
Citation: Salem, M.S.; Zekry, A.;

Shaker, A.; Abouelatta, M.;

ElBanna, M.M.; Almurayziq, T.S.;

Ramadan, R.A.; Alshammari, M.T.

Performance Investigation of a

Proposed Flipped npn

Microstructure Silicon Solar Cell

Using TCAD Simulation. Crystals

2022, 12, 959. https://doi.org/

10.3390/cryst12070959

Academic Editors: Haider Ali,

Shahzada Qamar Hussain,

Archana Sinha, Michelle

Vaqueiro Contreras,

Anamaria Moldovan and

Hisham Nasser

Received: 20 June 2022

Accepted: 6 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Performance Investigation of a Proposed Flipped npn
Microstructure Silicon Solar Cell Using TCAD Simulation
Marwa S. Salem 1,2, Abdelhalim Zekry 3 , Ahmed Shaker 4,* , Mohamed Abouelatta 3, Mohamed M. ElBanna 4,
Tariq S. Almurayziq 5, Rabie A. Ramadan 1,6 and Mohammad T. Alshammari 5

1 Department of Computer Engineering, College of Computer Science and Engineering, University of Ha’il,
Ha’il 55211, Saudi Arabia; marwa_asu@yahoo.com (M.S.S.); rabie@rabieramadan.org (R.A.R.)

2 Department of Electrical Communication and Electronics Systems Engineering, Faculty of Engineering,
Modern Science and Arts University (MSA), Cairo 12566, Egypt

3 Department of Electronics and Communications, Faculty of Engineering, Ain Shams University,
Cairo 11566, Egypt; aaazekry@hotmail.com (A.Z.); m.abouelatta@eng.asu.edu.eg (M.A.)

4 Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University,
Cairo 11566, Egypt; mm.elbanna@eng.asu.edu.eg

5 Department of Computer Science and Information, Computer Science and Engineering College,
University of Ha’il, Ha’il 55211, Saudi Arabia; t.almuraziq@uoh.edu.sa (T.S.A.);
m.alsagri@uoh.edu.sa (M.T.A.)

6 Computer Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
* Correspondence: ahmed.shaker@eng.asu.edu.eg

Abstract: This work aims at inspecting the device operation and performance of a novel flipped npn
microstructure solar cell based on low-cost heavily doped silicon wafers. The flipped structure was
designed to eliminate the shadowing effect as applied in the conventional silicon-based interdigitated
back-contact cell (IBC). Due to the disappearance of the shadowing impact, the optical performance
and short-circuit current density of the structure have been improved. Accordingly, the cell power
conversion efficiency (PCE) has been improved in comparison to the conventional npn solar cell
microstructure. A detailed analysis of the flipped npn structure was carried out in which we per-
formed TCAD simulations for the electrical and optical performance of the flipped cell. Additionally,
a comparison between the presented flipped microstructure and the conventional npn solar cell
was accomplished. The PCE of the conventional npn structure was found to be 14.5%, while it was
about 15% for the flipped structure when using the same cell physical parameters. Furthermore, the
surface recombination velocity and base bulk lifetime, which are the most important recombination
parameters, were studied to investigate their influence on the flipped microstructure performance.
An efficiency of up to 16% could be reached when some design parameters were properly fine-tuned.
Moreover, the impact of the different physical models on the performance of the proposed cell was
studied, and it was revealed that band gap narrowing effect was the most significant factor limiting
the open-circuit voltage. All the simulations accomplished in this analysis were carried out using the
SILVACO TCAD process and device simulators.

Keywords: flipped npn microstructure; shadowing effect; TCAD; heavily doped Si wafers; power
conversion efficiency

1. Introduction

Recently, a lot of studies have concentrated on the cost reduction of photovoltaic (PV)
modules used in PV systems. The primary cause for the elevated cost of silicon PV solar
cells (SCs) is caused by the manufacturing of relatively low-doped high-quality Si wafers [1].
Additionally, to be able to use the commercial silicon solar cells, the thickness has to be
in the range of hundreds of micrometers and even higher (submillimeter) to extend the
light absorption [2]. Numerous research works deal with reducing the PV cells’ high cost.
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Several examples include thin-film SCs, which are manufactured from Copper Indium
Gallium Sulfide and Cadmium Telluride (CdTe) [3]. The main objective of using these
technologies is to attain efficiencies comparable to crystalline Si (c–Si)-based PV solar cells,
while adopting fragile absorber layers. Nevertheless, such technologies produce added
problems, such as toxicity and scarcity, which are considered environmentally harmful.
In addition, deposition systems are required which expand their fabrication cost. From
another point of view, thin-film Si cells, which are produced from amorphous silicon, have
stability concerns [4].

