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Abstract: In the current work, a fully implicit numerical integration scheme is developed for modeling
twinning-induced plasticity using a crystal plasticity framework. Firstly, the constitutive formulation
of a twin-based micromechanical model is presented to estimate the deformation behavior of steels
with low stacking fault energy. Secondly, a numerical integration scheme is developed for discretizing
constitutive equations through a fully implicit time integration scheme using the backward Euler
method. A time sub-stepping algorithm and the two-norm convergence criterion are used to regulate
time step size and stopping criterion. Afterward, a numerical scheme is implemented in finite element
software ABAQUS as a user-defined material subroutine. Finally, finite element simulations are
executed for observing the validity, performance, and limitations of the numerical scheme. It is
observed that the simulation results are in good agreement with the experimental observations with a
maximum error of 16% in the case of equivalent stress and strain. It is also found that the developed
model is able to estimate well the deformation behavior, magnitude of slip and twin shear strains,
and twin volume fraction of three different TWIP steels where the material point is subjected to
tension and compression.

Keywords: slip; mechanical twinning; constitutive modeling; finite element simulations; deformation
behavior; twin volume fraction

1. Introduction

Advanced materials have a vital place along with other key technologies in the fourth
industrial revolution (4IR) [1]. Technological developments and achievements depend (and
will continue to depend) on the availability of advanced materials. In addition, advanced
manufacturing techniques make it possible to produce a range of products, specifically for
adverse and corrosive environments and cryogenic applications. In particular, manufactur-
ing products with geometrically complex and enhanced properties becomes possible due
to the development of advanced metallic alloys. However, regardless of the availability
of the class of metallic alloys, several issues and limitations still restrict advancement in
product development. According to the material point of view, one of the restrictions is the
simultaneous requirement of high tensile strength and ductility. These properties become
extremely crucial in large-deformation applications, such as superplasticity, sheet metal
forming, cold rolling, and so on, where high strength with excellent formability is required
to obtain highly deformed products. In traditional metallic alloys, these properties cannot
be enhanced simultaneously; rather, improvement in one can only be achieved through
the other’s detriment. This long-lasting issue is resolved by developing innovative and
advanced high-strength steels (AHSS) [2]. One of the prime characteristics of AHSS is an
excellent balance between tensile strength and ductility. This makes AHSS an optimum
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choice in the automotive, aerospace, and oil and gas industries [3–5]. The classification of
AHSS in three generations is based on the nature of the microstructure, phases, and compo-
sition [2,4]. The prominent members of the second and third generations are transformation
and twinning-induced plasticity steels, respectively.

Twinning-induced plasticity (TWIP) steels have broad range of applications due to
their promising combination of work hardening, formability, and tensile strength [6–8].
These characteristics make it a dominant candidate for many advanced material applica-
tions. The special amalgamation of TWIP steels’ properties is achieved through controlled
microstructure, and the fraction of primary and secondary phases [9]. The primary phase in
these steels is retained austenite, while the secondary may include ferrite, martensite, and
sometimes bainite. The main alloying element, which plays a significant role in enhancing
the properties, is manganese [10]. The weight percentage of manganese varies, but it is
normally greater than 15–20%. Due to the high percentage of manganese, the stacking
fault energy (SFE) of TWIP steels is relatively lower [11], in the span of 20 to 40 mJ/m2,
than the other class of AHSS. The low magnitude of SFE favors activation of a secondary
mode of plasticity, which is twinning [12]. The volume fraction of twinning governs the
mechanical properties—more specifically, the strain hardening—of TWIP steels. Since twin
regions behave as obstacles in dislocation glide, the dislocation mean free path may reduce.
This eventually improves the strain hardening of TWIP steels [7,13,14]. Furthermore, in
Fe–Mn–C grade, twin regions normally comprise a huge magnitude of sessile dislocations’
density. The high magnitude of density results from twin nucleation and growth, which act
as resilient inclusions that may hinder dislocation glide [15,16]. It can be stated that the
excellent combination of strength and ductility in TWIP steels is primarily due to work
hardening, which may be induced in a material due to the twinning mechanism. The
secondary mode of plastic deformation, mechanical twinning, may occur in metals (in
conjunction with slip), non-metals, and metallic glasses [6,7,17]. However, the fraction
of twinning is highly dependent on the chemical composition of the alloy, as well as the
physical conditions [18–21]. Moreover, stacking fault energy (SFE) plays an important role
in defining the potential for the activation of twinning [22–24].

One of researchers’ foremost challenges was to computationally couple two modes
of plasticity, slip and twinning, in predicting thedeformation behavior of metals [25–27].
Among these obstacles, one was to computationally account for the huge number of twin
orientations that may occur during the course of deformation [25,26]. Multiple solutions
have been proposed to overcome this long-lasting issue. These mainly include Taylor’s
least work hypothesis [28] to minimize the orientation factor [29]; utilizing the statistical
technique in determining the re-orientation of whole grain to account for the total number
of grain orientations in computation [26]; and employing the condition of weighted grain
orientations to avoid the generation of new grains [25]. Kalidindi et al. [27] presented an-
other possible solution to incorporate mechanical twinning in crystal plasticity theory. It is
based on the concept of multiplicative decomposition of the total deformation gradient into
elastic and plastic, as initially proposed by Asaro and Rice [30]. Furthermore, plastic defor-
mation gradient and strain hardening effects are defined according to slip and mechanical
twinning. In addition, the rate of change of twin volume fraction depends on the resolved
shear stress and twin resistance of potentially active twin systems, as in the definition of
slip system hardening by Asaro and Rice [30]. In subsequent work, several attempts have
been made to predict strain-hardening effects of mechanical twinning [31–33]. In these
models, twin-related strain-hardening effects of α-titanium alloys are incorporated in crys-
tal plasticity theory. The models have utilized the crystal plasticity finite element method
to predict metallic alloys’ deformation behavior, which undergoes slip and twinning.

The crystal plasticity finite element method (CPFEM) is frequently utilized to model me-
chanical twinning in shape-memory alloys [34–36], advanced high-strength steels [37–39],
magnesium alloys [40], and high-Mn austenitic steels [19,41,42]. It has also found huge appli-
cation in modeling and simulating the deformation and damage behaviors of transformation-
induced plasticity (TRIP), twinning-induced plasticity (TWIP), and multiphase steels [43–45].
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More specifically, Gui et al. [43] have presented a multi-mechanism and microstructure-
based crystal plasticity model for estimating the shear deformation behavior of TRIP steel
under cyclic load. In this, the simulation results show that the samples subjected to high
strain magnitude exhibit stronger cyclic shear hardening and that activation of martensitic
transformation promotes cyclic hardening. Furthermore, Qayyum et al. [44] have presented
a novel physics-based crystal plasticity model with ductile damage criterion for predicting
the damage behavior of austenite-based TRIP steel (X8CrMnNi16-6-6) with 10% zirconia
particles. Among other conclusions, it was found that the energy absorbed by the zirconia
particles in the course of deformation is comparatively high, and there is substantial stiff-
ness degradation in the bulk material. These factors significantly influenced the composite
material behavior. In a continuation of this work, Qayyum et al. [45] have utilized a similar
physics-based crystal plasticity numerical modeling technique to create a semi-automatic
virtual laboratory to analyze and create customized functional multiphase materials. The
CPFEM has also successfully implemented in modeling the behavior of TWIP steels. More
specifically, it has been implemented to estimate: elastic properties of single-crystal TWIP
steel through nano-indentation [46]; deformation behavior, texture evolution, and earing
mechanism in TWIP steels [47,48]; and combined effects of slip, mechanical twinning, and
martensitic transformation on the overall behavior of high-Mn steels [49–51]. In particu-
lar, Madivala et al. [52] have investigated the strain-hardening and fracture behavior of
high-manganese austenitic TWIP steel at temperatures ranging from 123 K to 773 K. It
was observed that twinning becomes the dominant deformation mechanism at 298 K, and
the twin fraction increases with temperature until a transition temperature of about 473 K.
Beyond this, dislocation glide alone becomes dominant, instead of twinning and dislocation
glide. Recently, Khan et al. [53] presented a micromechanical model of twinning-induced
plasticity using crystal plasticity and thermodynamic frameworks. The deformation gradi-
ents resulting from crystallographic slip and mechanical twinning are modeled through the
kinematic decomposition of the total deformation gradient. The constitutive formulation
of dissipated energy and Helmholtz free energy and the driving potentials for inelastic
deformation modes are represented through a thermodynamic framework. The deforma-
tion gradients resulting from crystallographic slip and mechanical twinning are modeled
through the kinematic decomposition of the total deformation gradient. Finally, a numerical
integration scheme is used to incorporate the constitutive formulation in commercial finite
element code ABAQUS through the user-defined material subroutine. It was observed that
when the material point in the single crystal is subjected to tension, twin deformation plays
a dominant role, while the reverse is observed in compression. Furthermore, in both tension
and compression, the variation in the volume fraction of twinned martensite is found in all
crystallographic directions (i.e., [100], [110], and [111]), but with different magnitudes.

