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Abstract: Crystal plasticity-based numerical simulations help understand the local deformation
behavior of multiphase materials. It is known that in full phase simulations, the local 2-dimensional
(2D) representative volume elements (RVEs) results are distinctly different from 3-dimensional (3D)
RVEs. In this work, the difference in the results of 2D and 3D RVEs is investigated systematically, and
the effect of magnification, total strain and composition are analyzed. The 3D RVEs of dual-phase
(DP)-steel are generated using DREAM-3D. The 2D RVEs are the sliced surfaces of corresponding
3D RVEs for a direct pixel-to-pixel comparison of results. It is shown that the corresponding 3D
distribution can be rapidly derived from the 2D result based on the alternative error and least square
method. The interactive parameters for these processes are identified and analyzed for the ferrite
phase, which provides information about the convergence. Examined by qualitative and quantitative
statistical analysis, it is shown that the corresponding 2D distribution by the fourth iteration has a
prominent similarity with the exact 3D distribution. The work presented here contributes toward
solving the paradox of comparing local strain from 2D crystal plasticity (CP) simulations with the
effective 3D specimen used for tests.

Keywords: crystal plasticity; DAMASK; representative volume element; least square method;
alternative error method; dual-phase steel

1. Introduction

Multiple-phase composites possess admirable mechanical properties and service life.
Combining softer matrix with harder islands [1], multiple-phase materials demonstrate
the strong structure and ductility, such as in dual-phase steel (DP steel) [2], metal matrix
composites, and other advanced steel [3]. The material properties of the multiphase mate-
rials depend on the microstructural attributes, such as the size, shape, composition, and
distribution of the second phase within the matrix [4]. The effect of these attributes is
interdependent and plays a key role in defining the deformation and damage behavior
under varying loading conditions [5,6], i.e., strain rate, temperature, and loading direction.
Numerical simulation models provide an interesting outlook for targeted material develop-
ment by avoiding the expensive and time-consuming experimentation of every iterative
modification in the material microstructure [7–9].

There are different numerical simulation models, i.e., empirical, analytical, data-
driven, and hybrid [10,11]. Although they are useful in the general modeling of material
deformation and damage behavior, they lack the fundamental dependence on the local
microstructural attributes [12,13]. Fast Fourier transformation-based crystal plasticity
models provide a comprehensive and accurate solution for modeling the multiphase
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material’s dependence on the microstructural attributes [14,15]. The RVEs in such models
comprise all the necessary phase compositions, size, orientation, and distribution that
represent the actual material [16]. Therefore, the model’s accuracy and applicability largely
depend on the constructed RVE for such simulations.

Different simple and sophisticated models for accurate RVE development have been
proposed previously, i.e., single-step Voronoi tessellation, multi-step Voronoi tessellation,
and artificial neural networks yielding accurate results that are usually 3D. According to the
RVE [17] method, both 2D (2-dimension) [18] and 3D (3-dimension) [19] microstructures
have been constructed by random grain size, orientation, phase, and texture or measured
from electron backscatter diffraction (EBSD) data [20]. Based on EBSD patterns from the
serial-sectioning experiments, 3D polycrystalline microstructures were constructed by
Groeber et al. [21,22]. Recently, DREAM-3D [23] was used to construct realistic RVEs from
virtual or real statistical grain size, orientation, and texture data. Applying DREAM-3D
and DAMASK [24], the performance of multilayer composites can be evaluated under
mechanical loading by the crystal plasticity material model.

Compared to the simulation and experimental data for DP steels, Ramazani et al. [25]
discovered that the 2D model displayed underestimated behavior, while the 3D result
demonstrated a quantitative description of the flow curve in comparison to the experimen-
tal data. Qayyum et al. [26,27] studied the local deformation and transformation behavior
of transformation-induced plasticity (TRIP) steel. In these articles, the simulation results of
global stress and strain behavior were compared to the experimental result. Nevertheless,
the validation of local distribution in 3D has a challenge to discuss, owing to the inconsis-
tency between experiment and simulation results. Diehl et al. [28] analyzed the effect of
“columnarity” and studied the influence of the nearby environment on stress and strain
in DP microstructures. It was discovered that the local stress and strain distributions are
strongly influenced by both the nearby grain shape and grain orientation. Due to this effect,
the 2D simulations of heterogeneous microstructures could be definitely misleading for the
damage prediction [29] of crack initiation and propagation.

The CP models are also largely dependent on several physical and a few fitting
parameters. These parameters are obtained by comparing averaged numerical simulation
results with experimental stress and strain curves [26,30]. Although a certain set of fitted
parameters seems to accurately represent the overall deformation behavior, a slightly
different set of fitted parameters is also expected to yield similar global results with a
significant change in local results. This reliability of such models on the globally calibrated
parameters can lead to incorrect local results. In the recent past, researchers have developed
algorithms for automated sensitivity analyses and parametric identifications from global
stress and strain curves [31,32]. A more reliable way of calibrating and validating the
CP model parameters can be through direct local comparison of experimental in situ and
simulation results.