There is another alternative which is used to lower the cost of c–Si PV cells. It is based
on the reduction in the Si wafer’s thickness from its traditional value of 180 to 80 µm.
Such thickness is practically deemed a lower limit [5]. Unfortunately, the decrease in the
thickness of silicon wafers usually requires light management techniques to achieve the
maximum absorption of the input solar radiation spectrum despite the lowered thickness.

A promising solution to the challenge of achieving a low cost while maintaining
reasonable efficiencies is to exploit Si nano- or microstructures [6–9]. The advantages
of utilizing such structures include enhanced light-trapping capabilities and invoking
shorter diffusion lengths, which result in high carrier collection efficiency [10]. This can
be accomplished by realizing a high aspect ratio and high-doped p-n junctions in the
radial direction [11]. Based on this concept, decoupling of the absorbed photons’ path
and minority carrier diffusion direction are achievable [12]. B. Dou et al. have reported
an efficiency of 11.94% for a radial p-n junction solar cell [13]. The mentioned cell was
fabricated based on a Si nanopillar array that was synthesized from p-type Si substrates. In
addition, Si micro-gratings with vertical sidewall electrodes have been fabricated, resulting
a solar cell having a short-circuit current and an efficiency of 19.54 mA/cm2 and 7.8%,
respectively [14]. Moreover, a high-performance micropillar silicon structure with a Cu
nanoparticle solar cell was synthesized, and a cell efficiency of 11.5% was attained [15].

Using inexpensive materials, such as highly doped Si wafers, to achieve low-cost
solar cells is one of the most attractive alternatives. Such cheap wafers, however, have a
significant disadvantage as they have a high level of defects, implying low minority carrier
diffusion lengths [16,17]. Thus, the charge carrier collection diminishes, and the solar cell
performance degrades. To overcome such a problem, the light-generated carriers in such
inexpensive wafers need to be vertically generated and laterally collected [18]. Such an idea
opens a route for employing low-quality highly doped Si wafers, which are characterized
by their low cost and commercial availability for solar cell fabrication [19,20]. Recently,
a proposed npn microstructure SC, which was based on a heavily doped Si wafer as a
base material, demonstrated an initial efficiency of 10.7% [21]. After the optimization of its
technological parameters, it provided about 14.5% efficiency [22].

In this work, the performance of flipping the proposed optimized npn microstruc-
ture SC was investigated. The key purpose of flipping the structure was to eliminate the
shadowing effect. First, a qualitative analysis explaining the reason for using the flipped
npn structure is presented. In this analysis, a proposed configuration of the flipped npn
microstructure is examined in comparison to the npn solar cell microstructure. The ar-
rangement and advantages of the flipped npn structure are qualitatively discussed. Second,
the qualitative analysis was verified quantitatively by making use of TCAD process and
device simulators. A thorough electrical and optical description for the flipped structure
in comparison with the npn microstructure was carried out. In addition, the influence
of the recombination velocity and base lifetime on the performance of the flipped and
conventional npn microstructures was investigated.

The paper is coordinated as follows. Section 2 presents the key design parameters of
the proposed flipped npn microstructure. Section 3 describes the physical models used in
the device simulation. Section 3 illustrates the simulation steps of the proposed flipped
npn microstructure by using SILVACO TCAD. Further, Section 3.1 discusses the impact of
the n+ sidewall emitter surface treatments on the performance of the structure. Moreover,
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the influence of the P+ base lifetime is investigated in Section 3.2. Finally, Section 4 draws
the conclusions of our work.

