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Abstract: Elastic metagratings enabling independent and complete control of both reflection and
transmission of bulk longitudinal and transverse waves are highly desired in application scenarios
such as non-destructive assessment and structural health monitoring. In this work, we propose a kind
of simply structured metagrating composed only of elliptical hollow cylinders carved periodically
in a steel background. By utilizing the grating diffraction theory and genetic algorithm, we endow
these metagratings with the attractive functionality of simultaneous and high-efficiency modulation
of every reflection and transmission channel of both longitudinal and transverse waves. Interesting
wave-front manipulation effects including pure mode conversion and anomalous deflection along
the desired direction are clearly demonstrated through full-wave numerical simulations. Due to its
subwavelength thickness and high manipulation efficiency, the proposed metagrating is expected to
be useful in the design of multifunctional elastic planar devices.

Keywords: elastic metagrating; diffraction analysis; intelligent optimization algorithm

1. Introduction

Metasurfaces, planarized artificial structures of subwavelength thickness, have re-
ceived much attention in recent years and have been widely used to manipulate the propa-
gation direction and deflection efficiency of both electromagnetic and acoustic waves [1,2].
Various wave-front manipulation effects have been realized with metasurfaces, such as
anomalous reflection and transmission [3–13], cloaking [14], and holography [15,16]. Meta-
surfaces are usually designed by introducing phase shifts along the interface to achieve
interesting and uncommon wave-front manipulations, with their functionalities based on
the generalized Snell’s law (GSL) [1,17]. However, phase-gradient metasurfaces suffer
from low diffraction efficiency at large deflection angles due to the impedance mismatch
between scattered and incident waves [7,8].

To this end, the concept of metagratings was proposed more recently and was utilized
to achieve high-efficiency wave-front manipulation for both electromagnetic [18,19] and
acoustic waves [20–32]. Metagrating is based on the theory of grating diffraction instead
of GSL, and with a carefully designed unit-cell structure, each diffraction order of the
scattered wave can be individually and efficiently controlled. Furthermore, compared with
GSL-based metasurfaces, metagratings can achieve nearly unitary diffraction efficiency
along the desired direction even for very large steering angles. Moreover, the unit-cell of
metagrating usually has a simpler structure than its counterpart in metasurface, making it
easier to fabricate and more convenient to adapt to higher working frequencies.

Although a lot of interesting works based on electromagnetic and acoustic meta-
gratings were reported in the literature, there are much fewer studies focused on elastic
metagratings. One example is the elastic metagrating proposed by S. Y. Kim et al., which
contains slender and straight elastic beams to realize anomalous reflections of longitudinal
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waves [33]. P. Packo et al. also proposed a grating structure to achieve anomalous reflection
and refraction of flexural waves [34]. Although there are many interesting studies on the
modulation of Lamb or SH waves in thin plates with metasurfaces or gratings [35–50],
in numerous application fields such as non-destructive assessment and structural health
monitoring, the complete and simultaneous control of bulk longitudinal and transverse
waves are highly desired. In this regard, people utilized plate-like waveguide structures to
split the p-wave from SV-wave [51] and achieve abnormal refraction of the SV-wave [52] or
used a topology optimization method to obtain anomalous reflection [53] or refraction [54]
of a longitudinal wave. However, the simultaneous modulation and high-efficiency control
of both longitudinal and transverse waves along all reflection and transmission directions have
yet to be implemented.

Here, we propose a class of elastic metagratings for the simultaneous manipulation of
both longitudinal and transverse waves on every reflection and transmission channel. These
simply structured gratings consist only of elliptical hollow cylinders carved periodically in a
steel background. We utilize the elastic wave diffraction theory and intelligent optimization
algorithm to endow the metagrating with attractive functionalities, e.g., driving either
longitudinal or transverse wave into the desired direction with almost perfect efficiency.
Various wave-front manipulation effects such as anomalous transmission into the specified
channel and pure mode conversion are ambiguously demonstrated through full-wave
numerical simulations. The proposed elastic metagrating may find potential applications as
a multifunctional planar device due to its subwavelength thickness and high manipulation
efficiency over both longitudinal and transverse waves.