The local strain measurement is experimentally possible now due to the advancement
of in situ measurement and data processing tools, which can accurately capture local strain
distribution and local microstructural attributes [33–35]. However, constructing an accurate
3D RVE of the same specimen is a paradox as 3D EBSD requires polishing, slicing, and
measurement throughout the specimen. Moreover, different phases frequently cause false
detection at the measurement surfaces and the grain boundaries [36].

Therefore, to carry out such a comparison, the 2D RVE results from CP simulation
should be reliably transformed to keep the global results the same while transforming
the local stress and strain distributions for comparison with the results of the 3D material
surface. It is a mathematical challenge that can yield a model for transforming 2D RVE
simulation results of local strain distribution for comparison with strain measurements
on the surface of a 3D specimen. Recently, Qayyum et al. [37,38] investigated the stress
and strain distribution between 2D and 3D RVEs with different total grain numbers. It
was shown that the global distribution of the flow curve is similar across different RVEs.
However, the local distribution showed obvious variation. The numerical finding of
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Qayyum et al. [37,38] underlines the different stress and strain distribution in 2D and 3D
via random distribution of grain size and orientation. In the current article, the previous
study is carried one step further, and a corresponding local 3D stress and strain distribution
on the RVE surface is achieved by transforming 2D stress and strain. The work is based on
the alternative error and least square method. The transformation of the ferrite phase stress
and strain from the 2D result is iteratively achieved. The iterative constants for different
cases of magnification, strain levels, and volume fractions are presented and compared.
The proposed new numerical approach is helpful in iteratively transforming the 2D stress
and strain if the 3D outcome is known. To analyze and compare the derived 3D distribution
with actual results, a statistical analysis of the obtained data is carried out.

The following Section 2 presents the detail of the numerical simulation model, includ-
ing grain size, boundary condition, and material parameter of crystal plasticity. Then, the
proposed iterative method, which is adopted in the current work, is explained in Section 3.
Next, the derived 3D local stress and strain distribution calculated using the proposed
method are displayed. Meanwhile, similarities between derived and exact 3D distribution
are provided by statistical analysis in Section 4. Finally, the discussion and conclusion are
presented in Sections 5 and 6.

2. Numerical Simulation Model

The material adopted in the current investigation is DP steel, which comprises two
distinct phases, i.e., soft ferrite matrix and hard martensite island. This large local mi-
crostructural heterogeneity yields significant local strain contrast during deformation.
The microstructural distribution, grain size, material properties, and grain orientation
are adopted from previously published work [39–41]. This article investigates different
parameters for varying the overall number of grains, strain levels, and volume fractions.
Table 1 demonstrates the grain size distribution of ferrite and martensite, number of total
grains, volume fractions, and strain levels for each model. For cases 1 to 3, the varying
parameter is the total number of grains; for cases 4 to 6, the varying parameter is strain
level; For cases 7 to 9, the varying parameter is volume fraction. Note that the unit of grains
size is µm and total grain is a dimensionless value. Based on experimental observation [42],
the smaller average grain sizes of ferrite and martensite were assigned as 6.35 and 4.6 in
RVE-A, whereas the larger average grain sizes were 14.0 and 12.8 in RVE-C during the
crystal plasticity simulation. Hence, the total grains of RVE-A are more than RVE-C.

Table 1. Grain size distribution, number of total grain, volume fraction, and strain level for the
microstructure [37].

Case RVE
Ferrite Grains Martensite Grains Total

Grain
Strain

Level [%]
Volume
FractionMin. Max. Avg. Min. Max. Avg.

1 A 5.1 7.6 6.35 3.5 5.7 4.6 8400 25 0.1
2 B 8.5 12.7 10.6 5.4 8.8 7.1 1900 25 0.1
3 C 11.2 16.8 14.0 9.8 15.8 12.8 700 25 0.1
4 D 8.5 12.7 10.6 5.4 8.8 7.1 1900 5 0.1
5 D 8.5 12.7 10.6 5.4 8.8 7.1 1900 15 0.1
6 D 8.5 12.7 10.6 5.4 8.8 7.1 1900 25 0.1
7 D 8.5 12.7 10.6 5.4 8.8 7.1 1900 15 0.1
8 E 8.5 12.7 10.6 5.4 8.8 7.1 1900 15 0.15
9 F 8.5 12.7 10.6 5.4 8.8 7.1 1900 15 0.2

A cubic equiaxed crystal structure and ellipsoid grain shape are assigned to both
ferrite and martensite phases. 100 × 100 × 100 voxels RVEs are systematically constructed
using DREAM-3D for the sizes as shown in Table 1. Figure 1 shows a schematic diagram
and flow chart in this article. The blue arrows indicate the steps involved in carrying out
this work. In the beginning, 2D and 3D simulations for different RVEs are carried out. Both
ferrite (F) and martensite (M) phases are then individually analyzed. Combined with the
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least square and alternative error method, the iterative constants (a1, b1, a2, and b2, . . . ) of
the linear equation are calculated while transforming the 2D results into 3D.
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Figure 1. The schematic diagram represents the flow chart of the current work. The upper half (yellow
background) indicates the flow chart of crystal simulation, and the bottom half (blue background)
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tensile loading, and the yellow arrow separates the ferrite (F) and martensite (M) phases.