2. Key Design Parameters of the Proposed Flipped npn Microstructure

In this section, a detailed analysis for the flipped npn solar cell microstructure is
carried out. Firstly, a qualitative analysis explaining the objective of using the flipped npn
structure is presented. Figure 1 shows the proposed flipped npn structure in comparison
with the conventional npn microstructure [22]. The main objective of flipping the npn solar
cell microstructure (Figure 1a) was to eliminate the effect of shadowing on the structure
performance as seen in the conventional structure (Figure 1b), in which the emitter contact
produces shadowing. Therefore, the flipped structure provides a larger area exposed to
the incident solar radiation than the conventional cell. Consequently, it was qualitatively
expected that the optical performance of the flipped structure would be better than that of
the conventional npn microstructure.
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Figure 1. Basic solar cell structures utilized in the study: (a) flipped npn microstructure and
(b) conventional npn microstructure.

In this study, the proposed flipped npn solar cell microstructure has the same design
parameters as the conventional npn structure discussed in our previous work [22], except
that the flipped structure has a buried emitter which minimizes the shadowing effect, as
is depicted in Figure 1a. The emitter perimeter of the flipped solar cell is larger than that
of the conventional solar cell. The p + volume, which is considered as the active region,
is also larger in the flipped solar cell. The main parameters of the flipped structure are
summarized as follows. The p+ base width is 2Wp where Wp is the width of the base region,
which is chosen to be Wp = 8 µm, while the width of the n+ side wall emitter is denoted
by Wn and is set to 0.18 µm, and the thickness of the cell is termed by tcell and is taken
to be 80 µm, a typical value for thin wafers. The doping levels of the p+− base, n+-side
wall and top regions are Np+,base, Nn+,emitter and Nn+,top, respectively, where their values are
Np+,base = 1018 cm−3 and Nn+,emitter = Nn+,top = 5 × 1019 cm−3. The n+ layer thickness is tn+,
which is fixed at 0.1 µm by adjusting the diffusion process through the process simulator.
The criteria for choosing such design parameters values were thoroughly argued in our
previous work [19,22,23].

3. Simulation of the Proposed Flipped npn Microstructure Using SILVACO TCAD

The simulation of the proposed flipped npn microstructure was executed by exploiting
the SILVACO process and device simulators through the subsequent steps. First, the flipped
npn microstructure SC was realized by using the SILVACO process simulator (Athena) [24].
Next, the structure was simulated by applying the SILVACO device simulator (Atlas) [25].
At this stage, the major physical models necessary for simulation were incorporated. These
include concentration-dependent mobility (conmob), field-dependent mobility (fldmob),
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concentration-dependent Shockley–Read–Hall recombination (consrh), Auger recombi-
nation (auger) and band gap narrowing (bgn) models. The minority carrier lifetime of
the emitter was extracted from the literature [26–29]. Figure 2 demonstrates the flipped
structure, which was created using the SILVACO Athena process simulator [24].
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Figure 2. The flipped structure using SILVACO Athena process simulator: (a) cross-sectional view for
the whole cell showing the absolute net doping contours in cm−3, (b) a close view near the emitter
region, (c) vertical cutline (perpendicular to the upper surface) showing the doping profile of the
vertical pn junction and (d) lateral cutline showing the doping profile of right lateral pn junction.

Here, a comparison between the conventional npn and the flipped npn structure
optical and electrical performance was performed with the device simulator. The optical
performance was examined in terms of the external quantum efficiency, while the electrical
performance was inspected by the illuminated J–V characteristics under AM1.5G solar
spectrum. From the J–V characteristic, all their electrical photovoltaic parameters, Jsc, Voc,
FF and PCE, were compared. Figure 3 shows the quantum efficiency (Figure 3a) and
illuminated J–V characteristics (Figure 3b) for the npn and the flipped npn microstructure.
As is depicted in Figure 3a, the quantum efficiency of the flipped structure is greater
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than that of the conventional cell, resulting in a higher short-circuit current as evident
from Figure 3b. This is because the flipped structure has no shadowing compared to the
conventional npn microstructure. Moreover, Table 1 summarizes the extracted electrical
performance photovoltaic parameters, Jsc, Voc, FF and PCE, for the two structures. It can
be deduced from the table that the flipped structure has higher conversion efficiency. The
efficiency of the proposed flipped structure is 0.5% above the conventional cell, which is
considered a good enhancement.