2. Analysis of Grating Diffraction

Let us consider a grating structure consisting of a one-dimensional (1D) array of
elliptical or circular hollow cylinders embedded in a steel background, as shown in Figure 1.
Each unit-cell, with period d, is composed of two elliptical and one circular cylinders, as
shown in the inset of Figure 1, with periodic boundary conditions (PBCs) specified on the
left and right sides. Two elliptical cylinders, with centers C1(x1, 0) and C2(x2, y2), may
have different major semi-axes a1 and a2, minor semi-axes b1 and b2, and rotation angles ϕ1
and ϕ2, respectively. The circular cylinder has a radius r and is centered at C3(x3, y3).
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Figure 1. Physical configuration of the elastic metagratings, where six longitudinal (blue arrows) and
six transverse (red arrows) diffraction channels are schematically shown. Each unit-cell consists of
two elliptical and one circular hollow cylinders curved in a steel background, as shown in the inset
with corresponding geometrical parameters marked.
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In this work, we study the behavior of elastic waves propagating within the xy-plane
of a bulk material that is infinitely long in the z-direction. Since all material parameters such
as mass density and wave velocities do not depend on the z-coordinate, the corresponding
full elastic wave equation has two sets of decoupled solutions. One set of solutions is a
pure shear wave mode with displacement along the z-direction, obeying a scalar wave
equation. The other set of solutions has its displacement lying in the xy-plane and contains
both longitudinal and transverse wave components. We will focus on the latter case,
because longitudinal and transverse waves can interact with and transform into each other,
providing richer physics and complex functionalities.

When a beam of plane longitudinal waves is normally incident on the grating, accord-
ing to the theory of grating diffraction, the scattered waves will propagate along several
discrete diffraction orders. To be more specific, the mth-order scattered longitudinal wave
(p-wave) and the nth-order scattered transverse wave (s-wave) are given by

2π

λp
sin θp,r =

2π

λp
sin θp,t = m

2π

d
(1)

2π

λs
sin θs,r =

2π

λs
sin θs,t = n

2π

d
(2)

where λp(λs) represents the wavelength of p(s)-wave in the background material, and
θp,r(θs,r) and θp,t(θs,t) denote the reflection and transmission angles of p(s)-wave, respec-
tively. For simplicity, we only show the wave-manipulation results for diffracted orders up
to the first order (i.e., m = 0, ±1 and n = 0, ±1), where higher diffracted orders (|m| ≥ 2 and
|n| ≥ 2) are evanescent modes. Thus, there are a total of 12 diffraction channels, including
6 p-wave channels and 6 s-wave channels, as shown schematically in Figure 1.

Without loss of generality, we assume the reflection or transmission angle for the
first-order longitudinal wave is α = θp,r = θp,t. Then according to Equations (1) and (2),
the reflection or transmission angle for the first-order transverse wave is determined as
β = θs,r = θs,t = sin−1(λs/λp sin α

)
, with the unit-cell’s period d = λp/|sin α| = λs/|sin β|.

When a longitudinal wave is normally incident on the metagrating, we want to control
the diffracted waves so that only propagation along the desired diffraction channels is
permitted. In this way, we must suppress diffraction along all unwanted channels. For
example, if we want to drive the scattered wave into only Rp1 and Ts−1 channels, we have
to suppress the Rp0 , Rp−1 , Tp0 , Tp1 , Tp−1 , Rs0 , Rs1 , Rs−1 , Ts0 , and Ts1 diffraction channels
simultaneously. This goal is challenging, but it can be accomplished by utilizing the genetic
algorithm (GA), a kind of intelligent optimization algorithm [23,27,28].

GA is an evolutionary algorithm simulating the evolutionary processes in nature such
as mutation, crossover, and selection. By evaluating the fitness of every individual in the
population of each generation, the more fit individuals are stochastically selected and are
used in the next iteration. GA terminates until a satisfactory fitness level has been reached,
or a maximum number of generations has been produced. When applying GA, appropriate
optimization objectives (i.e., the fitness functions) are formulated according to specific
requirements, and by optimizing the design parameters (i.e., the optimization variables) of
the metagrating, we can obtain a set of optimized parameters for the desired wave-front
manipulation effect.