The current work is an extension of the micromechanical model presented by Khan
et al. [53], where a novel numerical integration scheme is developed. In this, firstly, the
constitutive equations of the micromechanical model of twinning-induced plasticity are
presented. Secondly, a numerical integration scheme is utilized to update the constitutive
equations using a fully implicit time integration procedure based on the backward Euler
method. Thirdly, a three-level iterative scheme is developed to solve the coupled nonlinear
system of equations through the Newton–Raphson method. In this, a L2 (two norm) con-
vergence criterion is used to estimate the response of incremental values of state variables.
A time sub-stepping algorithm is incorporated with the numerical integration scheme to im-
prove the convergence and reduce computational time. The developed numerical scheme
is then implemented as a user-defined material subroutine in the finite element software
ABAQUS 6.14. The model is then validated through published experimental observations
of TWIP steels. Finally, the deformation behavior of TWIP steel under different loading
conditions is estimated through finite element simulations.
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2. Constitutive Modeling

In this part, constitutive equations of the model developed by [53] are presented,
where twinning-induced plasticity is incorporated with slip-based crystal plasticity theory.
The constitutive equations include the formulations of: (i) multiplicative decomposition of
the total deformation gradient into elastic and plastic parts, (ii) driving potentials for slip
and twining, (iii) dissipated energy as a result of plastic flow, (iv) recovered energy due to
elastic deformation, (v) plastic flow rule due to slip and twinning, and (vi) hardening law.

In the subsequent sections, standard symbols are employed for designating tensors and
their operations. The tensor and vector quantities are, respectively, expressed through the
capital and small bold letters. Fourth-, second-, and first-order tensors are symbolized as C,
A, and a, respectively. The notations a⊗ b and Aa represent the dyadic product of vectors
and the contraction of second-order tensor with vector, respectively. The mathematical
operations of second-order tensors are illustrated as: (i) inner product: AB, (ii) dyadic
product: A ⊗ B, and (iii) scalar product: A:B. The fourth- and second-order tensors’
contraction is expressed as C:A. Any non-standardized notation will be defined explicitly.

2.1. Kinematic-Based Modeling

In all successive sections of mathematical modeling, only the final equations of each
constitutive formulation are presented. For detailed derivations, the readers are advised to
refer to [53,54].

Multiplicative Decomposition of Deformation Gradient

The decomposition of the total deformation gradient into elastic and plastic parts, as
discussed by [55], can be represented as:

F = FeFp , (1)

where F is the total deformation gradient, while Fe and Fp are, respectively, elastic and
plastic deformation gradients. The elastic part is further categorized in symmetric left
stretch Ve and orthogonal rotation Re tensors, Fe = VeRe. The plastic deformation gradient
incorporates crystallographic slip and mechanical twinning. The rotation and plastic
deformation gradient tensors can be combined into a plastic rigid rotation tensor, F∗, as
discussed in [54]. The overall decomposition of deformation gradients can be represented
by Equation (2) as:

F = VeF∗ , where F∗ = ReFp = ReFp
t Fp

s . (2)

In Equation (2), the slip and twinning parts of Fp are, respectively, represented as Fp
s

and Fp
t ; Ve is the symmetric left stretch tensor; and Re is an orthogonal rotation tensor.

The elastic-plastic behavior of a material point involves slip and twin deformation modes,
which can be elaborated through kinematic decomposition, as illustrated in Figure 1.

The undeformed and deformed configurations of a material point are represented by
Ω0 and Ωf, respectively. In this, total deformation gradient is disintegrated into three inter-
mediate configurations ΩI, Ω̆II, and Ω̃III. The first and second intermediate configurations
represent plastic deformation due to slip and mechanical twinning, respectively, while
the third shows rigid body rotation. The deformed state, Ωf, is projected from the third
intermediate configuration through the stretch tensor Ve. In the present model, the relaxed
(third) intermediate configuration Ω̃III is adopted for representing the constitutive equa-
tions. Theoretically, this configuration is obtained by elastically unloading, using (Ve)−1

without rotation, from the current (deformed) state to a stress-free configuration [54].
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Figure 1. Kinematic decomposition of a material point into three intermediate configurations: Ω̄I ,
Ω̆I I , and Ω̃I I I .

Referring to the kinematic decomposition and definition of the velocity gradient, the
velocity gradient in the current (deformed) configuration can be presented as:

L = ḞF−1 = V̇e(Ve)−1 + VeL̃∗(Ve)−1 . (3)

Here, L̃∗ is the velocity gradient in third intermediate configuration. By considering
Equations (1) and (2), it can be written as:

L̃∗ = Ḟ∗(F∗)−1 = Ṙe(Re)−1 + ReL̆p(Re)−1 , (4)

where L̆p, the plastic velocity gradient in second intermediate configuration Ω̆II, incorpo-
rates plastic flow due to crystallographic slip and mechanical twinning in the constitutive
model. Since the plastic deformation gradient can be divided into slip and twin contribu-
tions, Fp = Fp

t Fp
s , it can be written as:

L̆p = Ḟp(Fp)−1 = L̄p
s + Fp

s L̆p
t (F

p
s )
−1 . (5)

In Equation (5), L̄p
s and L̆p

t represent the plastic velocity gradients of slip and twin-
ning, respectively. By using the definition of the velocity gradient, Equation (5) can be
transformed as:

L̄p =
Ns

∑
α=1

γ̇αS̄α + Fp
s

{ Nt

∑
i=1

γ̇iS̆i
}
(Fp

s )
−1 , (6)

where α represents the slip system’s number as (α = 1, . . . , Ns); Ns is the total number of
slip systems; γ̇α is the plastic shear strain rate of α-slip system; S̄α is the Schmid orientation
tensor in first intermediate configuration (represented by slip direction, m̄α, and slip plane
area normal vectors, n̄α, as S̄α = m̄α ⊗ n̄α, where i denotes the twin system (i = 1, . . . , Nt),
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and Nt represents the entire number of twin systems); γ̇i is the plastic shear strain rate of
i-twin system; and S̆i is the twin orientation tensor in second intermediate state (expressed
through twin direction, m̆i, and twin plane area normal, n̆i, vectors as S̆i = m̆i ⊗ n̆i). In the
presented model, mechanical twinning is assumed to occur within the plastically deformed
region by crystallographic slip. This leads to the inclusion of the volume fraction of each
region (slip and twin) in the velocity gradient equation as folllows:

L̆p =

(
1−

Nt

∑
i=1

υi
) Ns

∑
α=1

γ̇αS̄α + Fp
s

{ Nt

∑
i=1

υiγ̇iS̆i
}
(Fp

s )
−1 . (7)

Here, υi is the volume fraction of i-twin system in second configuration. Similarly, the
plastic velocity gradient in third intermediate configuration can be expressed as:

L̃∗ = Θ̃e + Re

[(
1−

Nt

∑
i=1

υi
) Ns

∑
α=1

γ̇αS̄α + Fp
s

{ Nt

∑
i=1

υiγ̇iS̆i
}
(Fp

s )
−1

]
(Re)T , (8)

where Θ̃e(= Ṙe(Re)T) is the spin tensor. The Schmid tensor— S̄α from first and twin
orientation tensor, S̆i from second states—can be transformed to the third intermediate
configuration through forward conversion procedure using rigid rotation tensor, to yield
the following:

S̃α = ReS̄α(Re)T , (9)

S̃i = ReS̆i(Re)T . (10)

The final form of velocity gradient in the third intermediate configuration can be
expressed as:

L̃∗ = Θ̃e +

(
1−

Nt

∑
i=1

υi
) Ns

∑
α=1

γ̇αS̃α + Fp
s

{ Nt

∑
i=1

υiγ̇iS̃i
}
(Fp

s )
−1 . (11)

The symmetric part of the velocity gradient, as mentioned in Equation (3), is given as:

D = D̃e +
1
2

[
(Ve)−TC̃eL̃∗(Ve)−1 + (Ve)−T(C̃eL̃∗)T(Ve)−1

]
, (12)

where D̃e is the symmetric component of V̇e(Ve)−1, and C̃e = (Ve)(Ve)T = (Ve)2

is the right Cauchy–Green deformation tensor in the third intermediate configuration.
Equation (12) can also be represented as:

D = D̃e + (Ve)−TD̃∗(Ve)−1 . (13)

The symmetric part of C̃eL̃∗ is given as:

D̃∗ = sym(C̃eΘ̃e) + ReD̄p(Re)T , (14)

where D̄p is the symmetric component of C̄eL̄p. Similarly, the skew-symmetric component
of L can be represented as:

W =
1
2

[
L− LT

]
= W̃e + (Ve)−TW̃∗(Ve)−1 , (15)

where W̃e and W̃∗ are the skew-symmetric components of V̇e(Ve)−1 and C̃eL̃∗, respectively.
The component W̃∗ can be derived as:

W̃∗ = skew(C̃eΘ̃e) + ReW̄p(Re)T . (16)
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Here, W̄p is the anti-symmetric part of C̄eL̄p. The finite Green strain tensor in reference
configuration (third intermediate state with reference to current configuration) can be
represented in terms of the symmetric part of the velocity gradient through Equation (19).