The principal aim of this ongoing study is to develop a robust methodology for
deriving the 3D surface stress and strain distribution from the 2D RVE result for ferrite and
martensite phases. This work brings us one step closer to that aim. As a representation,
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RVE-C in inverse pole figure (IPF) colors is shown in Figure 2a (h = 1), where h indicates the
length of z-direction normalized total length of z-direction. Following Qayyum et al. [37],
50- (h = 0.5) and 1-layer (h = 0.01) RVE were sliced from the initial microstructure and
regarded as 3D and 2D RVE, respectively. The simulation results for 1- and 50-layers have
been selected and defined as 2D and 3D results of the local stress and strain distribution.
There are 10,000 Gaussian mesh elements in one layer, meaning 2D and 3D possess 10,000
and 500,000 elements, respectively. All the constructed RVEs were sliced into similar
geometries with 1-layer (h = 0.01) RVE and shown in terms of texture style in Figure 2b.
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Figure 2. (a) The resulting RVE-C initial microstructure colored according to the inverse pole figure
(IPF). (b) All RVE models (RVE-A to RVE-F) were sliced into geometries with 1-layer (h = 0.01) RVE
in terms of texture style.

The ferrite and martensite are defined as elastic–viscoplastic deformable phases. The
elastic stiffness, shear resistance, hardening behavior, and curve fitting parameter are
adapted from previously published work [38] and presented in Table 2.



Crystals 2022, 12, 955 6 of 18

Table 2. Mechanical properties of multiphase (ferrite and martensite) were adopted from [37] for
simulation modeling.

Parameter Symbol Ferrite Martensite Unit

First elastic stiffness constant with
normal strain C11 233.3 417.4 GPa

Second elastic stiffness constant
with normal strain C12 135.5 242.4 GPa

First elastic stiffness constant with
shear strain C44 128.0 211.1 GPa

Initial shear resistance on [111] S0 [111] 95 406 MPa
Saturation shear resistance on [111] S∞ [111] 222 873 MPa
Initial shear resistance on [112] S0 [112] 96 457 MPa
Saturation shear resistance on [112] S∞ [112] 412 971 MPa
Slip hardening parameter h0 1.0 563 GPa
Interaction hardening parameter hα,β 1.0 1.0 -
Stress exponent n 20 20 -
Curve fitting parameter w 2.0 2.0 -

The crystallographic orientation, mechanical properties, and phase of ferrite and
martensite are included in the RVE geometry definition. A uniaxial load along the
x-direction is defined using mixed boundary conditions as follows:

.
Fij =

1 0 0
0 ∗ 0
0 0 ∗

× 10−3·s−1 (1)

Pij =

∗ ∗ ∗∗ 0 ∗
∗ ∗ 0

Pa (2)

where
.
Fij is the coefficients of the macroscopic rate of the deformation gradient, Pij is

the first Piola–Kirchhoff stress.
.
F11 = 1/s indicates tensile condition, 0 is represented as

restricted, and * is an arbitrary value during the simulation. It should be noted that the
strain rate of all simulations is assumed to be 1× 10−3/s in conjunction with periodic
boundary conditions in all three directions. The simulations are performed in plain strain
mode, where 2D RVE is interpreted as a columnar grain structure.

The spectral method via fast Fourier transform [43] is used to solve the continuum
mechanics formulation mentioned above. After completing simulations, the 2D and 3D data
are statistically analyzed. The 3D numerical results are used as a reference for iteratively
modifying the 2D results by combining the least square and alternative error methods via
Matlab programs (2019b, The MathWorks Inc., Natick, MA, USA).

3. Method

In the beginning, both the 50- and 1-layers were regarded as geometry models for
crystal simulation and considered as 3D and 2D RVE models, as shown in Figure 2a. Note
that stress/strain throughout this article means either stress or strain conditions. The results
from the 2D RVE are compared with the surface of the corresponding 3D RVE to analyze
the difference in stress/strain values. First, the stress/strain on the 2D layer result with
respect to the difference in stress/strain between the 3D and 2D layer results is considered.
Based on the least square method, the linear equation for this can be written as follows:

y1i = a1x1i + b1, i = 1, 2, 3 . . . . . . 10, 000 (3)

a1 =
∑10,000

i=1 ( f1i − f1)( fer0i − fer0)

∑10,000
i=1 ( f1i − f1)

2 , b1 = fer0 − a1 f1, i = 1, 2, 3 . . . . . . 10, 000 (4)
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where i is the number of elements on the top surface, and there are 100 × 100 voxels
on both 2D and 3D layers. Where f1i is stress/strain for 2D layer result; f1 is average
stress/strain for 2D layer result; f50i is stress/strain for 3D layer result; fer0i is the difference
in stress/strain between 3D and 2D layer results ( fer0i = f50i − f1i), which indicates the
difference of non-revised (original 2D) stress/strain; and fer0 is the average difference in
stress/strain between 3D and 2D layer results.