In applying the GA, we set the geometric parameters of the cylinders in each unit-
cell as the optimization variables, i.e., a1, a2, b1, b2, r, ϕ1, ϕ2, x1, x2, x3, y2, and y3. To
achieve high-efficiency diffraction along Rp1 and Ts−1 channels, we set the optimization
objective as L =

(∣∣0.5− Rp1

∣∣+ ∣∣0.5− Ts−1

∣∣)× 100, which is also the fitness function for
each individual. In each generation, the minimum value of L is called the best fitness
function of that generation. The following hyperparameters of GA are used in this study:
the size of the population is 100, the crossover fraction is 0.9, the migration fraction is 0.3,
and the migration interval is 5. The algorithm stops if the relative change in the best fitness
function Lbest over 50 generations is less than or equal to 1.0× 10−6. The maximum number
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of iterations before the algorithm halts is 1000. With the help of GA, we can quickly find the
optimized geometric parameters that satisfy the desired wave-front manipulation effect.
Finally, the desired functionality of the metagrating is verified by full-wave numerical
simulations with COMSOL Multiphysics, a finite-element-based software.

3. Results

In this section, we present the numerical simulation results to demonstrate the si-
multaneous and high-efficiency manipulation of anomalous reflection and transmission
functionalities for both longitudinal and transverse waves. The background material is
steel, and its mass density, Young’s modulus, and Poisson’s ratio are ρ = 7874 kg/m3,
E = 211 GPa, and ν = 0.29, respectively. A longitudinal plane wave is normally incident
on the grating at the operating frequency f0 = 80 kHz, with corresponding longitudinal
wavelength λp = 7.4074 cm and transverse wavelength λs = 4.0285 cm. We assume that the
reflection/transmission angle for the ±1st order longitudinal wave is α = ±77◦, then the
corresponding angle for the ±1st order transverse wave is β = sin−1(λs/λp sin α

)
= ±32◦.

Thus, the period of the unit-cell is d = λp/|sin α| = λs/|sin β| = 7.6022 cm.
As a first example, in Figure 2 we demonstrate the high-efficiency anomalous diffrac-

tion effect along the Rp1 and Ts−1 channels. After applying the GA, we can achieve high
reflection efficiency along Rp1 channel and high transmission efficiency along Ts−1 channel,
with Rp1 = 46.1% and Ts−1 = 49.0% at the operation frequency f0 = 80 kHz. The optimized
geometrical parameters are a1 = 1.4166 cm, b1 = 0.4566 cm, ϕ1 = 0.112◦, C1 = (4.9571, 0) cm,
a2 = 1.4781 cm, b2 = 0.4380 cm, ϕ2 = 151.83◦, C2 = (2.228, 2.9195) cm, r = 0.4701 cm, and
C3 = (3.19, 5.1713) cm, respectively. The diffraction spectra are shown in Figure 2a, where
the blue shaded region, f ∈ [79.38, 80.60] kHz, corresponds to the frequency range with
Rp1 + Ts−1 > 90%. The magnitude of the displacement vector at f0 is shown in Figure 2b,
where black, blue, and red arrows denote the incident, reflected, and transmitted wave
beams, respectively. We also plot the divergence and curl of the displacement field in
Figure 2c,d, which corresponds to the longitudinal and transverse wave components, re-
spectively. Thus, we clearly demonstrate that an exclusive and high-efficiency diffraction
along the Rp1 and Ts−1 channels can be realized with the smartly designed metagrating.

For the full-wave numerical simulations, we use the solid mechanics (frequency
domain) module in COMSOL Multiphysics. The diffraction efficiency spectra shown in
Figure 2a, for example, are calculated with a mesh resolution of λp/50 with periodic
boundary conditions (PBCs) applied at the left and right boundaries of the unit-cell (as
marked by green lines in the inset of Figure 1). Furthermore, perfect matching layers
(PMLs) are used at the upper and lower boundaries to absorb outgoing waves.

The displacement field distributions plotted in Figure 2b–d are obtained by using a
grating structure with 62 unit-cells along the x-direction with a similar mesh resolution of
finite elements, where a longitudinal plane wave is normally incident on the grating. For
this case, PMLs are applied on the left, right, upper, and lower boundaries of the simulation
domain.

In Table 1 we have summarized the diffraction efficiencies of a total of 12 channels
calculated with different sizes of mesh (such as λp/40, λp/50, and λp/100), we can observe
that for a mesh size of λp/50, the simulation results have already converged and are
accurate.