Crystals 2022, 12, 959 5 of 12 
 

 

 
(c) (d) 

Figure 2. The flipped structure using SILVACO Athena process simulator: (a) cross-sectional view 
for the whole cell showing the absolute net doping contours in cm−3, (b) a close view near the emitter 
region, (c) vertical cutline (perpendicular to the upper surface) showing the doping profile of the 
vertical pn junction and (d) lateral cutline showing the doping profile of right lateral pn junction. 

  
(a) (b) 

Figure 3. A comparison between the conventional npn and flipped structures: (a) external quantum 
efficiency (EQE) and (b) illuminated J–V characteristics. 

To provide a physical explanation for the reduction in the Voc of the flipped structure 
compared to that of the conventional cell, the dark J-V characteristics were simulated, as 
represented in Figure 4. The equivalent circuit of the two-diode model could effectively 
signify the dark behavior of the presented cells. The main dark parameters, reverse satu-
ration current Jo, ideality factor n and series resistance Rs, for both diodes were conse-
quently extracted and are listed in Table 2. The Voc can be expressed analytically by the 
following approximate equation: 𝑉 , ≈ 𝑛𝑉 ln 𝐽𝐽  (1)

where VT is the thermal voltage. Based on this expression, we calculated the Voc,ana for the 
flipped and conventional cells where the values of the second diode parameters are used, 

0 0.2 0.4 0.6 0.8 1 1.2
Wavelength ( m)

0

0.2

0.4

0.6

0.8

1

Ex
te

rn
al

 q
ua

nt
um

 ef
fic

ie
nc

y

Flipped Structure
Conventional Structure

0 0.1 0.2 0.3 0.4 0.5 0.6
Voltage (V)

0

10

20

30

40

50

Flipped Structure
Conventional Structure

Figure 3. A comparison between the conventional npn and flipped structures: (a) external quantum
efficiency (EQE) and (b) illuminated J–V characteristics.

Table 1. Summary of the photovoltaic parameters for the conventional npn and the flipped mi-
crostructures.

Jsc (mA/cm2) Voc (V) FF (%) PCE (%)

Conventional 40.70 0.580 80.30 14.50
Flipped 42.12 0.573 81.75 15.00

The improvement in the PCE did not result in a very high difference from the con-
ventional cell because of the mutual operation of two junctions. The main junction is the
lateral junction, while the top junction is considered a secondary junction. When flipping
the conventional npn structure, the top junction performance improved; however, this
improvement does not significantly reflect a high PCE because of the minor contribution to
light absorption of the top junction compared to the principal sidewall junction.

To provide a physical explanation for the reduction in the Voc of the flipped structure
compared to that of the conventional cell, the dark J–V characteristics were simulated, as
represented in Figure 4. The equivalent circuit of the two-diode model could effectively
signify the dark behavior of the presented cells. The main dark parameters, reverse satura-
tion current Jo, ideality factor n and series resistance Rs, for both diodes were consequently
extracted and are listed in Table 2. The Voc can be expressed analytically by the following
approximate equation:

Voc,ana ≈ nVT ln
(

Jsc

Jo

)
(1)

where VT is the thermal voltage. Based on this expression, we calculated the Voc,ana for the
flipped and conventional cells where the values of the second diode parameters are used,
as provided in Table 2, as this is the effective diode around the Voc. The analytical values
were near those found from simulation, also implying the same trend of the open-circuit
voltage, so the analytical solution was confirmed by the TCAD results.
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Table 2. Main parameters for dark characteristics for the conventional and the flipped microstructures.
The analytical and TCAD values of the Voc are also listed.

Jo1 (A/cm2) n1 Jo2 (A/cm2) n2 Rs (mΩcm2) Voc,ana (mV) Voc,TCAD (mV)

Flipped 2.46 × 10−9 1.651 7.68 × 10−12 0.998 6.78 0.579 0.573
Conventional 3.99 × 10−8 1.847 6.02 × 10−13 0.909 68.05 0.586 0.580