A procedure of backward mapping, from current to third intermediate configurations,
is adopted for developing an equation of the velocity gradient, L̃, that incorporates elastic
stretch along with plasticity and rigid body rotation. This can be expressed through
Equation (17) as:

L̃ = (Ve)−1LVe = (Ve)−1V̇e + L̃∗ . (17)

After substituting the value of L̃∗ from Equation (11), Equation (17) becomes

L̃ = (Ve)−1V̇e + Θ̃e +

[(
1−

Nt

∑
i=1

υi
) Ns

∑
α=1

γ̇αS̃α + Fp
s

{ Nt

∑
i=1

υiγ̇iS̃i
}
(Fp

s )
−1

]
. (18)

The finite Green strain tensor in reference configuration (third intermediate state with
reference to current configuration) can be represented as:

Ẽe =
1
2
(C̃e − I) , ˙̃Ee =

1
2

˙̃Ce . (19)

Here, C̃e is the right Cauchy–Green strain tensor, and I is a second-order identity tensor.
The 2nd Piola–Kirchhoff (PK2) stress, Te, in reference configuration (third intermediate
configuration) can be represented in terms of finite Green strain tensor. The stresses in
slipped and twinned regions can be written in the form of constitutive formulation as:

Te
s = C̃s : Ẽe , (20)

Te
t = C̃t : Ẽe , (21)

where Te
s and Te

t are the PK2 stress tensors, and C̃s and C̃t are the fourth-order elasticity
tensors for slipped and twinned regions, respectively. In view of incorporating the effects
of slip and twinning in the PK2 stress tensor, an equivalent form can be defined as:

Te = C̃e : Ẽe . (22)

Here, Te is an equivalent PK2 stress, and C̃e is the equivalent elasticity tensor. An equiv-
alent form of elasticity tensor can be expressed through volume averaging technique as:

C̃e =

(
1−

Nt

∑
i=1

υi
)
C̃s +

Nt

∑
i=1

υiC̃t . (23)

Similarly, Cauchy stress can also be approximated on the basis of volume averaging
technique as:

T =

(
1−

Nt

∑
i=1

υi
)

Ts +
Nt

∑
i=1

υiTt . (24)

2.2. Kinetic-Based Modeling
2.2.1. Dissipated Energy Formulation

The dissipated energy density (energy per unit reference volume) in the form of rate
of change of entropy is estimated as:

Ėd = σ : Ḟ + ρ0θΠ̇m − ρ0ε̇−∇~q , (25)

where σ is PK1 (1st Piola–Kirchhoff) stress, Ḟ is the rate of change of F, ρ0 is the density,
θ is an absolute temperature, Π̇m is the rate of change of entropy as a consequence of an
external thermomechanical load, ε̇ is the rate of change of internal energy per unit mass,
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and~q is the heat flux due to temperature variation. The final form of the dissipated energy
density rate is given as:

Ėd =

(
1−

Nt

∑
i=1

υi
) Ns

∑
α=1

(
τα + Φα − ρ0

∂ε

∂ζ
Ψα

)
γ̇α

+
Nt

∑
i=1

υ̇i
(

τi + Φi − ρ0
∂ε

∂ζ
Ψi
)

γi − (θ)∇Πq .

(26)

where τα and τi are the resolved shear stresses on α-slip and i-twin systems, respectively;
Φα and Φi are the thermal equivalents of resolved shear stresses τα and τi, respectively;
ε is the internal energy density; ζ is the crystal defect microstrain parameter; Ψα and Ψi

are stress-like terms and functions of slip resistance of α-slip system and twin resistance of
i-twin system, respectively; ∇ is the del operator; and Πq is the entropy flux (q = Πqθ).

2.2.2. Helmholtz Free Energy Formulation

In the micromechanical model presented by [53], Helmholtz free energy (HFE) is
evaluated through an additive decomposition of four forms of energies as:

Eh(F
e, θ, ζ, υ) = Ehm(F

e) + Eht(θ) + Ehd(ζ) + Ehs(υ) , (27)

where Ehm, Eht, Ehd, and Ehs represent mechanical, thermal, crystal defect, and surface
energy components of HFE. In this formulation, HFE depends on four state variables,
which are elastic deformation gradient Fe, absolute temperature θ, crystal defect microstrain
parameter ζ, and twin martensite volume fraction υ. In consideration of this, HFE can be
derived as:

Eh =
1
ρ0

{
(FeFp) : (C̃e : ẼeẼe)

}
(Fp)T :

[
Fe + (Fe)T

]−1

+ θ

[
− he ln

( θ

θr

)
+
(

heq −Πe
m,0

)]
+

1
2ρ0

ϕGeζ2

+
χ

ρ0l0

Nt

∑
i=1

υi
(

1−
Nt

∑
i=1

υi
)

.

(28)

In Equation (28), he is an equivalent specific heat; θr is the reference temperature; Πe
m,0

is the initial entropy density; ϕ is a dimensionless dislocation interaction parameter, which
incorporates the effects of dislocations’ mobility and their interactions in plasticity; Ge is
the equivalent modulus of rigidity; l0 is the length scale parameter; and χ is the interfacial
energy per unit area.

2.2.3. Driving Potential Formulation

The driving potential (force) for inelastic deformation modes, slip and twinning, can
be estimated through Equations (29) and (30), respectively.

Gα =

(
1−

Nt

∑
i=1

υi
)(

τα + Φα − ϕGeζΨα

)
. (29)

P i = υi
(

τi + Φi − ϕGeζΨi
)

. (30)

2.3. Material Flow Modeling

The material flow due to the activity of α-slip systems can be estimated through a
power function of the shear strain rate. [54,56] given as:
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γ̇α = γ̇0

∣∣∣∣τα

sα
r

∣∣∣∣ 1
m

sign(τα) . (31)

In Equation (31), γ̇0 is the initial shear strain rate; τα is the shear stress on the α-slip
system; sα

r is slip resistance; and m is the strain rate sensitivity parameter. In a similar
manner, material flow due to mechanical twinning is modeled through a nonlinear function,
as discussed in [25–27,57]. Accordingly, the rate of change of the twinned-martensite
volume fraction of i-twin system is given as:

υ̇i =
γ̇0

γi

(
τi

si
r

)1/m

, (32)

where γ̇0 is the initial shear strain rate, γi is the shear strain of i-twin system, and si
r is the

twin resistance of i-twin system.

2.3.1. Strain Hardening Rule

In the model presented by [53], a dislocation density-based hardening law is used to
incorporate self, ṡα

s , and latent, ṡα
l , hardening contributions of α-slip systems as:

ṡα
r = ṡα

s + ṡα
l =

Ns

∑
α=1

hα
0

[
1−

( sα
r − sα

r,0

sα
r,S − sα

r,0

)]∣∣γ̇α
∣∣+ Ns

∑
κ=1

hακ |γ̇κ |. (33)

In Equation (33), hα
0 and sα

r,0 are the initial values of hardening rate and strength of slip
system, respectively; sα

r,S is the saturation value of slip strength; hακ is an array of latent
hardening values; and γ̇κ is the shear strain rate of κ-slip system, where κ denotes a number
of slip system except α (κ = j, j = 1, . . . , i− 1, i + 1, . . . , Ns). The hardening induced by
mechanical twinning is incorporated in the model through Equation (34) as:

ṡi
t = hi

nc

(
Nt

∑
i=1

υi

)d i

∑
µ1=0

γiυ̇µ1 + hi
cp

(
Nt

∑
i=1

υi

)
i

∑
µ2=0

γiυ̇µ2 . (34)

Here, hi
nc and hi

cp are the initial hardening rates of non-coplanar and coplanar twin
systems; µ1 (µ1 ∈ i) and µ2 (µ2 ∈ i) represent the number of non-coplanar and coplanar
twin systems, respectively; υ̇µ1 and υ̇µ2 are the rate of change of volume fractions for
non-coplanar and coplanar twin systems, respectively; and d is a material parameter.

2.3.2. Microstrain Parameter

The microstrain, induced through crystal defects, in the case of slip and mechanical
twinning can be estimated through Equations (35) and (36), respectively, as:

ζ̇s =
1

ωGeNs

Ns

∑
α=1

ṡα
r =

1
ωGeNs

Ns

∑
α=1

Ns

∑
κ=1

hακ |γ̇κ | . (35)

ζ̇t =
1

ωGeNt

Nt

∑
i=1

[{
hi

nc

(
Nt

∑
i=1

υi

)d i

∑
µ1=0

υ̇µ1 + hi
cp

(
Nt

∑
i=1

υi

)
i

∑
µ2=0

υ̇µ2

}
γi

]
. (36)

The stress-like parameters that are part of the driving potential equations for slip and
twinning, Equations (29) and (30), are estimated as:

Ψα =

(
1−

Nt
∑

i=1
υi
)−1

ωGeNs

Ns

∑
κ=1

hακ . (37)
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Ψi =

( Nt
∑

i=1
υ̇i
)−1

ωGeNt

Nt

∑
i=1

[
hi

nc

(
Nt

∑
i=1

υi

)d i

∑
µ1=0

υ̇µ1 + hi
cp

(
Nt

∑
i=1

υi

)
i

∑
µ2=0

υ̇µ2

]
. (38)

3. Numerical Integration Scheme of Constitutive Equations

The development of the numerical integration scheme consists of the following:(i) iden-
tification of primary variables in constitutive formulation, (ii) discretization and numerical
integration of equations in time domain, (iii) development of Newton–Raphson iterative
scheme, and (iv) development of time sub-stepping algorithm to increase or decrease time
step size, depending on the incremental values of primary variables.

3.1. Identification of Primary Variables

The constitutive equations of the slip- and twin-based crystal plasticity model are the
first-order ordinary differential equations of the state variables mentioned in Equation (39),
as follows:

{Te, sα
r , si

t, Re, υi} , (39)

where Te represents second Piola–Kirchhoff stress tensor, {sα
r | α = 1, . . . , Nsl} denotes

slip resistance of α-slip system, {si
t | i = 1, . . . , Ntw} shows twin resistance of i-twin sys-

tem, Re is the rigid body rotation tensor, and {υi | i = 1, . . . , Ntw} is twinned martensite
volume fraction.