Here we note that as a general design principle of the metagrating, one must ensure
that the design degrees of freedoms (DOFs) of the unit-cell (i.e., the size, orientation, and
position of elliptical cylinders) is equal to or larger than the number of tunable diffraction
channels to be controlled [55]. Taking Figure 2 as an example, we need to simultaneously
control 6 longitudinal wave channels (Rp0 , Rp1 , Rp−1 , Tp0 , Tp1 , and Tp−1) and 6 transverse
wave channels (Rs0 , Rs1 , Rs−1 , Ts0 , Ts1 , and Ts−1 ), so that the diffracted wave can be driven
into specific directions only. To this end, we must have enough design DOFs to achieve the
desired wave-manipulation effect. It turns out that if each unit-cell contains two elliptical
and one circular cylinder, we will have 12 independent geometrical parameters (a1, a2,
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b1, b2, r, ϕ1, ϕ2, x1, x2, x3, y2, and y3) so that the design DOFs (i.e., 12) are equal to the
number (12) of tunable diffraction channels. Thus, we can achieve nearly perfect diffraction
efficiencies along the desired deflection directions, as clearly shown in Figure 2.
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dent on the metagrating. (a) The diffraction efficiency spectra for all 12 channels, where f0 = 80 kHz
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and transmitted s-wave, respectively.

Table 1. Diffraction efficiency with different sizes of mesh (%).

Mesh Size λp/40 λp/50 λp/100

Rp0 1.26 1.22 1.22
Rp1 46.24 46.09 45.97
Rp−1 0.82 0.90 0.83
Rs0 0.05 0.05 0.05
Rs1 0.61 0.57 0.59
Rs−1 0.96 0.98 0.99
Tp0 0.01 0.01 0.01
Tp1 0.13 0.12 0.12
Tp−1 0.51 0.54 0.58
Ts0 0.09 0.08 0.09
Ts1 0.44 0.45 0.45
Ts−1 48.88 48.98 49.10

Of course, we can utilize a metagrating structure with three (or more) elliptical cylin-
ders in each unit-cell, where 14 independent geometrical parameters (a1, a2, a3, b1, b2, b3, ϕ1,
ϕ2, ϕ3, x1, x2, x3, y2, and y3) can provide us with more design DOFs than the number (12)
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of tunable diffraction channels. However, this does not comply with our design principle:
we want to manipulate the diffracted waves with the simplest possible structure. Therefore,
the unit-cell configuration of two elliptical and one circular cylinder is just enough for us.
In short, a simpler unit-cell configuration cannot provide enough design DOFs, while a
more complicated configuration is not necessarily needed. Therefore, the advantage of the
current design is that we use the simplest possible grating structure to control as many as
possible diffraction channels. Figure 2 shows that only longitudinal wave is reflected and
that only a transverse wave is transmitted for a normally incident p-wave. In Figure 3 we
will show a complementary scenario where only the transverse wave is reflected and only
the longitudinal wave is transmitted for the same incident p-wave. In this case, we require
that high-efficiency diffraction along the Rs−1 and Tp1 channels are accomplished at the
working frequency f0. By utilizing the GA, we can obtain high diffraction efficiencies of
Tp1 = 41.4% and Rs−1 = 50.3% along the desired channels, with corresponding optimized
geometric parameters being a1 = 2.9816 cm, b1 = 0.3346 cm, ϕ1 = 61.20◦, C1 = (3.0216, 0)
cm, a2 = 2.756 cm, b2 = 0.9872 cm, ϕ2 = 76.87◦, C2 = (3.8683, 5.3777) cm, r = 0.2611 cm,
and C3 = (6.5949, 1.4872) cm. The diffraction efficiency spectra for all 12 channels are
shown in Figure 3a, where we observe that the total diffraction efficiency along the desired
transmission and reflection directions satisfies Tp1 + Rs−1 > 90% in the frequency range
f ∈ [79.80, 80.33] kHz. We also plot the magnitude of the displacement at f0 in Figure 3b,
along with the divergence and curl of the displacement field shown in Figure 3c,d. They
unambiguously verify the exclusive and high-efficiency diffraction behaviors of elastic
waves along the Rs−1 and Tp1 channels.

