbonate crystallization, and the pre-nucleation cluster (Prc)
is an intermediate state frequently observed in calcium carbonate crystallization processes.
In the system of calcium carbonate solution in the presence of a high concentration of
magnesium ions, doping of magnesium ions forms several intermediates of ACC-Mg and
Prc-Mg which participate in the nucleation process of calcium carbonate [157]. Citrate
is used as a commercial inhibitor for kidney stones consisting of mainly calcium oxalate.
Recent studies show citrate altering the nucleation pathway of calcium oxalate hydrates by
interacting with pre-nucleation aggregates and amorphous intermediates mainly through
water incorporation and local structure ordering [158]. More recently, multiple nucleation
pathways are also seen in protein systems [31,80].
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Figure 10. Schematic illustration of molecular aggregation-based multiple nucleation pathways:
various pathways of evolutions of density and structure order of solutes’ associates, aggregates, or
clusters accompanying the change of free energy in different solution systems. Pathway I represents
the self-assembly and nucleation pathway of benzoic acid molecules in toluene; pathway II denotes
the scenario of crystal nucleation of TFA in toluene, and pathway III is the case of gly in water and
other systems wherein (solvated) monomers are dominant in solution. The blue dashed line is the
pathway of two-step nucleation. The light grey dash line represents the nucleation pathway of CNT.

Computer simulations could provide additional support [64] for aggregates-based
multiple nucleation pathways in both inorganic and organic systems. Nucleation of sodium
chloride was traditionally seen by classical nucleation framework, whereas the recent
molecular dynamic (MD) simulation studies unveil a much more complex nucleation
pathway in which large clusters were observed prior to the appearance of an ordered
crystalline phase [159]. Lanaro et al. [160] also used MD simulations to detect the presence
of small clusters of small to six ions in saturated solutions of NaCl, which were shown to
be potential nuclei for NaCl crystallization.

The aggregation-based multiple nucleation pathways need to be further understood,
but they have provided plausible explanations for the polymorphic formation of small
organic molecule systems.
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5. Challenges and Open Questions

Both classical and non-classical nucleation theories have their own limitations, and
there are still lots of questions unanswered. Recent advancements in nucleation rate
measurements with statistical analysis have motivated large amounts of nucleation rate
measured in a number of organic molecule systems. However, these data appear not very
helpful to extract key molecular kinetics information of crystal nucleation. On the other
hand, solution spectroscopy techniques have been extensively applied to elucidate structure
information of the pre-nucleation or nucleation associates and/or aggregates, providing
the structural basis to understand and potentially control polymorphic nucleation at the
molecular level. However, more research is needed to understand the detailed molecular
mechanism of crystal nucleation in the following areas:

(1) Observing the dynamical structure of a crystal nucleus in small organic molecule
systems at the molecular level remains a great challenge, which needs further de-
velopment of in situ characterization tools (e.g., liquid-cell TEM) for small organic
crystalline materials combined with computational simulations to elucidate molecular
information of crystal nucleation;

(2) The dispute whether density and structure fluctuations are concomitant remains to be
answered between classical and non-classical nucleation mechanisms. Although some
computational results support that at certain crystallization conditions crystalline
order is preceded by density fluctuations in non-classical nucleation mechanisms, the
claim is still lacking experimental evidence in small organic molecule systems;

(3) The nature of stable clusters in the pre-nucleation cluster pathway is unclear, and
examinations of the size and structure evolution of these pre-nucleation associates
and/or aggregates toward crystal nucleation are critical to providing a deeper fun-
damental understanding of nucleation. These pre-nucleation solute species are only
recently accessible using solution spectroscopy and high-energy x-ray scattering com-
bined with PDF analysis. Moreover, only the size of clusters was considered in CNT,
which is unlikely in organic molecule systems;

(4) The predictable and efficient control method for homogenous nucleation is still de-
sired with the tailored properties of crystalline materials. The decisive role of weak
interactions for example aromatic interactions and van der Waals forces on crystal
nucleation may lead to control nucleation difficult.

6. Summary and Outlook

The future manufacturing of crystalline materials requires the predictable and rational
assembly of crystals from molecules to synthesize materials with targeted properties. This
needs precise control of the crystallization process, in particular crystal nucleation, based on
a deeper fundamental understanding of the nucleation mechanism. Both classical and non-
classical nucleation mechanisms lack a detailed elucidation of the assembly information of
crystal nucleation. The nature of the solution species that appeared in either pre-nucleation
or nucleation stages, for example, pre-nucleation clusters and nucleated intermediates,
remain to be understood.

Recent advancements in analytical techniques, measurement methods, and computa-
tional simulations have made significant research progress on mechanistic understandings
of crystal nucleation. The use of molecular spectroscopy techniques including FTIR, Raman,
and NMR advances our understanding of the role of solution chemistry in pre-nucleation
and nucleation stages over the course of crystal nucleation. The solvation and aromatic
interactions are likely to play a decisive role in the formation of solution associates or
aggregates. The hierarchy in intermolecular interactions suggests the structural complexity
of these solution pre-assemblies and their dynamic nature in nucleation pathways, which
hints at the nucleation of a molecule involved in multiple nucleation pathways depen-
dent upon crystallization conditions, for example, solvent nature. Additionally, numerous
nucleation rate data have been reported with more prominent statistics in the literature.
However, the interpretation of these kinetics data appears less efficient to obtain detailed
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information on nucleation assembly. On the other hand, the computational simulations are
expected to assist in revealing the details of the organic crystal nucleation process. How-
ever, the current computational simulations on nucleation of organic molecules remain
challenged by, e.g., small simulation scales accessible and inappropriate application of bulk
properties to clusters of nanoscale dimensions. Although significant advancements were
made over the past decades, there are still many open questions in which the application of
advanced analytical techniques like high-resolution in situ (cryo-) TEM and computational
simulations are expected to unveil more detailed assembly information of nucleation of
small organic crystalline materials.
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