3.2. Discretization of Constitutive Equations

A time integration scheme is executed in sample coordinate axes through discretizing
the deformation history in the time domain and subsequently numerically integrating
constitutive equations for each time step. In order to define a deformation time history, the
configurations of a material point are considered at time tn and tn+1. In this, a relation of
tn+1 = tn + ∆t is used, where tn and tn+1 represent time at the start and end of the time
step, respectively. Afterwards, the magnitudes of all variables are evaluated at tn and tn+1,
and denoted with the subscripts n and n + 1, respectively. The numerical time integration
scheme is based on the following assumptions:

1. The total deformation gradient Fn+1 and velocity gradient Ln+1 are given.
2. The values of variables Te

n, sα
r,n, si

t,n, Re
n, and υi

n at time tn are known.
3. The initial values of time-independent slip (mα

0 , nα
0) and twin (mi

0, ni
0) systems’ vectors,

elasticity tensors Csl
0 and Ctw

0 , initial crystallographic orientation of crystal Q0, initial
kinetic flow rule (m and γ̇0), and hardening parameters (hα

0 , sα
r,0, sα

r,S0
, γ̇S0 ) are used as

an input.

The output of the numerical integration scheme provides updated values of variables
as: Te

n+1, sα
r,n+1, si

t,n+1, Re
n+1, and υi

n+1 at time tn+1. The constitutive equations are dis-
cretized through fully implicit time integration procedure using backward Euler scheme.
According to the kinematic formulation, an incremental form of Green strain tensor in
terms of the symmetric part of the velocity gradient, Equation (25) in [53], can be written as:

∆Ẽe = ∆t(D̃− D̃∗) . (40)

Integration of Equation (40) using backward Euler scheme provides an updated value
of Green strain tensor, as follows:

Ẽe
n+1 = Ẽe

n + ∆Ẽe
n = Ẽe

n + ∆t(D̃n+1 − D̃∗n+1) . (41)
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where D̃n+1 and D̃∗n+1 are the symmetric parts of velocity gradients L̃n+1 and L̃∗n+1, respec-
tively. The incremental values of these parameters can be illustrated as:

D̃n+1 =
1
2
[L̃n+1 + L̃T

n+1] = sym(L̃n+1) . (42)

D̃∗n+1 = sym(C̃e
n+1Θ̃e

n+1) + Re
n+1D̆p

n+1(R
e
n+1)

T , (43)

where an updated value of right Cauchy–Green deformation tensor in third intermediate
configuration can be defined as:

C̃e
n+1 = Ve

n+1(V
e
n+1)

T , (44)

Furthermore, an incremental magnitude of spin tensor Θ̃e
n+1 is represented as:

Θ̃e
n+1 = Ṙe

n+1(R
e
n+1)

T = ∆tRe
n+1(R

e
n+1)

T , (45)

In addition, D̆p
n+1 is an updated symmetric part of (C̆e

n+1L̆p
n+1). Here, C̆e

n+1 is an
incremental form of right Cauchy–Green deformation tensor in second intermediate config-
uration, which can be expressed as:

C̆e
n+1 = (Fe

n+1)
T(Fe

n+1) . (46)

The incremental value of the plastic velocity gradient in second intermediate configu-
ration can be defined as:

L̆p
n+1 =

(
1−∑Ntw

i=1 υi
n+1

) Nsl

∑
α=1

∆tγ̇α
n+1S̄α

n+1

+ Fp
s,n+1

{ Ntw

∑
i=1

υi
n+1∆tγ̇i

n+1S̆i
n+1

}
(Fp

s,n+1)
−1 .

(47)

where υi
n+1 represents an incremental change in the volume fraction of ith twin system,

γ̇α
n+1 is an updated value of the shear strain rate of α-slip system, γ̇i

n+1 is an updated value
of shear strain induced by i-twin system, S̄α

n+1 and Ši
n+1 are the updated magnitudes of

Schmid and twin orientation tensors in second intermediate configuration, and Fp
s,n+1 is an

incremental change in the value of the plastic deformation gradient. Substitution of D̆p
n+1

in Equation (43) gives the following:

D̃∗n+1 = sym(C̃e
n+1Θ̃e

n+1)

+ (Re
n+1)sym

[
C̆e

n+1

{(
1−∑Ntw

i=1 υi
n+1

) Nsl

∑
α=1

∆tγ̇α
n+1S̄α

+ Fp
s,n+1

{ Ntw

∑
i=1

υi
n+1∆tγ̇i

n+1S̆i
}
(Fp

s,n+1)
−1
}]

(Re
n+1)

T .

(48)

Considering the effects of rigid body rotation tensor Re
n+1 on Schmid and twin orien-

tation tensors, Equation (48) can also be written as:

D̃∗n+1 = sym(C̃e
n+1Θ̃e

n+1)

+ sym

[
C̄e

n+1

{(
1−∑Ntw

i=1 υi
n+1

) Nsl

∑
α=1

∆tγ̇α
n+1(R

e
n+1)(m̄

α ⊗ n̄α)(Re
n+1)

T

+ Fp
s,n+1

{ Ntw

∑
i=1

υi
n+1∆tγ̇i

n+1(R
e
n+1)(m̆

i ⊗ n̆i)(Re
n+1)

T
}
(Fp

s,n+1)
−1
}]

.

(49)
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The forward mapping approach for Schmid and twin orientation tensors can be
implemented into Equation (49) as:{

Re
n+1.(m̄α ⊗ n̄α)

}
.(Re

n+1)
T =

{
Re

n+1.(Q0.mα
0 ⊗Q0.nα

0)
}

.(Re
n+1)

T

=
{

Re
n+1.(Q0.mα

0)
}
⊗
{

Re
n+1.

(
Q0.nα

0
)}

.

(50)

where Q0 is the initial rotation matrix that is used to transform crystal coordinates to sample
coordinate systems through Euler angles, and mα

0 and nα
0 are the initial vectors representing

α-slip system in reference configuration. It was stated previously that the rotation matrix
(Euler angles) can be updated through a rigid body rotation tensor as follows: Qn+1 =
Re

n+1.Q0. The rotation matrix can also be used to transform Schmid orientation vectors
from reference to first intermediate configuration as follows: m̄α = Q0.mα

0 and n̄α = Q0.nα
0 .

In this condition, Equation (50) can be rewritten as:{
(Re

n+1).(m̄
α ⊗ n̄α)

}
(Re

n+1)
T = (Qn+1.mα

0)⊗ (Qn+1.nα
0) = m̃α

n+1 ⊗ ñα
n+1 . (51)

In Equation (51), m̃α
n+1 and ñα

n+1 are the slip incremental values of direction and
area normal vectors of α-slip system in third intermediate configuration. It is clear from
Equation (51) that the updated rotation matrix Qn+1 is used to transform Schmid orienta-
tion vectors from reference to third intermediate configuration. Similarly, twin orientation
vectors are given as:

{Re
n+1.(m̆i ⊗ n̆i)}.(Re

n+1)
T = m̃i

n+1 ⊗ ñi
n+1 . (52)

Substitution of Equations (51) and (52) in (49) provides

D̃∗n+1 = sym(C̃e
n+1.Θ̃e

n+1)

+ sym

[
C̆e

n+1.
{(

1−∑Ntw
i=1 υi

n+1

) Nsl

∑
α=1

∆tγ̇α
n+1S̃α

n+1

+ Fp
s,n+1.

{ Ntw

∑
i=1

υi
n+1∆tγ̇i

n+1S̃i
n+1

}
(Fp

s,n+1)
−1
}]

.

(53)

Here, S̃α
n+1 = m̃α

n+1 ⊗ ñα
n+1 and S̃i

n+1 = m̃i
n+1 ⊗ ñi

n+1 are the updated Schmid and
twin orientation tensors in third intermediate configuration. The updated values of shear
strain for α-slip system and volume fraction of twinned martensite at time tn+1 can be
defined by Equations (54) and (55), respectively, as:

γα
n+1 = γα

n + ∆γα = γα
n + γ0

∣∣∣∣ τα
n+1

sα
r,n+1

∣∣∣∣ 1
m

sin(τα
n+1) . (54)

υi
n+1 = υi

n + ∆υi = υi
n +

γ0

γi
n+1

∣∣∣∣ τi
n+1

si
t,n+1

∣∣∣∣ 1
m

. (55)

As discussed previously, the rigid body rotation tensor Re
n+1 updates the crystal orien-

tation (Euler angles) matrix Qn+1, which can be used to transform the fourth order elasticity
tensors for slip C̃s

n+1 and twinned C̃t
n+1 regions to the third intermediate configuration as

follows:
C̃s

n+1 = (Qn+1 ⊗Qn+1) : C̃s
0 : (Qn+1 ⊗Qn+1)

T . (56)

C̃t
n+1 = (Qn+1 ⊗Qn+1) : C̃t

0 : (Qn+1 ⊗Qn+1)
T . (57)

Any one of the elasticity tensors can be obtained in terms of another by using coordi-
nate transformation rule defined as:
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C̃t
ijkl = C̃s

pqrsPipPjqPkrPls = (P⊗ P) : C̃s : (P⊗ P)T . (58)

Here, [P] is the transformation matrix that relates lattice orientations in twinned and
untwinned (slipped) regions. The components of transformation matrix [P] can be defined
through Equation (59), given by [26], as:

Pjk = 2njnk − δjk , j, k = 1, 2, 3 (59)

where n is the area normal vector of the twin plane, and δ is the Kroneker delta. An
equivalent elasticity tensor can be calculated as:

C̃e
n+1 =

(
1−

Nt

∑
i=1

υi
n+1

)
C̃s

n+1 +
Nt

∑
i=1

υi
n+1C̃t

n+1 . (60)

Furthermore, an updated form of equivalent second Piola–Kirchhoff stress tensor can
be estimated as:

Te
n+1 = C̃e

n+1 : Ẽe
n+1 . (61)

An evolution equation for rigid body rotation tensor Re is integrated through the
exponential map discussed by [58] as follows:

Re
n+1 = exp(∆tΘ̃e

n+1).R
e
n , (62)

where an updated value of the spin of lattice Θ̃e
n+1 can be estimated through the skew-

symmetric component W̃∗n+1 of the velocity gradient L̃∗n+1 as:

W̃∗n+1 = skew(C̃e
n+1Θ̃e

n+1) +
Ns

∑
α=1

∆tγ̇α
n+1skew(C̃e

n+1S̃α
n+1) . (63)

By using backward mapping, the skew-symmetric component of velocity gradient
L̃n+1 can be estimated as:

W̃n+1 = {(Ve
n+1)

TWn+1}Ve
n+1 = (Ve)Tskew{(Ve

n+1)
T{∆tVe

n+1}}Ve + W̃∗n+1 . (64)

Here, Wn+1 is the updated skew-symmetric component of Ln+1. Substitution of W̃∗n+1
from Equation (63) in (64) provides

skew(C̃e
n+1Θ̃e

n+1) = W̃n+1 − (Ve)Tskew{(Ve
n+1)

T∆tVe
n+1}Ve

−
Ns

∑
α=1

∆tγ̇α
n+1skew(C̃e

n+1S̃α
n+1) .

(65)

For small elastic strain problems, the value of the right Cauchy–Green deformation
tensor C̃e

n+1 is typically small. In this case, Equation (65) can be written as:

skew(Θ̃e
n+1) = W̃n+1 − (Ve)Tskew{(Ve

n+1)
T∆tVe

n+1}Ve −
Ns

∑
α=1

∆tγ̇α
n+1skew(S̃α

n+1) . (66)

An incremental value of the slip resistance of α-slip system can be evaluated using a
backward Euler scheme as follows:

sα
r,n+1 = sα

r,n + ∆sα
r = sα

r,n +
Ns

∑
α=1

hα
0

[
1−

( sα
r,n+1 − sα

r,0

sα
r,Sn+1

− sα
r,0

)]∣∣(∆t)γ̇α
n+1
∣∣ . (67)

In the present model, slip resistances for all α-slip systems are considered to be similar.
Therefore, Equation (67) can be modified as follows:
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sr,n+1 = sr,n + h0

[
1−

(
sr,n+1 − sr,0

sr,Sn+1 − sr,0

)] Ns

∑
α=1

∣∣(∆t)γ̇α
n+1
∣∣ , (68)

In Equation (68), sr,Sn+1 is an incremental saturation value of slip resistance, which can
be calculated as:

sr,Sn+1 = sr,Sn + ∆sr,S = sr,Sn + sr,S0

[
∑Ns

β |γ
β
n+1|

γS0

] kθ
(Ge)n+1b3Z

+ sr,p

(
i

∑
λ=0

υλ
n+1

)a1

, (69)

where sr,S0 is the initial value of saturation slip resistance, ∆γS0 is an incremental initial
value of the slip system shear strain at the initial value of saturation slip resistance, a is the
material parameter, sr,p is the material slip-hardening parameter, λ (λ ∈ i) represents the
number of non-coplanar twin systems to slip system, and a1 is a material parameter. In
addition, the twin resistance can be estimated using Equation (34) as:

si
t,n+1 = si

t,n + ∆si
t = si

t,n +

[
hi

nc

(
Nt

∑
i=1

υi
n+1

)d i

∑
µ1=0

γi
n+1∆tυ̇µ1

n+1

+ hi
cp

(
Nt

∑
i=1

υi
n+1

)
i

∑
µ2=0

γi
n+1∆tυ̇µ2

n+1

]
,

(70)

The resistance of all twin systems are assumed to be identical. Therefore, Equation (70)
can be expressed as:

st,n+1 = st,n +

[
hnc

(
Nt

∑
i=1

υi
n+1

)d i

∑
µ1=0

γi
n+1∆tυ̇µ1

n+1

+ hcp

(
Nt

∑
i=1

υi
n+1

)
i

∑
µ2=0

γi
n+1∆tυ̇µ2

n+1

]
.

(71)

The updated driving potentials for slip and twin mode of deformations can be esti-
mated using Equations (29) and (30), respectively as:

Gα
s,n+1 = Gα

s,n + ∆Gα
s = Gα

s,n +

(
1−

Nt

∑
i=1

υi
n+1

)(
τα

n+1 + Φα − ϕGe
n+1ζn+1Ψα

n+1

)
. (72)

Gi
t,n+1 = Gi

t,n + ∆Gi
t = Gi

t,n + υi
n+1

(
τi

n+1 + Φi − ϕGe
n+1ζn+1Ψi

n+1

)
. (73)

The parameters Φα and Φi are the thermal analogues for α-slip and i-twin systems,
respectively. For an isothermal process, these factors will remain constant during the
deformation process. ϕ is a dimensionless dislocation parameter, and it is assumed to
be constant throughout the deformation. An equivalent modulus of rigidity Ge

n+1 can be
estimated as:

Ge
n+1 =

(
1−

Nt

∑
i=1

υi
n+1

)
Gs +

Nt

∑
i=1

υi
n+1Gt . (74)

The incremental forms of crystal defect microstrain parameters for the slip and twin
modes of deformations can be calculated using Equations (35) and (36), respectively, as:

ζs,n+1 = ζs,n + ∆ζs = ζs,n +
1

ωGe
n+1Ns

Ns

∑
α=1

Ns

∑
β=1

hαβ
n+1|γ

β
n+1| . (75)
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ζt,n+1 = ζt,n + ∆ζt = ζt,n +
1

ωGe
n+1Nt

[{
hnc

(
Nt

∑
i=1

υi
n+1

)d i

∑
µ1=0

(∆t)υ̇µ1
n+1

+ hcp

(
Nt

∑
i=1

υi
n+1

)
i

∑
µ2=0

(∆t)υ̇µ2
n+1

} Nt

∑
i=1

γi
n+1

]
.

(76)

The updated stress-like functions Ψα
n+1 and Ψi

n+1 for slip and twin modes of deforma-
tion can be calculated using Equations (37) and (38), respectively, as:

Ψα
n+1 =

(
1−∑Nt

i=1 υi
n+1

)−1

ωGe
n+1Ns

Ns

∑
β=1

hαβ
n+1 . (77)

Ψi
n+1 =

(
∑Nt

i=1 υi
n+1

)−1

ωGe
n+1Nt

[
hnc

(
Nt

∑
i=1

υi
n+1

)d i

∑
µ1=0

υ
µ1
n+1

+ hcp

(
Nt

∑
i=1

υi
n+1

)
i

∑
µ2=0

υ
µ2
n+1

]
.

(78)

Furthermore, the updated Cauchy stress tensor Tn+1 can be calculated using second
Piola–Kirchhoff stress tensor, Te

n+1, as:

Tn+1 = Fe
n+1

{
detFe

n+1.Te
n+1

}
(Fe

n+1)
T . (79)

3.3. Newton–Raphson Iterative Scheme

In the preceding section, a set of couple nonlinear algebraic Equations (61), (62), (68),
(71) and (55) for the primary variables Te

n+1, Re
n+1, sr,n+1, st,n+1, and υi

n+1, respectively,
were developed. In this, the updated form of these primary variables are calculated. A set
of primary variables can be represented by a vector {pv

i |i = 1, 2, . . . , 5}, where

pv
1 = ∆Te , pv

2 = ∆sr , pv
3 = ∆υi , pv

4 = ∆Re , pv
5 = ∆st . (80)

The primary variables are the main constituents (directly or indirectly) of the constitu-
tive model. An elastic-plastic response of a system mainly governs by these variables. In
order to obtain an overall response of a material, a set of five equations in terms of primary
variables are constructed in a residual format. A residue of the system of equations can also
be represented in a vector form as {Ri |i = 1, 2, . . . , 5}. The components of Ri are given
through Equations (81)–(85) as:

R1 = R̂1(Te
n+1, sα

r,n+1, υi
n+1, Re

n+1, si
t,n+1)

= (C̃e
n+1)

−1 : Te
n+1 − Ẽe

n+1

= (C̃e
n+1)

−1 : Te
n+1 − Ẽe

n − ∆t(D̃n+1 − D̃∗n+1) = 0 .

(81)

R2 = R̂2(Te
n+1, sα

r,n+1, υi
n+1, Re

n+1, si
t,n+1)

= sα
r,n+1 − sα

r,n −
Ns

∑
α=1

hα
0

[
1−

( sα
r,n+1 − sα

r,0

sα
r,Sn+1

− sα
r,0

)]∣∣(∆t)γ̇α
n+1
∣∣ = 0 .

(82)
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R3 = R̂3(Te
n+1, sα

r,n+1, υi
n+1, Re

n+1, si
t,n+1)

= υi
n+1 − υi

n −
γ0

γi
n+1

∣∣∣∣ τi
n+1

si
t,n+1

∣∣∣∣1/m

= 0 .

(83)

R4 = R̂4(Te
n+1, sα

r,n+1, υi
n+1, Re

n+1, si
t,n+1)

= Re
n+1 − exp {∆tΘ̃e

n+1}.Re
n = 0 .