Crystals 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 3. High-efficiency diffraction along the 𝑇  and 𝑅  channels when a p-wave is normally 
incident on the metagrating. (a) The diffraction efficiency spectra for all 12 channels, where 𝑓  = 80 
kHz is the operating frequency; (b) shows the amplitude of displacement amplitude at 𝑓 ; (c) and 
(d) show the divergence and curl of the displacement field, corresponding to longitudinal and trans-
verse wave components, respectively. Black, blue, and red arrows represent the incident p-wave, 
transmitted p-wave, and reflected s-wave, respectively. 

In the above two examples, high-efficiency diffraction along one reflected channel 
and one transmitted channel is demonstrated. In the following paragraphs, we will show 
that the diffraction can be engineered so that only reflected channels or only transmitted 
channels are permitted. In Figure 4, for example, we require that all transmitted channels 
are suppressed and only reflection along the desired channels is allowed. By using the 
GA, we can steer the reflected wave only along 𝑅  and 𝑅  channels, with high diffrac-
tion efficiencies 𝑅  = 46.4% and 𝑅  = 50.2%, respectively. The corresponding geomet-
ric parameters are 𝑎  = 4.0418 cm, 𝑏  = 1.2327 cm, 𝜑  = 143.88°, 𝐶  = (3.5065, 0) cm, 𝑎  
= 3.2945 cm, 𝑏  = 1.4135 cm, 𝜑  = 58.83°, 𝐶  = (3.1973, 9.9498) cm, r = 0.7053 cm, and 𝐶  
= (3.4023, 6.4385) cm. Figure 4a shows the diffraction efficiency spectra for all 12 channels, 
where a high reflection efficiency (𝑅 + 𝑅 > 90%) is sustained within the frequency 
range f ∈ [79.76, 80.39] kHz. We also plot the magnitude of the displacement at the oper-
ating frequency 𝑓  = 80 kHz in Figure 4b, along with the divergence and curl of the dis-
placement in Figure 4c,d. Exclusive reflection along the 𝑅  and 𝑅  channels are ob-
served. 

Figure 3. High-efficiency diffraction along the Tp1 and Rs−1 channels when a p-wave is normally inci-
dent on the metagrating. (a) The diffraction efficiency spectra for all 12 channels, where f0 = 80 kHz
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In the above two examples, high-efficiency diffraction along one reflected channel
and one transmitted channel is demonstrated. In the following paragraphs, we will show
that the diffraction can be engineered so that only reflected channels or only transmitted
channels are permitted. In Figure 4, for example, we require that all transmitted channels
are suppressed and only reflection along the desired channels is allowed. By using the GA,
we can steer the reflected wave only along Rp1 and Rs−1 channels, with high diffraction
efficiencies Rp1 = 46.4% and Rs−1 = 50.2%, respectively. The corresponding geometric pa-
rameters are a1 = 4.0418 cm, b1 = 1.2327 cm, ϕ1 = 143.88◦, C1 = (3.5065, 0) cm, a2 = 3.2945 cm,
b2 = 1.4135 cm, ϕ2 = 58.83◦, C2 = (3.1973, 9.9498) cm, r = 0.7053 cm, and C3 = (3.4023,
6.4385) cm. Figure 4a shows the diffraction efficiency spectra for all 12 channels, where
a high reflection efficiency (Rp1 + Rs−1 > 90%) is sustained within the frequency range
f ∈ [79.76, 80.39] kHz. We also plot the magnitude of the displacement at the operating
frequency f0 = 80 kHz in Figure 4b, along with the divergence and curl of the displacement
in Figure 4c,d. Exclusive reflection along the Rp1 and Rs−1 channels are observed.
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Figure 4. High-efficiency reflection along the Rp1 and Rs−1 channels when a p-wave is normally inci-
dent on the metagrating. (a) The diffraction efficiency spectra for all 12 channels, where f0 = 80 kHz
is the operating frequency; (b) shows the amplitude of displacement amplitude at f0; (c,d) show the
divergence and curl of the displacement field, corresponding to longitudinal and transverse wave
components, respectively. Black, blue and red arrows represent the incident p-wave, reflected p-wave,
and reflected s-wave, respectively.