Through this method, the corresponding y1i, a1, and b1 can be obtained. Hence,
the first revised stress/strain ( fr1i) and the different first revised stress/strain ( fer1i) can
be derived:

fr1i = f1i + y1i, i = 1, 2, 3 . . . . . . 10, 000 (5)

fer1i = f50i − fr1i, i = 1, 2, 3 . . . . . . 10, 000 (6)

where fer1i can be calculated by the difference in stress/strain between the 3D layer and
the first revised 2D layer result. However, if the error of the first revision is not convergent,
the second iteration will be carried out.

Next, the difference in stress/strain between the 3D and 2D layer results is considered
with respect to the different first revised stress/strain. Based on the least square method,
the linear equation can be obtained as follows:

y2i = a2x2i + b2, i = 1, 2, 3 . . . . . . 10, 000 (7)

a2 =
∑10,000

i=1 ( fer0i − fer0)( fer1i − fer1)

∑10,000
i=1 ( fer0i − fer0)

2 , b2 = fer1 − a2 fer0, i = 1, 2, 3 . . . . . . 10, 000 (8)

Through this method, the corresponding y2i and x2i can be obtained. Hence, the
second revised stress/strain ( fr2i) and the different second revised stress/strain ( fer2i) can
be derived:

fr2i = fr1i + y2i, i = 1, 2, 3 . . . . . . 10, 000 (9)

fer2i = f50i − fr2i, i = 1, 2, 3 . . . . . . 10, 000 (10)

fer2i can be calculated by the difference in stress/strain between the 3D layer and the
second revised stress/strain. Finally, based on the least square method, a general linear
equation can be obtained in the series form of m-iteration. The difference in the m-2
revised stress/strain (x-axis) is considered with respect to the different m-1 (y-axis) revised
stress/strain. This equation can be written as follows:

ymi = amxmi + bm, i = 1, 2, 3 . . . . . . 10, 000, m = 2, 3, 4, . . . (11)

am =
∑10,000

i=1 ( fer(m−2)i− fer(m−2))( fer(m−1)− fer(m−1))

∑10,000
i=1 ( fer(m−2)i− fer(m−2))

2 , bm = fer(m−1) − am fer(m−2)

, i = 1, 2, 3 . . . . . . 10, 000, m = 2, 3, 4, . . .
(12)

Through this method, the corresponding ymi and xmi can be obtained. Hence, the m
revised stress/strain ( frmi) and the different m revised stress/strain ( fermi) can be derived as:

frmi = fr(m−1)i + ymi, i = 1, 2, 3 . . . . . . 10, 000, m = 2, 3, 4, . . . (13)

fermi = f50i − frmi, i = 1, 2, 3 . . . . . . 10, 000, m = 2, 3, 4, . . . (14)

fermi can be calculated by the difference in stress/strain between the 3D layer and the m
revised stress/strain.

4. Results

Although results for both the ferrite and martensite phase were processed and ana-
lyzed in this work, in this section, the results for the ferrite phase are presented. Similar
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numerical results (Tables A1 and A2) of the martensite phase are provided in Appendix A
of this article for interested readers.

4.1. Local Stress/Strain Distribution in 2D and 3D

Initially, local stress/strain distributions for case 1 to case 9 are shown in Figure 3
to address how the local results vary between 2D and 3D separately sourced from 1-
and 50-layers only for ferrite matrix. Note that case 1 to case 3 indicates different total
grain numbers; case 4 to case 6 indicate different strain levels; case 7 to case 9 indicates
different volume fractions. The detailed microstructure information is demonstrated in
Table 1. To point out the difference between 2D and 3D-RVEs, the local stress and strains
are arithmetically subtracted (3D−2D) as fer0i = f50i − f1i, and the difference map with the
true stress or strain scales −700 to 700 MPa −60 to 60%, respectively, is shown in Figure 3.
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that case 1 to case 3 indicate different total grain numbers; case 4 to case 6 indicate different strain
levels; case 7 to case 9 indicate different volume fractions. The extreme left and right column indicates
the 2D and 3D local stress and strain distribution differences, respectively.

For 2D conditions, high contrast in the stress/strain concentration is observed. It can
be noted that there is a significant difference between the 3D and 2D-RVEs local attribute
distribution. In the 3D RVE case, the stress and strain are relatively homogeneously
distributed and display lower contrast. Meanwhile, the higher stress/strain transfer to the
martensite/ferrite interface. It can be concluded that the local stress/strain distribution
is different from 3D and 2D-RVEs, regardless of the total grain numbers, strain levels,
and volume fractions. Therefore, a straightforward transformation method can hardly be
adapted to modify 2D results to 3D distribution for a specific element. The results from the
proposed numerical statistical analysis are given in the next section.