(84)

R5 = R̂5(Te
n+1, sα

r,n+1, υi
n+1, Re

n+1, si
t,n+1)

= si
t,n+1 − si

t,n −
[

hi
nc

(
Nt

∑
i=1

υi
n+1

)d i

∑
µ1=0

γi
n+1(∆t)υ̇µ1

n+1

+ hi
cp

(
Nt

∑
i=1

υi
n+1

)
i

∑
µ2=0

γi
n+1(∆t)υ̇µ2

n+1

]
= 0 .

(85)

In the next step, Equations (81) and (82) are solved using a full Newton–Raphson
(N-R) method, since these two are implicit in nature; however, the rest are explicit. In the
current work, a two-level iterative scheme, similar as that presented by [56], is used to
obtain the values of primary variables. In the first level of iteration, the N-R method is used
to solve Equation (81) for Te

n+1 by assuming the best possible values of the other primary
variables (Re

n+1, sα
r,n+1, si

t,n+1, υi
n+1). Once the updated value of the second Piola–Kirchhoff

stress tensor is obtained, the second level of the iterative procedure is performed, which
includes an N-R solution of the slip resistance sα

r,n+1 from Equation (82). This considers an
updated value of Te

n+1 and the estimated values of Re
n+1, si

t,n+1, and υi
n+1. Finally, updated

values of the twinned martensite volume fraction υi
n+1, rigid body rotation tensor Re

n+1,
and twin resistance si

t,n+1 are calculated from Equations (83)–(85), respectively.

Convergence Criterion

The convergence criterion is required to terminate the iterative loop once the solution
is assumed to be sufficiently accurate. The convergence criterion for the presented two-
level iterative procedure is based on the variation of L2-norm for Te

n+1, and sα
r,n+1. If the

L2-norm of the residuals is less than an imposed tolerance, then the incremental solution
of the updated primary variables is converged (fully elastic). Otherwise, the trial value
must be updated iteratively (based on the calculated value) until the residual satisfies the
convergence criterion, given as:

‖Rtrial‖2 < Tol. (86)

In the current Newton–Raphson iterative scheme, iterations are carried out unless and
until the variation in the L2-norm of the residuals for Te

n+1 and sα
r,n+1 satisfy the conditions

in Equations (87) and (88), respectively, as follows:

‖∆Te‖2 < (10−4)|Te|trial (87)

‖∆sα
r ‖2 < (10−4)|sα

r |trial (88)

In the current work, a time sub-stepping algorithm (TSSA) is used in the numerical
integration scheme to control the time step size. The advantage of using time sub-stepping
in an iterative procedure is to improve the convergence of a solution by reducing the time
increment once needed. The TSSA must also be capable of increasing the time step size at a
material point where convergence can easily be achieved to reduce computational time.
The TSSA can reduce and increase the time step size based on the incremental variation.
In this algorithm, if any of the convergence conditions, Equations (87) and (88), are not
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satisfied, then the N-R iterative scheme will call TSSA, which controls the time step size
according to the incremental variation in the values of primary variables.

3.4. Time Sub-Stepping Algorithm

The proposed TSSA is based on the ratio of the maximum and desired incremental
values of the primary variable. The ratio is represented by the parameter K as:

K =
∆Amax

∆Ax
, (89)

where ∆Amax is the maximum value of ∆A over all the crystals, all the integration points
are in finite element mesh, and ∆Ax is a desired incremental value of ∆A in the numerical
algorithm. The value of ∆A is normally regulated by the computational performance and
accuracy of the numerical integration procedure. In a fully implicit numerical scheme, the
computational performance does not usually becomes a challenge, but the accuracy does.
Therefore, the value of ∆A is mainly controlled by the accuracy of the numerical solution.
In accordance with the two-level iterative scheme, A is defined as a set of three primary
variables A = {A1 A2}, where

A1 = Te , A2 = sα
r . (90)

In the proposed time sub-stepping algorithm, three ranges of values are defined
for the parameter K: (i) If the parameter K exceeds 1.25, the estimated value of A is
rejected, and the new time increment (25% smaller than the previous) will be defined. This
condition makes sure that the difference between the maximum and desired value of A
will not reach beyond 25%, which could produce an inaccurate solution. (ii) If K lies in the
range of 0.8 to 1.25, then the estimated solution is accepted, defining the new time step as
∆tn+1 = (∆t)n/K. In this condition, the new time step size ∆tn+1 is more or less identical
to the previous ∆tn. (iii) If K is less than 0.8, then the estimated solution is assumed to
be converged, and a new time step size is defined that is 25% larger than the previous.
This condition ensures that the solution is well converged, so the time increment could be
increased to reduce computational time. A summary of the time sub-stepping algorithm
is given in Table 1. The numerical integration scheme for elastic-plastic deformation of a
crystal based on crystal plasticity formulations is summarized in Figure 2.

Table 1. Time sub-stepping algorithm for Newton–Raphson Iterative Scheme.

1. Calculate the values of K for each component of vector A
K = ∆Amax

∆Ax

2. IF K > 1.25
THEN: Solution is rejected and define new time increment as:

∆tn+1 = 0.75(∆t)n
GOTO N-R iterative algorithm

ELSE GOTO step 3
3. IF 0.8 ≤ K ≤ 1.25

THEN: Solution is accepted and define new time increment as:
∆tn+1 = (∆t)n/K

GOTO N-R iterative algorithm
ELSE GOTO step 4

4. IF K < 0.8
THEN: Solution is accepted and define new time increment as:

∆tn+1 = 1.25(∆t)n
GOTO N-R iterative algorithm

ELSE END
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Figure 2. Numerical integration algorithm for crystal plasticity model.
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3.5. Summary of Numerical Integration Algorithm

The presented numerical integration scheme for the crystal plasticity model is devel-
oped in a generalized framework. The integration scheme can also be used for a slip-based
crystal plasticity model. In this case, the number of primary variables will reduce from five
to three, that is, {Te, sα

r , υi, si
t, Re, } to {Te, sα

r , Re}, by omitting twin resistance si
t and

twinned martensite volume fraction υi. However, the two-level Newton–Raphson iterative
scheme remains two-level.

4. Finite Element Modeling

The numerical integration scheme of the twin-based crystal plasticity model is vali-
dated and further used to predict the deformation behavior of metals through finite element
simulations. For this, numerical simulations are performed for single-crystal and poly-
crystal FCC-austenite subjected to biaxial and combined tension-shear loading using finite
element software ABAQUS. The material model’s constitutive equations are incorporated
in finite element simulations through a user-defined material subroutine (UMAT). A mate-
rial point in a single crystal of austenite is modeled through the eight-node brick element
of unit side length with reduced integration (C3D8R). For polycrystalline simulations,
each finite element represents 500 grains of random crystallographic texture. The random
texture of grains, expressed in Euler angles, is developed using Kocks convention [59]. In
addition, a weighted average procedure is utilized to estimate the cumulative response of
polycrystalline austenite material. Furthermore, published experimental results of TWIP
steel are referred to for validating the developed numerical model. Consequently, the defor-
mation behavior of austenite-based TWIP steel, subjected to different loading conditions, is
estimated and analyzed through finite element simulations.

4.1. Geometry and Boundary Conditions

In finite element simulations, two modes of loadings are considered: (i) uniaxial ten-
sion, and (ii) uniaxial compression. In uniaxial tension, a displacement of +0.15 mm is
applied on a cube face, as shown in Figure 3a. The planar symmetric boundary condition
is employed on three faces, while the two remaining surfaces are traction-free. Similar
boundary conditions are adopted in uniaxial compression, except for a negative displace-
ment of 0.15 mm on an element surface, as illustrated in Figure 3b. All loading conditions
follow an analogous displacement rate, 1000 increments in a logical time bound of 0 to 1,
of 1.5× 10−4 mm/time. The effect of texture on the deformation pattern is incorporated
through simulations of three crystallographic orientations, as illustrated in Figure 4. These
are represented in two domains, that is, crystal and specimen coordinate systems, which
are, respectively represented by the (ec

1, ec
2, ec

3) and (es
1, es

2, es
3) axes. The crystal direction

[100], corresponding to Euler angles (φ1
1, φ1

2, φ1
3), is equal to (−90o, 0, 90o) (see Figure 4a).

Likewise, [110] and [111], corresponding to (φ2
1, φ2

2, φ2
3) and (φ3

1, φ3
2, φ3

3), are equivalent to
(−45o, 0, 90o) and (−45o, 35.26o, 54.74o), respectively, as represented in Figure 4b,c.

(a)

U1 0= U2 0=

U3 0= es
1

es
2

es
3

U 1

0 15
= + .Traction free

Traction free

(b)

U1 0= U2 0=

U3 0= es
1

es
2

es
3

U 1

0 15
= − .Traction free

Traction free

Figure 3. Finite element models subjected to (a) tension and (b) compression.
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Figure 4. Loaded directions (LDs) in single crystal with respect to specimen orientation (a) [100]-LD ,
(b) [110]-LD, and (c) [111]-LD.

4.2. Modeling Parameters

In the present work, simulation parameters (material, hardening, and thermal) are
considered as in [51,53,57], as summarized in Table 2.

Table 2. General modeling parameters of TWIP steels.