3.1. Effect of Different n+ Sidewall Emitter Surface Treatments

Surface recombination velocity (SRV) is a crucial parameter which significantly influ-
ences the solar cell operation. A high value of SRV produces the creation of a dead layer [30].
The photo-generated carrier rates are reduced due to increased SRV. SRV impacts both the
dark and illumination performance of the solar cell [31–35]. Throughout this subsection, the
impact of various n+ emitter surface treatments on both optical and electrical performance
parameters of the conventional and flipped structures is illustrated. There are four different
types of surfaces in solar cells. The first type is the ideal non-recombining contact (with
SRV = 1 cm/s), the second is the recombining contact with low surface recombination
velocity using good and clean oxide, such as the gate oxide in MOS transistors, the third
type is recombining contact with relatively high SRV (in the order of 104 cm/s and higher)
using non-clean oxide, such as FOX oxide in a MOS transistor, and the fourth type is ohmic
contact, having the highest SRV, up to 107 cm/s (which is corresponding to the saturation
velocity carriers) [36–40]. So, the analysis was performed for different values of surface
recombination velocity, ranging from 1 to 107 cm/s.

Figure 5 shows the Voc, Jsc, FF and PCE of the different values of SRV of the flipped
structure. It is obvious that from 1 to 104 cm/s, representing the ideal contact and good
oxide, the structure performance parameters are not affected. The cell performance start
to degrade starting from 104 cm/s. The most interesting result is that the illumination
characteristics are not affected by SRV variation as the study of SRV is concerned with the
sidewall emitter. The influence is deeply apparent in the degradation of Voc. This result is
expected as by increasing SRV, the reverse saturation current increases; thus, Voc decreases.
Concerning the fill factor, it is reversely affected by the reverse saturation current; thus,
the fill factor decreases. As for the conversion efficiency, as it is a function of Voc and FF, it
decreases. The above discussion suggests aluminum (Al) should not be directly deposited
on the n+ sidewall emitter without firstly passivating it. Additionally, the passivation must
occur with a relatively low SRV, up to 104 cm/cm, to not degrade the structure performance.

Again, to explain the influence of SRV on the Voc, we simulated the dark characteristics
for different cases of SRV. The extracted reverse saturation current of the equivalent diode
around the Voc is displayed in Figure 6. The reverse saturation current is constant for a SRV
up to 103 cm/s. Then, it slightly increases up to 104 cm/s followed by a significant increase
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up to SRV = 106 cm/s. Beyond this value, the reverse saturation current becomes almost
constant. The trend of the reverse saturation current is the same as for Voc, as expected.
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3.2. Effect of Different p+ Base Lifetime Variation

In this subsection, the p+ base bulk carrier lifetime is investigated in order to shed light
on its influence on the performance of the proposed flipped microstructure. The bulk carrier
lifetime is considered a key parameter that affects the recombination mechanism and hence
the cell performance. The low-doped wafers using Czochralski or float zone processes are
commonly used in the fabrication of Si solar cells to decrease the bulk recombination and
hence improve the solar cell performance. In these wafers, the bulk lifetime of carriers is
in the range of 50 µsec–500 µsec, but the cost of these wafers is still high, which impacts
the overall cost of the SCs [41]. So, our design is based on using heavily doped low-cost
Si wafers in the fabrication of our proposed flipped microstructure SC to overcome the
challenge of the low lifetime values by generating the carriers vertically and laterally,
collecting them through the small width of the cell.

The hole lifetime inside the p+- base was taken as a function of doping concentration,
and it is expressed as

τn =
τno

1 +
(Np+,base

Nre f

)γ (2)

where Nref = 5 × 1016 cm−3 and Np+,base = 1018 cm−3, and the constant γ is assumed to be
0.5 [20]. For the simulated heavily doped wafers, the bulk lifetime τno was assumed to
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be in the range of 1 µsec–40 µsec [42,43]. The influence of the bulk lifetime of carriers on
the performance parameters of the flipped structure was examined and is presented in
Figure 7, which demonstrates these parameters. As evident from the figure, the photovoltaic
parameters are boosted by increasing the value of the lifetime up to about τno = 30 µs,
resulting in an efficiency of about 16%. Beyond this value of base lifetime, the performance
saturates. The increasing trend in the performance parameters of the cell is expected as
the lifetime has a strong impact on the dark and illumination characteristics. It is clear
from the figure that the increase in the bulk lifetime raises both the short-circuit current
density and the open-circuit voltage. The boost in the Voc is due to the increase in the
short-circuit current and the decrease in the reverse saturation current [18]. The saturation
of the photovoltaic parameters of the flipped structure with the lifetime is because of the
fact that as the lifetime increased, the diffusion length increases such that it becomes much
greater than the base width. In this case, the current is controlled by the base width rather
than the diffusion length, implying a constant efficiency for higher lifetime values. These
results could also be explained by the recombination rate along the lateral distance of
the cell structure for different values of base lifetime. The recombination rate, shown in
Figure 8, decreases as the lifetime increases from 5 µs to 25 µs. When increasing the lifetime
above 25 µs, the recombination rates have an insignificant change, which validates the
findings in Figure 7.
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Figure 8. Recombination rate along the lateral distance of the flipped npn structure for different
values of base lifetime.