4.2. Step by Step for Transformation from 2D to 3D

In Section 2, the proposed iterative method was derived for this specific problem.
Figure 4 shows a scatter diagram of the ferrite phase with two extreme “total grain number”
cases (case 1 (a, c) and case 3 (b, d)) via different iterative steps both for stress (a, b) and
strain (c, d) value. Since all the cases are similar, this article only presents cases 1 and
case 3 for discussion. Regarding the x-axis, the repaired stress/stain is indicative of the
corresponding different revised stress/strain of 2D. It assumes 2D stress/strain ( f1i) for
the zero iteration, but for the first iteration and onwards, it is derived to fer0i and Equation
(6) for the first and second iteration, respectively. For the y-axis, the different stress/strain
comes from the general form in Equation (14), where the 2D revised stress/strain compared
with 3D stress/strain is computed for each solution point. This term is now clearly used
and mentioned in the explanation of fer0i for the zero iteration. Then, Equations (6) and
(10) indicate the first and second iteration, respectively.

Crystals 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 

distribution. In the 3D RVE case, the stress and strain are relatively homogeneously dis-
tributed and display lower contrast. Meanwhile, the higher stress/strain transfer to the 
martensite/ferrite interface. It can be concluded that the local stress/strain distribution is 
different from 3D and 2D-RVEs, regardless of the total grain numbers, strain levels, and 
volume fractions. Therefore, a straightforward transformation method can hardly be 
adapted to modify 2D results to 3D distribution for a specific element. The results from 
the proposed numerical statistical analysis are given in the next section. 

4.2. Step by Step for Transformation from 2D to 3D 
In Section 2, the proposed iterative method was derived for this specific problem. 

Figure 4 shows a scatter diagram of the ferrite phase with two extreme “total grain num-
ber” cases (case 1 (a, c) and case 3 (b, d)) via different iterative steps both for stress (a, b) 
and strain (c, d) value. Since all the cases are similar, this article only presents cases 1 and 
case 3 for discussion. Regarding the x-axis, the repaired stress/stain is indicative of the 
corresponding different revised stress/strain of 2D. It assumes 2D stress/strain ( 1if ) for the 

zero iteration, but for the first iteration and onwards, it is derived to er0if  and Equation 
(6) for the first and second iteration, respectively. For the y-axis, the different stress/strain 
comes from the general form in Equation (14), where the 2D revised stress/strain com-
pared with 3D stress/strain is computed for each solution point. This term is now clearly 
used and mentioned in the explanation of er0if  for the zero iteration. Then, Equations (6) 
and (10) indicate the first and second iteration, respectively. 

 
Figure 4. Scatter diagram showing the numerical tendency of stress in (a) case 1 (b) case 3 and strain 
in (c) case 1 (d) case 3 by the proposed iterative method for ferrite phase at 25% global true strain 
and 0.1 volume fraction. 

For the same iterative step, the numerical distribution reveals a similar tendency re-
gardless of different total grain numbers for stress cases, as shown in Figure 4a,b, or for 
strain cases, as shown in Figure 4c,d, respectively. For the initial condition, the 
stress/strain on the 2D layer result ( 1if ) with respect to the difference of non-revised 

Figure 4. Scatter diagram showing the numerical tendency of stress in (a) case 1 (b) case 3 and strain
in (c) case 1 (d) case 3 by the proposed iterative method for ferrite phase at 25% global true strain and
0.1 volume fraction.



Crystals 2022, 12, 955 10 of 18

For the same iterative step, the numerical distribution reveals a similar tendency
regardless of different total grain numbers for stress cases, as shown in Figure 4a,b, or for
strain cases, as shown in Figure 4c,d, respectively. For the initial condition, the stress/strain
on the 2D layer result ( f1i) with respect to the difference of non-revised stress/strain
between 2D and 3D layer results ( fer0i) are defined as black scatter, as shown in Figure 4. It
can be observed that the stress/strain results in 2D have inverse behavior to the difference
in stress/strain between the 3D and 2D layer results. Due to inverse behavior, it can be
speculated that the larger value of stress/strain is overestimated, and the lower value of
stress/strain is underestimated for the 2D layer result. Transferring the local stress/strain
of a 2D layer to match the 3D layer better, a larger value of stress/strain should be forcibly
applied to a negative value of stress/strain, and a positive value of stress/strain should be
forcibly applied to a smaller one.

Based on the least square method, the linear equation for the original condition can be
calculated in Equations (3) and (4). Tables 3 and 4 demonstrate the constants am,bm and
R2

m (m = 1, 2, 3, 4) of the linear equation by the proposed iterative method for stress/strain
conditions during different iterative steps. Using a1 and b1, the value of stress/strain in
2D layer result will be forcibly modified by a corresponding value and become the first
revised stress/strain in Equation (5). Meanwhile, the different first revised stress/strain
can be calculated by Equation (6).

After applying the approach mentioned above, the first repaired stress/strain ( fer0i)
concerning different first revised stress/strain ( fer1i) are shown in purple scatters in Figure 4.
It can be observed that different first revised stress/strain results have proportional behavior
to the result of the first repaired stress/strain.