Type Parameter

Material
Moduli of rigidity Gs = 111.0, Gt = 98.4 (GPa)
Bulk modulus Ka = 206.5 (GPa)
Flow rule
Initial shear strain rate γ̇0 = 0.001 s−1

Hardening rule
Initial hardening rate hα

0 = 200 (MPa)
Initial saturation value of slip resistance sα

r,S0
= 120 (MPa)

Saturation slip resistance exponent a = 0.005
Shear strain rate at saturation slip resistance γ̇S0 = 5 × 1010 s−1

Latent hardening coefficient qακ = 1.4
Slip hardening parameter sr,p = 350 (MPa)
Boltzman’s constant, Equation (80) [53] k = 1.38 × 10−23 (J/K)
Absolute temperature, Equation (80) [53] θ = 298 (K)
Product of Burger’s vector and material parameter, Equation (80) [53] b3B = 0.005
Material parameter, Equation (80) [53] x = 0.5
Initial hardening rate of non-coplanar twin systems hi

nc = 800 (MPa)
Initial hardening rate of coplanar twin systems hi

cp = 8000 (MPa)
Defect energy
Crystal defect energy parameters ϕ = 10, ω = 5
Initial crystal defect energy ζ0 = 4.5 × 10−4 s−1

Thermal energy
Thermal analogous of resolved shear stresses Φα = 12, Φi = 12 (MPa)

5. Results and Discussion

In the current section, reported experimental investigations are utilized to validate
the developed numerical integration scheme. Afterward, further finite element simula-
tions of single-crystal and polycrystal austenite-based TWIP steel, subjected to uniaxial
tension and compression, are executed and investigated. The prime purpose of these
simulations is to test and verify the developed numerical scheme under different material
deformation behaviors.

5.1. Model Validation

The developed numerical integration scheme is validated through the published ex-
perimental results of twinning-induced plasticity (TWIP) steels. In this, the uniaxial tensile
test results, as reported in [60], of three TWIP steels with different chemical compositions
are utilized. These steels are: TWIP 22% Mn-0.6% C, TWIP 30% Mn-0.5% C, and TWIP
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29% Mn-0.8% C. In finite element simulations of uniaxial tension, displacement of 0.45
to 0.6 mm is applied on a surface of a cubic element with outward normal parallel to es

1
axis, as shown in Figure 4. In uniaxial compression, displacement of 35.0 × 10−2 mm is
applied along es

1 vector on a surface with es
1 as area normal vector. It is assumed that the

cubic element of a material point is comprised of 500 grains with random texture. The
orientation distribution function of grains is expressed in terms of Euler angles through the
Kocks convention. The general modeling parameters of TWIP steels are summarized in
Table 2, while parameters specific to TWIP steels 1, 2, and 3 are listed in Table 3.

The simulation results of uniaxial tension are in good agreement with the experimental
observations of TWIP steels, as evident from Figure 5. However, it is noted that for TWIP
22% Mn-0.6% C and TWIP 29% Mn-0.8% C, the experimental results are under-predicted at
higher strain (>0.35). For instance, the maximum absolute percent relative error ((experimental
stress − simulation value)/experimental stress) in equivalent stress for TWIP 22% Mn-0.6%
C at 0.43 equivalent strain is 11.63%. In TWIP 29% Mn-0.8% C, it is 7.44% at 0.45 strain.
The deformation behavior of TWIP steels is solely dependent on the complex interactions
of slip and twin planes, especially at higher strains. These interactions are the function of
slip and twin planes’ resistances and orientations. At higher strains, many slip and twin
planes may activate and interact, which may cause a higher magnitude of strain hardening,
as shown in the experimental results of Figure 5. This complicated phenomenon of higher
strain hardening may not be fully encapsulated in numerical simulations. Nevertheless, the
numerical model predicts experimental results of TWIP steels well. Therefore, it could be
further used to simulate the deformation behavior of these steels, using similar modeling
parameters, subjected to multiple types of loading conditions.

Table 3. Specific modeling parameters of TWIP 22% Mn-0.6% C, TWIP 30% Mn-0.5% C, and TWIP
29% Mn-0.8% C steels.

TWIP 22% Mn-0.6% C

Type Parameter

Material
Elasticity tensor components Ea

11 = 286.80, Ea
12 = 166.40, Ea

44 = 145.10 (GPa)
Flow rule
Rate sensitivity parameter m = 0.03
Hardening rule
Initial slip resistance sα

r,0 = 70 (MPa)
Initial twin resistance si

r,0 = 80 (MPa)

TWIP 30% Mn-0.5% C

Type Parameter

Material
Elasticity tensor components Ea

11 = 286.80, Ea
12 = 166.40, Ea

44 = 145.10 (GPa)
Flow rule
Rate sensitivity parameter m = 0.02
Hardening rule
Initial slip resistance sα

r,0 = 80 (MPa)
Initial twin resistance si

r,0 = 80 (MPa)

TWIP 29% Mn-0.8% C

Type Parameter
Material
Elasticity tensor components Ea

11 = 286.80, Ea
12 = 166.40, Ea

44 = 145.10 (GPa)
Flow rule
Rate sensitivity parameter m = 0.02
Hardening rule
Initial slip resistance sα

r,0 = 90 (MPa)
Initial twin resistance si

r,0 = 120 (MPa)
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Figure 5. Comparison of experimental and simulation results of TWIP steels subjected to uniaxial
tension: (a) TWIP 22% Mn-0.6% C, (b) TWIP 30% Mn-0.5% C, (c) TWIP 29% Mn-0.8% C.

5.2. Finite Element Simulations

After establishing the modeling parameters, further finite element simulations are
performed to evaluate the deformation pattern of single-crystal and polycrystal TWIP
steels subjected to uniaxial tension and compression. The other reasons for the simulations
are to observe the effects of loading directions on the (i) activity of slip and twin-systems,
(ii) magnitude of slip and twin shear strain, and (iii) volume fraction of the twinned region.
In the subsequent sections, the variation of these parameters for three crystallographic
directions ([100], [110], and [111]) in a single crystal of TWIP steels are analyzed. For
polycrystal, the material point is represented by a set of five hundred randomly oriented
grains. A detailed discussion about the choice of the optimum number of grains is presented
in [53].

5.2.1. Slip and Twin Planes’ Activity

In twinning- and transformation-induced plasticity steels, it would be worthwhile
to investigate the contribution of slip and twinning in overall plastic strain. Moreover,
their effects on deformation and hardening behaviors are equally essential. Therefore,
the activity of slip and twin systems during the course of single crystals’ deformation is
evaluated through the current model in three crystallographic orientations, as illustrated
in Figures 6 and 7. It is noted that slip and twin systems of austenite single crystal, as
mentioned in Appendix A, are designated through numbers, as shown in these figures. For
example, slip system 1 is the combination of slip plane normal, nα and slip direction, and
mα

k vectors, where α and k are equal to 1, as shown in Table A1. In addition, vectors n1 and
m1

2 form slip system 2. A similar convention is used for twin systems; see Table A2. The
activity of slip and twin systems is assessed based on the ratios of resolved shear stress and
slip or twin resistance. The slip or twin plane becomes active once these ratios are greater
than 1.
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Figure 6. Activity of slip planes in single crystal of TWIP 1, TWIP 2, and TWIP 3 steels under tension
and compression in three crystallographic directions.
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Figure 7. Activity of twin planes in single crystal of TWIP 1, TWIP 2, and TWIP 3 steels under tension
and compression in three crystallographic directions.

It is evident from Figures 6 and 7 that all TWIP steels show similar activity of slip and
twin systems, regardless of their varying compositions. Furthermore, a similar number of
slip and twin systems are active while the crystal is subjected to tension and compression in
the [100] and [110] directions. However, this is not the case in [111], where a higher number
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of systems show activity in tension (slip systems: 1, 3–5, 8, and 9; twin systems: 2, 6, and 7)
than compression (slip systems: 4, 8, 9, and 12; twin systems: 6 and 7). It is also found that
some slip and twin systems become activated at lower strain but deactivated at higher, or
vice versa. This is probably due to the interaction among slip–slip, slip–twin, or twin–twin
systems, and/or reorientation of the slip or twin planes during the course of deformation.
These interactions are one of the main causes of material softening or hardening at the
micro-level. Another important finding from Figures 6 and 7 is related to the contribution
of the slip and twin modes in overall plasticity. As a whole, the contribution of slip is higher
for all crystallographic directions. However, the highest level of twin activity is observed
in the [100] direction.

5.2.2. Deformation and Hardening Behavior

The stress-strain response of single-crystal and polycrystal TWIP steels under tension
and compression are represented, respectively, in Figures 8 and 9. It is noted that from
now on, the conventions of TWIP 1, TWIP 2, and TWIP 3 are used for TWIP 22% Mn-0.6%
C, TWIP 30% Mn-0.5% C, and TWIP 29% Mn-0.8% C, respectively. A prominent varia-
tion in deformation pattern, both in tension and compression, is seen in crystallographic
orientations and polycrystal.
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Figure 8. Deformation behavior of single-crystal and polycrystal TWIP steels subjected to tension.

It is noted in Figures 8 and 9 that orientations [100] and [110] show similar behavior in
tension and compression, except for tension in TWIP 1. In this, a sample loaded in [110]
initially shows hardening, and then softening after equivalent strain 0.4. The softening
behavior may be induced due to the activation of mechanical twinning; however, this
does not comply with twin systems’ activity, as shown in Figure 6b, where a similar
number of twin systems are active at strain 0.4. The other possible reasons may include:
(i) reorientation of slip and/or twin systems that may enhance the overall shear strain
rates of both modes, or (ii) variation in crystal defect energy as a result of dislocations’
interaction. In all TWIP steels, crystals subjected to tensile load in the [111] direction
present the largest magnitude of stress; however, in compression, a similar pattern is
observed until the equivalent strain 0.4. After this, the [111] direction shows a lower
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magnitude of equivalent stress. Furthermore, it is also noted that all polycrystal TWIP
steels represent a higher magnitude of stress in tension than compression. This may
indicate a greater dominancy of slip and twin systems’ reorientation (primary hardening)
and interactions (latent hardening) in tension than compression. A quantitative comparison
of stress magnitudes in single-crystal and polycrystal TWIP steels is presented in Table 4.
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Figure 9. Deformation behavior of single-crystal and polycrystal TWIP steels subjected to compression.