Finally, we investigated the limit of the efficiency when non-radiative recombination
losses were disabled. So, SRH and Auger recombination mechanisms were deactivated
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in the following simulation. Figure 9 displays the impact of the various recombination
and BGN models on the J–V characteristics. The different cell performance metrics of
the simulation cases are recorded in Table 3. τno is taken to be 30 µs when all models
were included. As can be inferred from the figure, the Voc is enhanced and the Jsc slightly
improves as well when the SRH recombination is neglected. On the other hand, Auger
recombination has a similar impact when compared to the SRH model. An efficiency of
16.85% can be obtained when neglecting both SRH and Auger models. In addition, when
deactivating the BGN model, an efficiency of 18.17% and a high Voc of 0.647 V are obtained.
This means that the limiting factor of the Voc degradation comes mainly from the BGN
effect. We are working on such impacts and the different ways to alleviate them to complete
the design before fabrication of this type of cell.
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Table 3. Photovoltaic parameters for the flipped microstructure when deactivating different models.

Jsc (mA/cm2) Voc (V) FF (%) PCE (%)

All models are enabled 43.81 0.588 82.03 16.05
SRH: disabled 44.13 0.597 82.72 16.55

SRH and Auger: disabled 44.19 0.605 82.87 16.84
SRH, Auger and BGN: disabled 44.19 0.647 83.67 18.17

4. Conclusions

In this work, we presented a proposed npn microstructure SC, whose configuration
eliminates the shadowing effect that arises in the conventional npn structure. A simulation
study was carried out using 2D TCAD SILVACO to inspect the performance of the cells
under investigation. The cells were firstly implemented by a process simulator and, after-
wards, a device simulator was incorporated to study the optical and electrical performance
of the cells. It was found that the proposed flipped structure provided a higher efficiency
than the conventional npn cell. This is mainly due to the design of the flipped structure,
which facilitates the penetration of light across the whole upper surface.

Two main parameters were thoroughly investigated to determine their impact on the
optical and electrical behavior of the npn microstructure cells. The parameters are the
surface recombination velocity of the sidewall junction and the lifetime of the base region.
It was realized that increasing surface recombination velocity and bulk lifetime significantly
influenced the photovoltaic parameters. For SRV in the range from 1 to 104 cm/s, the
efficiency did not change (at 15%). Thus, a good and clean oxide with low SRV did not
degrade the structure performance. At an SRV of 105 cm/s, the efficiency appreciably
decreased to 13.9%. For an SRV higher than 106 cm/s, the efficiency saturated at 13.3%.
Concerning the base lifetime, τno, the efficiency increased with increasing τno, from 15%
to 16% at τno above about 30 µsec. Beyond this value, the structure efficiency saturated at
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16% with further increases in τno. Therefore, an efficiency of 16% could be obtained using
practically feasible SRH lifetimes.

Moreover, the impact of SRH and Auger recombination mechanisms was studied
to investigate the limit of the efficiency of such a proposed solar cell when neglecting
non-radiative recombination mechanisms. This ideal situation gave an efficiency of about
16.85%. Finally, it was found that the main limiting factor for the open-circuit degradation
came from the BGN effect. Texturing and anti-reflection coatings (ARCs) on the surface
could be further studied to provide other possible paths for efficiency boosting. This
simulation study is a proof of concept and can be extended to analyze large-area flipped
npn structures, which can pave the way for high-efficiency low-cost SCs. In future work,
we plan to fabricate a prototype in order to experimentally validate the results of the
proposed design.
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