Repeatedly, through the least square method, the linear equation for the second it-
eration condition can be calculated by Equations (7) and (8). Through a2 and b2, the
first revised stress/strain result ( fr1i) will forcibly be modified with a corresponding
value of a linear equation and become the second revised stress/strain result ( fr2i) in
Equation (9). Additionally, the different second revised stress/strain ( fer2i) can be calcu-
lated by Equation (10). Followed by a similar iterative procedure, the second repaired stress
strain ( fer1i) concerning the different second revised stress/strain ( fer2i) is defined as blue
scatters, as shown in Figure 4. Similarly, third repaired stress/strain ( fer2i) concerning the
different third revised stress/strain ( fer3i) is defined as green scatters.

Table 3. Constants am, bm, and R2
m (m = 1, 2, 3, 4) for the ferrite phase of linear equation with stress

condition by the proposed iterative method.

Stress
Analysis
Parameter

Total Grain Stress/Strain Level, % Volume Fraction, %
8400 1900 770 5 15 25 0.1 0.15 0.2

Case 1 2 3 4 5 6 7 8 9
RVE

Iterative
Const.

A B C D D D D E F

a1 −0.76 −0.81 −0.75 −0.63 −0.74 −0.78 −0.74 −0.66 −0.66
b1 543.73 572.10 572.15 357.41 470.71 579.71 470.71 444.5 435.8
R2

1 0.35 0.37 0.34 0.31 0.38 0.41 0.38 0.33 0.31
a2 0.64 0.62 0.65 0.68 0.61 0.59 0.61 0.64 0.66
b2 −8.62 −10.73 −5.70 −11.48 −9.46 −7.43 −9.46 −13.85 −12.25
R2

2 0.64 0.64 0.68 0.69 0.62 0.60 0.62 0.69 0.72
a3 0.35 0.36 0.32 0.31 0.37 0.40 0.37 0.30 0.27
b3 −1.41 −2.97 −3.13 −1.38 -2.44 −3.03 −2.44 −4.95 −4.28
R2

3 0.35 0.36 0.32 0.31 0.37 0.40 0.37 0.30 0.27
a4 0.65 0.64 0.68 0.69 0.62 0.60 0.62 0.70 0.72
b4 −0.18 −0.54 −1.03 −0.253 −0.36 −0.42 −0.36 −2.2 −2.4
R2

4 0.65 0.64 0.68 0.69 0.62 0.59 0.62 0.70 0.72
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Table 4. Constants am, bm, and R2
m (m = 1, 2, 3, 4) for the ferrite phase of linear equation with strain

condition by the proposed iterative method.

Strain
Analysis
Parameter

Total Grain Strain Level, % Volume Fraction, %
8400 1900 770 5 15 25 0.1 0.15 0.2

Case 1 2 3 4 5 6 7 8 9
RVE

Iterative
Const.

A B C D D D D E F

a1 −0.78 −0.85 −0.82 -0.72 −0.73 −0.75 −0.73 −0.74 −0.73
b1 22.09 25.30 25.16 4.57 13.95 23.85 13.95 14.91 14.94
R2

1 0.50 0.57 0.49 0.49 0.49 0.49 0.49 0.51 0.48
a2 0.50 0.44 0.50 0.5 0.50 0.49 0.50 0.48 0.51
b2 0.01 0.51 −0.31 −0.05 −1.87 −0.38 −1.87 0.21 0.16
R2

2 0.50 0.44 0.51 0.50 0.50 0.49 0.50 0.49 0.53
a3 0.50 0.56 0.49 0.49 0.49 0.50 0.49 0.50 0.47
b3 −0.06 −0.11 −0.30 −0.02 −0.08 −0.16 −0.08 −0.21 −0.21
R2

3 0.50 0.56 0.48 0.49 0.49 0.50 0.49 0.50 0.47
a4 0.50 0.43 0.51 0.50 0.50 0.49 0.50 0.49 0.53
b4 −0.005 −0.01 −0.04 −0.02 −0.007 −0.01 −0.007 −0.04 −0.04
R2

4 0.50 0.43 0.51 0.50 0.50 0.49 0.50 0.49 0.52

4.3. Convergence and Statistical Analysis

A quantitative analysis method determines the convergent behavior and confirms the
error analysis via different iterative steps. The function of average difference is defined
as follows:

eravg.(x) =
n

∑
i=1

| fermi|
n

m = 0, 1, 2 . . ., n = 10, 000 (15)

where fermi is the difference in stress/strain between 3D and revised 2D layer results as
derived in Equation (14), which can also be obtained by the magnitude of the y-axis in
Figure 4, “m” is an iterative step from 0 to 5, and n is element number in 100 × 100 voxels
RVEs. Figure 5 shows the average difference in stress/strain with different iterative steps.
To avoid confusion, only case 1 to case 3 are shown in the convergence analysis. As can be
seen, the convergent behavior with a small error is observed in the fourth iterative step.
Therefore, it can be concluded that the fourth iterative step can reach the desired 3D local
stress/strain distribution after almost 70% average difference in stress/strain conditions.
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Previously presented qualitative comparisons of transformation are mainly based on
individual visual perceptions. An appropriate statistical quantitative analysis is carried out
here to compare the transformation results more accurately. For the statistical method, the
probability distribution function is adopted. The probability distribution function can be
derived in terms of µ and σ as follows:

p(x) =
1

σ
√

2π
exp(− (x− µ)2

2σ2 ), −∞ < x < ∞ (16)

where µ is mean value of the probability distribution function σ is the standard deviation
value. The standard normal distribution-based probability distribution function of the
difference in stress/strain distribution for case 1 with different iterative steps is shown in
Figure 6. Note that five different stress/strains from zero to the fourth iterative step have
been considered in the probability distribution function. Again, the different stress/strain
comes from the general form in Equation (14), where the 2D revised stress/strain compared
with 3D stress/strain is computed for each solution point. It can be seen that the peak
considerably protrudes with the increase in iterative steps in the probability diagram.
Therefore, it can be concluded that the error is convergent as iterative steps increases, which
represents the derived 3D stress and strain distribution, as effectively calculated by the
proposed iterative method.
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4.4. Derivation of 3D Stress and Strain Distribution from the 2D Result

The graphic of derived 3D local stress and strain distribution with different iterative
steps using the identified iterative constants will be demonstrated in this section. Due to
the convergence and statistical analysis in Figures 5 and 6, the transformation is carried
out up to the fourth iterative step. Local stress/strain distribution for the revised 2D layer
result, 3D layer result, and differences between 2D and 3D layer results for the ferrite phase
of case 1 with different iterative steps is as displayed in Figure 7. In the first iteration,
the stress/strain distribution displays the virtually perfectly averaged arrangement when
forcibly applying a negative value on a larger stress/strain value and a positive value on a
smaller stress/strain value by modification from corresponding a1 and b1 in Tables 3 and 4.
The high stress/strain zones disappear from the actual results. However, the difference
in stress/strain between the first revised 2D and 3D layers can still be easily identified.
The second revised stress/strain is obtained for the second iteration after modifying the
first revised result by corresponding a2 and b2 in Tables 3 and 4. It can be observed that
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the stress/strain concentration is generated along with the ferrite/martensite interfaces.
The second iteration result displays a dramatic difference compared with the first iteration
result. Subsequently, the third and fourth revised stress/strain are obtained during the
modification of the second and third results revised by the corresponding a3 and b3 as well
as a4 and b4 in Tables 3 and 4. It can be seen that stress/strain concentration along the
interface of the fourth revised result is more enhanced than the second revised result. It can
be concluded that the derived 3D stress/strain distribution closely resembles the 3D result
at the fourth iterative step.
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5. Discussion

Due to the significantly higher stiffness of the martensite phase and strong “elastic
mismatch” in the DP steels, higher interfacial stresses are induced due to applied mechani-
cal or thermal loading [44,45]. Therefore, when comparing the stress and strain fields of the
martensite and ferrite phases, extremely higher stress (≈2500 MPa) and lower strain are
achieved in the martensite phase. On the contrary, smaller stress (≈800 MPa) and larger
strain can be identified in the ferrite phase.

From the current and previous studies [28,37,38,46,47], in 2D crystal plasticity simula-
tion, the obvious stress and strain concentrations exist in the ferrite phase due to the absence
of the third dimension. As depth increases, the stress and strain are more distributed, and
the concentration generally transfers to the matrix/particle interfaces and triple points
of grains with a low Schmidt factor. As the thickness increases, the matrix’s stress field
is phenomenally influenced by the adjacent inclusion. Chao et al. [48] indicated that the
distance between two circular inclusions strongly provoked the stress field of the matrix
and then interfered with the stress intensity factor of the crack.
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Additionally, Diehl et al. [28] investigated the interaction between stress/strain condi-
tions, the phase distribution of neighboring grain, and their crystallographic orientation. It
was concluded that there is a drastic difference in local stress/strain distribution between
2D and 3D-RVEs results, which means it is difficult to validate simulation results with
similar experiments. If 3D geometry is measured by slicing the surface, there is no same
specimen available for the in situ tests. On the contrary, if the specimen is tested by de-
formation loading, 2D EBSD only can be obtained, and the corresponding 2D simulation
result differs from the 3D distributions [28].

In the database of parameters from the proposed iterative method, as displayed in
Tables 3 and 4, it can be examined that the R2

m is practically similar in the same iterative
step for ferrite phases regardless of total grain numbers, strain levels, and volume fractions.
Additionally, the constants am and bm nearly have a consistency tendency regardless of total
grain numbers and volume fractions. There is a difference in the case of strain levels. That
is, the constant am and R2

m display a similar value for different strain levels. Conversely,
the constants bm demonstrates larger value at larger strain levels. It is exhilarating that the
3D distribution can be straightforwardly responded to by 2D result by the same iterative
constant owing to the similar am, bm and statistical analysis, which means that the 3D
distribution can be derived by the proposed iterative method regardless of total grain
numbers and volume fractions.