Table 4. Comparison of equivalent stress at 0.4 equivalent strain of single-crystal and polycrystal
TWIP steels under tension and compression.

Equivalent Stress (MPa)

Tension Compression

Poly [100] [110] [111] Poly [100] [110] [111]

TWIP 1 1094 549 626 839 688 542 542 540

TWIP 2 1138 510 512 820 678 560 555 552

TWIP 3 1230 575 577 873 712 570 568 565

5.2.3. Slip and Twin Shear Strain

The magnitude of shear strain is another important parameter in crystal plasticity,
especially if modes other than slip are also favorable. In addition, the slip and twin
contribution in overall plasticity can only be quantitatively represented through shear
strain magnitude, not by activity of slip and twin planes, as it is a qualitative measurement.
In this regard, the magnitudes of shear strain in slip and twin modes are analyzed. For
almost all TWIP steels, a linear variation of shear strain, under tension and compression,
is observed in slip mode; however, nonlinearity is dominant in twin, as illustrated in
Figures 10 and 11. Moreover, the magnitude of the shear strain in slip is far greater than
twin in all steels’ crystallographic directions, which refers to the dominancy of slip over twin
mode in plasticity. In slip, all crystallographic directions represent, with few exceptions,
a similar magnitude of shear strain under the same kind of loading; however, a significant
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variation is observed in twin mode. It is evident from Figure 11 that shear strain becomes
nearly constant for all crystallographic directions of TWIP 1 and 2 after specific equivalent
strain. On the contrary, shear strain’s magnitude continuously increases in TWIP 3. This
peculiar behavior could be an indication of latent hardening and planes’ interaction effects.
A quantifiable observation of shear strain in slip and twin modes is exhibited in Table 5.
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Figure 10. Magnitude of commulative slip shear strain of a single crystal of TWIP steels subjected to
tension and compression.
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Figure 11. Magnitude of commulative twin shear strain of a single crystal of TWIP steels subjected to
tension and compression.
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Table 5. Shear strain’s magnitude at 0.4 equivalent strain in slip and twin modes of TWIP 1, 2, and 3
steels under tension and compression.

Twin Volume Fraction

Tension Compression

[100] [110] [111] [100] [110] [111]

Slip

TWIP 1 0.219 0.160 0.246 0.211 0.192 0.191

TWIP 2 0.132 0.107 0.213 0.142 0.112 0.162

TWIP 3 0.235 0.211 0.245 0.238 0.208 0.196

Twin

TWIP 1 0.015 0.016 0.008 0.017 0.016 0.007

TWIP 2 0.091 0.087 0.033 0.091 0.086 0.024

TWIP 3 2.4 × 10−5 1.4 × 10−5 9.8× 10−5 2.4 × 10−5 1.3× 10−5 5.1× 10−6

An obvious observation from Table 5 is the highest magnitude of slip shear strain of
TWIP 3 under tension and compression in all crystallographic directions. On the other
hand, twin shear strain shows the uppermost values in TWIP 2 for all directions under
both types of loading.

5.2.4. Twin Volume Fraction

The magnitude of shear strain alone does not present a complete quantitative estima-
tion of twinning. A complete estimation requires the magnitude of the volume of twin in
the overall plasticity. In view of this requirement, the twin volume fraction is estimated
during the course of deformation, as represented through Figure 12. In conjunction with
twin systems’ activity, the twin volume fraction represents the ratio of active to total number
of twin planes. A significant variation of twin volume is observed under tension and com-
pression in all steels and crystallographic directions. As in the case of shear strain, the twin
volume fraction becomes nearly steady for all crystallographic directions of TWIP 1 and 2,
but not for TWIP 3, after a certain equivalent strain. The magnitude of twin volume fraction
for TWIP steels is presented in Table 6. As is evident, the largest magnitude of twin volume
is observed in the [100] crystallographic direction under tension and compression for all
three TWIP steels. Overall, the twin volume fraction is not exceeded by 0.333 (33.33 %) in
all directions and steels. This shows that the contribution of twinning in the plasticity of
TWIP steels 1, 2, and 3 is limited to 33.33 % for a single crystal.

Table 6. Highest values of twin volume fraction for TWIP 1, 2, and 3 steels under tension and compression.

Twin Volume Fraction

Tension Compression

[100] [110] [111] [100] [110] [111]

TWIP 1 0.333 0.166 0.249 0.333 0.166 0.166

TWIP 2 0.249 0.166 0.166 0.333 0.166 0.166

TWIP 3 0.249 0.166 0.166 0.200 0.110 0.080
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Figure 12. Twin volume fraction of a single crystal of TWIP steels subjected to tension and compression.

6. Conclusions

A numerical scheme is developed and implemented for modeling the elastic-plastic
deformation behavior of twinning-induced plasticity steel, in which mechanical twinning
contributes significantly to plasticity along with a crystallographic slip. Initially, a consti-
tutive formulation of equations, reported in earlier work, is briefly discussed. Afterward,
a numerical integration procedure is established by identifying primary variables, dis-
cretizing constitutive equations in the time domain, developing an iterative scheme, and
introducing a time sub-stepping algorithm. A numerical integration scheme is then incor-
porated in finite element software ABAQUS through a user-defined material subroutine.
Finite element models of single-crystal and polycrystal material points are developed and
simulation results are compared with the published experimental observations. They are in
close accord with the maximum error of 16.15% in TWIP steels for equivalent stress. How-
ever, the error becomes higher beyond 0.3 strain. This puts limitations on the current model
to be implemented, with more accuracy, at high strain deformation. This must be further
explored in future work. In addition, further simulations are executed to quantify slip and
twin systems’ activity, deformation behavior, shear strain pattern, and twin volume fraction
of three TWIP steels subjected to uniaxial tension and compression. The slip and twin
systems’ activity shows that the slip contribution is higher for all crystallographic directions
in all steels; however, the highest level of twin activity (number of active twin systems) is
observed in the [100] direction. In addition, a higher magnitude of stress at 0.45 equivalent
strain is observed in tension (1150 to 1300 MPa) than compression (780 to 850 MPa) in all
polycrystal TWIP steels. It may indicate a more prominent role of slip and twin systems’
reorientation and interactions in tension. Moreover, the twin shear strain becomes nearly
constant for all crystallographic directions of TWIP 1 and 2 after 0.2 equivalent strain,
but not for TWIP 3. It is also found that the fraction of twin volume is not surpassed by
33.33% for all directions and TWIP steels. The development and implementation of a fully
implicit numerical integration scheme in modeling twinning-induced plasticity provide an
effective platform to estimate the deformation behavior of TWIP steels. The current work
can be enhanced to incorporate martensitic phase transformation and damage criterion in a
coupled slip, twinning, and transformation-induced plasticity model.
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Appendix A. Slip and Twin Systems of Austenite Crystal

Face-centered cubic (FCC) austenite crystal’s slip and twin systems are represented in
terms of Miller indices and unit vectors in Tables A1 and A2, respectively.

Table A1. Slip systems of FCC crystal.

Slip Plane Normal nα Slip Direction mα
k

α = 1–4, k = 1, 2, 3

Miller Unit Vector Miller Unit Vector

n1 (111)
(

1√
3

, 1√
3

, 1√
3

)
m1

1 [011̄]
(

0, 1√
2

, −1√
2

)
m1

2 [101̄]
(

1√
2

, 0, −1√
2

)
m1

3 [11̄0]
(

1√
2

, −1√
2

, 0
)

n2 (1̄11)
(
−1√

3
, 1√

3
, 1√

3

)
m2

1 [011̄]
(

0, 1√
2

, −1√
2

)
m2

2 [101]
(

1√
2

, 0, 1√
2

)
m2

3 [110]
(

1√
2

, 1√
2

, 0
)

n3 (1̄1̄1)
(
−1√

3
, −1√

3
, 1√

3

)
m3

1 [011]
(

0, 1√
2

, 1√
2

)
m3

2 [101]
(

1√
2

, 0, 1√
2

)
m3

3 [11̄0]
(

1√
2

, −1√
2

, 0
)

n4 (11̄1)
(

1√
3

, −1√
3

, 1√
3

)
m4

1 [011]
(

0, 1√
2

, 1√
2

)
m4

2 [101̄]
(

1√
2

, 0, −1√
2

)
m4

3 [110]
(

1√
2

, 1√
2

, 0
)
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Table A2. Twin systems of FCC crystal.

Twin Plane Normal ni Twin Direction mi
k

i = 1–4, k = 1, 2, 3

Miller Unit Vector Miller Unit Vector

n1 (111)
(

1√
3

, 1√
3

, 1√
3

)
m1

1 [2̄11]
(
−2√

6
, 1√

6
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(

1√
6

, −2√
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3

)
m2

1 [211]
(

2√
6

, 1√
6

, 1√
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)

n3 (1̄1̄1)
(
−1√

3
, −1√

3
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3

)
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(

2√
6

, −1√
6
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6

)
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(
−1√

6
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6
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