In contrast to Figure 4, we can also require that all reflection channels are closed
while only transmission along the desired channels is permitted. As shown in Figure 5,
transmissions along Tp1 and Ts−1 channels are the only allowed diffraction channels. By
using the intelligent optimization method, we obtain a metagrating design with high trans-
mission efficiency as Tp1 = 40.8% and Ts−1 = 50.4%, where the corresponding geometric
parameters are a1 = 2.6851 cm, b1 = 0.13 cm, ϕ1 = 127.19◦, C1 = (3.8685, 0) cm, a2 = 1.5396 cm,
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b2 = 0.5797 cm, ϕ2 = 125.43◦, C2 = (3.6288, 6.5671) cm, r = 0.3518 cm, and C3 = (6.1036,
3.0839) cm. We show the diffraction efficiency spectra in Figure 5a, where the blue shaded
area represents the frequency range f ∈ [79.60, 80.22] kHz over which Tp1 + Ts−1 > 90%.
Figure 5b–d shows the magnitude of the displacement, and the longitudinal and transverse
wave components, respectively, at the operating frequency f0, which undoubtedly verifies
the desired anomalous transmission phenomenon.
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Figure 5. High-efficiency transmission along the Tp1 and Ts−1 channels when a p-wave is normally in-
cident on the metagrating. (a) The diffraction efficiency spectra for all 12 channels, where f0 = 80 kHz
is the operating frequency; (b) shows the amplitude of displacement amplitude at f0; (c,d) show the
divergence and curl of the displacement field, corresponding to longitudinal and transverse wave
components, respectively. Black, blue and red arrows represent the incident p-wave, transmitted
p-wave, and transmitted s-wave, respectively.

Next, we will demonstrate that the elastic metagrating can be used to realize high-
efficiency mode conversion, e.g., transforming an incident p-wave completely and exclu-
sively into a reflected s-wave along the desired channel. An example is shown in Figure 6,
where the only allowed diffraction channel is the Rs−1 channel, when a p-wave is normally
incident on the grating. By utilizing the GA, we obtain a high reflection efficiency along the
desired channel, i.e., Rs−1 = 94.7%, with the corresponding structural parameters given by
a1 = 2.9411 cm, b1 = 1.4895 cm, ϕ1 = 5.36◦, C1 = (4.4315, 0) cm, a2 = 1.9343 cm, b2 = 0.7616 cm,
ϕ2 = 41.42◦, C2 = (5.9854, 6.5335) cm, r = 1.5502 cm, and C3 = (3.1516, 7.1231) cm. From
the diffraction efficiency spectra plotted in Figure 6a, we see that Rs−1 > 90% within the
frequency range f ∈ [78.83, 80.93] kHz, as marked by the blue shaded region. Figure 6b–d
show the magnitude of the displacement, the divergence, and the curl of the displacement
at f0 = 80 kHz, confirming the almost unitary efficiency of mode conversion.
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Figure 6. Mode conversion functionality of the metagrating, where a normally incident p-wave
is completely and exclusively converted into a reflected s-wave along the Rs−1 channel. (a) The
diffraction efficiency spectra for all 12 channels, where f0 = 80 kHz is the operating frequency;
(b) shows the amplitude of displacement amplitude at f0; (c,d) show the divergence and curl of the
displacement field, corresponding to longitudinal and transverse wave components, respectively.
Black and red arrows represent the incident p-wave and reflected s-wave, respectively.

4. Conclusions

In this article, we propose an intelligent design paradigm for elastic metagratings
which can simultaneously modulate the reflection and transmission of both longitudinal
and transverse waves. Although the metagrating is simply structured and consists only
of a one-dimensional array of hollow cylinders carved in a steel background, it enables
the complex functionality of individual and separate control over every reflection and
transmission channel. By use of elastic wave diffraction theory and intelligent optimization
algorithms, both reflected and transmitted waves can be driven into the desired direction
with almost perfect efficiency. Various wave-front manipulation effects such as anomalous
transmission and pure mode conversion are demonstrated through full-wave numerical
simulations. These attractive functionalities and associated smart design approaches are
expected to be useful in application scenarios such as non-destructive structural monitoring
and smart planar devices.
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analysis, J.M. and L.F.; investigation, J.M., L.F. and X.H.; resources, J.M. and X.H.; writing—original
draft preparation, J.M. and L.F.; writing—review and editing, J.M., L.F. and X.H.; supervision, J.M.
and X.H.; funding acquisition, J.M. and X.H. All authors have read and agreed to the published
version of the manuscript.
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