The methodology of deriving 3D local distribution from 2D results has been thoroughly
introduced. In the future, the constants am and bm can provide a helpful suggestion to
predict the 3D local stress/strain from 2D local stress/strain. Henceforward, the derived
3D local stress and strain distribution can be an excellent validation of the experiment and
further recommends the optimal design of the multiple phase steel with different grain
orientation, total grain numbers, composition, and loading conditions by the proposed
iterative method.

6. Conclusions

In this article, the derived crystal plasticity simulation of 3D local stress and strain
has been successfully obtained from the 2D simulation result. The difference in the local
stress and strain distributions in 2D and 3D simulations of the same surface is significant.
There are three different parameter series, including total grain numbers, strain levels, and
volume fractions. After identifying the difference in the local distributions, the alternative
error and least square methods are used to transform the 2D results to match with 3D
observations. It is shown that using the presented proposed iterative technique, the 3D
distribution can be quickly derived from the 2D result in a ferrite matrix of DP steel. It
can be concluded that the desired transformation can be achieved in the fourth iterative
step by using the identified iterative constants for each phase. For the iterative constants,
almost similar values regardless of total grain numbers and volume fractions are displayed.
The accuracy of the developed method is demonstrated by visual and statistical analysis,
and the proposed numerical approach can be regarded as effective and efficient. In the
future, this method can be applied to forecast 3D distributions of stress and strain in other
multiphase materials, such as spheroidized steels and particle-based metal composites.
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Appendix A

Based on the proposed iterative method, the iterative constants for the martensite
phase with stress and strain conditions are displayed in Tables A1 and A2, respectively.

Table A1. Constants am, bm, and R2
m (m = 1, 2, 3, 4) for the martensite phase of linear equation with

stress condition by the proposed iterative method.

Stress
Analysis
Parameter

Total Grain Strain Level Volume Fraction
8400 1900 770 5% 15% 25% 0.1 0.15 0.2

Case 1 2 3 4 5 6 7 8 9
RVE

Iterative
Const.

A B C D D D D E F

a1 −0.86 −0.78 −0.88 −0.7375 −0.7938 −0.82 −0.7938 −0.725 −0.766
b1 1875 1614 1746 1526 2002 2222 2002 2092 1956
R2

1 0.31 0.23 0.36 0.14 0.24 0.34 0.24 0.21 0.17
a2 0.67 0.76 0.63 0.84 0.74 0.64 0.74 0.77 0.81
b2 6.02 2.87 −1.003 28.96 14.86 6.64 14.86 20.6 −25.19
R2

2 0.67 0.76 0.63 0.84 0.74 0.64 0.74 0.79 0.81
a3 0.32 0.23 0.36 0.15 0.25 0.35 0.25 0.23 0.18
b3 4.67 1.05 −1.00 5.69 6.49 6.37 6.49 6.55 −5.52
R2

3 0.31 0.23 0.36 0.14 0.25 0.35 0.25 0.23 0.17
a4 0.68 0.76 0.63 0.86 0.75 0.65 0.75 0.77 0.82
b4 5.68 1.35 −1.00 8.39 8.43 7.14 8.43 6.24 −6.69
R2

4 0.68 0.76 0.63 0.86 0.75 0.65 0.75 0.77 0.82

Table A2. Constants am, bm, and R2
m (m = 1, 2, 3, 4) for the martensite phase of linear equation with

strain condition by the proposed iterative method.

Strain
Analysis
Parameter

Total Grain Strain Level Volume Fraction
8400 1900 770 5% 15% 25% 0.1 0.15 0.2

Case 1 2 3 4 5 6 7 8 9
RVE

Iterative
Const.

A B C D D D D E F

a1 −0.31 0.09 0.5354 0.26 0.23 0.18 0.23 0.22 −0.03
b1 2.19 −0.023 −1.3028 −0.30 −0.93 −1.38 -0.93 −0.3 0.60
R2

1 0.005 0.0007 0.015 0.003 0.002 0.002 0.002 0.006 0.001
a2 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
b2 0.17 −0.12 −0.4026 0.028 0.104 0.16 0.104 −0.32 −0.53
R2

2 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
a3 0.005 0.0008 0.0164 0.003 0.003 0.002 0.003 0.006 0.001
b3 0.0009 −0.00008 −0.0058 0 0 0 0 0 0



Crystals 2022, 12, 955 16 of 18

Table A2. Cont.

Strain
Analysis
Parameter

Total Grain Strain Level Volume Fraction
8400 1900 770 5% 15% 25% 0.1 0.15 0.2

R2
3 0.005 0.0007 0.0156 0.003 0.003 0.002 0.003 0.006 0.001

a4 0.99 0.99 0.9850 0.996 0.997 0.998 0.997 0.993 0.99
b4 0.001 −0.00015 −0.0091 0 0 0 0 0 0
R2

4 0.99 0.99 0.98 0.996 0.997 0.998 0.998 0.993 0.99
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